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Fig. 1: The storyline and the scope of each paper; “probability correction” [51] and “election sausage” [17] are also highly relevant.

Abstract—A year ago, we submitted an IEEE VIS paper entitled “Swaying the Public? Impacts of Election Forecast Visualizations on
Emotion, Trust, and Intention in the 2022 U.S. Midterms” [50], which was later bestowed with the honor of a best paper award. Yet,
studying such a complex phenomenon required us to explore many more design paths than we could count, and certainly more than
we could document in a single paper. This paper, then, is the unwritten prequel—the backstory. It chronicles our journey from a simple
idea—to study visualizations for election forecasts—through obstacles such as developing meaningfully different, easy-to-understand
forecast visualizations, crafting professional-looking forecasts, and grappling with how to study perceptions of the forecasts before,
during, and after the 2022 U.S. midterm elections. This journey yielded a rich set of original knowledge. We formalized a design space
for two-party election forecasts, navigating through dimensions like data transformations, visual channels, and types of animated
narratives. Through qualitative evaluation of ten representative prototypes with 13 participants, we then identified six core insights into
the interpretation of uncertainty visualizations in a U.S. election context. These insights informed our revisions to remove ambiguity
in our visual encodings and to prepare a professional-looking forecasting website. As part of this story, we also distilled challenges
faced and design lessons learned to inform both designers and practitioners. Ultimately, we hope our methodical approach could
inspire others in the community to tackle the hard problems inherent to designing and evaluating visualizations for the general public.
Index Terms—Uncertainty visualization, probabilistic forecasts, design space, animation

1 INTRODUCTION
This story began in November 2016. Despite mainstream media news
outlets forecasting a victory for Hillary Clinton, the election night re-
vealed Donald Trump’s unexpected ascent to the presidency.1 That
night, juggling a homework deadline, I2 found myself intermittently
refreshing the election map and woke up to a transformed world the
following day. Fast forward to the autumn of 2020: amid a global
pandemic and a relentless election week that painted a picture of un-
certainty for countless individuals, I perched anxiously in front of my
desktop, watching the last author’s stream of tweets .

These personal experiences were unforgettable. It was not until
April 2021 that Matthew Kay (Matt) and I finally talked about our
shared experiences, and agreed on a vision to investigate uncertainty
visualizations for U.S. election forecasts. In January 2022, I started a
post-doc at Northwestern University. Our early conversations were of-
ten punctuated with “I don’t know.” The wall of questions grew taller
with each meeting: What even is (or isn’t) an election forecast? What
visualization types are meaningful to study in a political context?
How do laypeople understand forecasts? How can we study what peo-
ple actually think about election forecast visualizations? What if we
ran a study during the upcoming midterm elections? How would we
even do that, logistically?
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1The U.S. elections are dominated by the left-leaning Democratic and right-
leaning Republican parties; election day is the last day on which voters may
vote, usually the first Tuesday in November.

2The personal pronoun "I" is used to refer to the first author wherever suitable.

A year later, we had completed a longitudinal study of forecast vi-
sualization perceptions during the 2022 U.S. midterm elections, along
with ten collaborators from the domains of journalism, political com-
munication, and perceptual psychology. We had developed and de-
ployed four meaningfully different but well-composed visualizations,
engaged thousands of potential voters, and measured perceptions of
the forecasts before, during, and after the elections [50]. Looking
back, we made substantial progress on many of the questions we once
thought insurmountable. That said, our original paper [50] is just the
end result of what we learned. To get there, we first needed to get a
handle on the design space and build a professional-quality forecast-
ing website—just so we could study those visualizations in an ecologi-
cally valid way. Doing that required an entire additional paper’s worth
of work, and generated an additional paper’s worth of knowledge.

This, then, is that additional paper: the backstory. In keeping with
the nature of a backstory, we choose to write it in a slightly infor-
mal tone to preserve honesty. Our story unfolds with a formative sur-
vey, in which we collected people’s experiences with election fore-
casts through Prolific (Sec. 2). To provide a foundation for our ex-
ploration, we formally defined a design space tailored for U.S. elec-
tion forecasts, cataloging dimensions like data transformations, visual
channels and layouts, and animated narratives (Sec. 3). Following
this, we qualitatively evaluated ten representative prototypes in the de-
sign space through interviews with 13 participants from the formative
survey (Sec. 4). This study produced six core insights into how peo-
ple interpret uncertainty visualizations and reason about probability
in a U.S. election context—such as confounding win probability with
vote share, and erroneously forming connections between concrete vi-
sual representations (like dots) and real-world entities (like votes). In-
formed by these insights and further discussions with former forecast
website designers, we revised our initial designs to ensure compre-
hensibility for a lay audience (Sec. 5). As we concluded our jour-
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Fig. 2: Sketches from our early stages. Colors were modified to match
the other figures. See supplementary materials for the original versions.

ney, we distilled the primary challenge we had encountered: ensuring
that viewers in the wild would interpret our visualizations as intended
(Sec. 6). In our efforts to address this challenge, we also acquired criti-
cal design knowledge: incorporating extensive annotations can remove
ambiguity for a reader when interpreting a visualization.

Our journey yielded a rich body of novel knowledge, comprising a 
design space, interview insights, our research process, and the design 
lessons we learned. These elements, in their entirety, constitute the
“contributions” of this paper. While our design space and interview
insights have the potential to ignite future explorations in the realm
of uncertainty visualizations, we also hope that readers will find value
in knowing our process and lessons learned from designing visualiza-
tions for a real-world event and massive audiences. Additionally, we
provide our survey questions, interview protocol, videos, sketches, and
prototype code at https://www.doi.org/10.17605/osf.io/ygq2v.

2 BACKGROUND
The collective anxiety when immersed in deep uncertainty on election
night (or even, in 2020, election week) left a strong impression on us.
However, these anecdotal experiences may not directly translate to ac-
tionable research. To explore research directions, we first appealed to
the literature in uncertainty communication and political science, and
reviewed the existing practices of media news outlets at that time.

2.1 Literature Review
UncertaintyCommunication. The literature on uncertainty commu-
nication is rich, including contributions from our co-authors [22, 32,
35]. A number of representations have been proposed, including sum-
mary plots (e.g., error bars [20, 32]), distributional plots (e.g., density
plots [28, 32], fan charts [39]), discretized representations (e.g., quan-
tile dotplots [22, 35], icon arrays [49]), and animations [27, 29, 53]. In
particular, Gelman et al. [23] and Padilla et al. [40] discussed possible
design spaces for uncertainty visualizations. These guidelines do not
adequately address the wide range of design possibilities for uncertain
visualizations. Thus, we chose to define a design space first (Sec. 3).
Political Science and Economics. The most relevant topic is how
political polls affect voters’ perceptions and actions. The literature sug-
gests that polls can shape public opinion [41], influence voter percep-
tion [15, 38], and affect voter turnout [12, 13]. The key is the percep-
tion of electoral closeness and pivotality (the importance of a vote) [18,
24, 25], which can cause bandwagon [14, 15, 21, 46] and underdog
effects [13]. A few works specifically studied election forecasts [23,
33,48], yielding concerns about how they might confuse and influence
voting behaviors. All were helpful in our survey design, but unclear
about the role of visual representations in these processes.
Design Practices up to 2022. We also reviewed the designs used by
media news outlets when showing likely winners in elections, includ-
ing The New York Times’ animated needle [10], FiveThirtyEight’s bee
swarm plots [1, 2] and histograms [1, 2], and The Economist’s textual
summary [6] and gradient intervals [5] (see Fig. 3). The New York
Times also experimented with a dice-spinning animation to let viewers
experience uncertainty [9]. Most of these outlets have a map to show
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Fig. 3: Common examples of election forecasts: FiveThirtyEight
(2020) [1], The Economist (2020) [6], New York Times (2020) [10], and
The Economist (2021) [5].

and let users interact with state-level data [1, 2, 6, 8]. For live election
forecasts published on election night, common practices include text
summaries and gradient bar graphs [19]; bar graphs and maps [31, 42,
45] are often used to show the current state of vote tallies.
Election Forecast vs. Winner Projection. One distinction we no-
ticed is the difference between pre-election forecasting (prediction of
winner before or on election day) and post-election winner projection
(live election forecasts after voting sites have closed). These two are
both predictions of winners and are connected through the true uncer-
tainties in election outcomes. Pre-election forecasting may be more in-
fluential because of its time span (e.g., several months) and potential
consequences (e.g., changing trust and voting behavior), while post-
election winner projections can reach a wider audience and are re-
ported by all major news outlets (e.g., CNN, The New York Times).
We decided to study pre-election forecasting based on our interests at
the time. Later, Mandi (the second author) investigated post-election
winner projection [17], which may interest a curious reader.

2.2 Formative Survey
We did not find sufficient answers from the literature, particularly re-
garding how people comprehend election forecasts, let alone their vi-
sual representations. Thus, we decided to conduct a formative survey
to collect empirical data on people’s experiences with election fore-
casts. This survey was crafted through several brainstorming sessions
among the authors. To ensure the quality and relevance of the data, it
had two branches: a short branch to filter out less-experienced partic-
ipants and a long branch to collect in-depth insights from those with
substantial experience in engaging with election forecasts.
Survey Design. The first short branch checked whether participants
visited any major election forecasting website (e.g., CNN, FiveThir-
tyEight, The Economist, RealClearPolitics). The second long branch
followed the short branch, and had questions asking their experience
with election forecasting websites (e.g., FiveThirtyEight), election
forecasts’ effects on their decisions, their perception of how election
forecasts affect others, along with free-text explanations. The exact
questions can be found in supplementary materials.
Participants. We requested a U.S. demographically-balanced sam-
ple via Prolific.com and obtained 315 participants; 156 participants en-
tered the long branch, and 145 (63 female, 77 male, 5 others) accom-
plished it; 134 participants reported that they usually vote in U.S. pres-
idential elections.
Outcome. Because the purpose of this survey was to generate pos-
sible research themes, we did not perform any inferential statistical
analysis. Instead, we conducted thematic analyses of participants’
free-text responses (145 participants × 9 questions). We had briefly
reported the key results from the thematic analyses in Sec. 2.2 of
our previously-published paper [50]: they showed the importance of
emotions, and revealed a large gap between self-perception of polit-
ical behaviors (e.g., voting) and the perception of other people. The
other results also extended or reinforced the observations reported in
the political science literature. We will look for another opportunity
(perhaps a backstory to a backstory) to report those findings more
fully, or readers can refer to supplementary materials. This survey 
was critical, testifying to the potential value of our research direction
and highlighting possible measures that could be worth investigating.
This gave us a solid foundation from which we could begin designing
visualizations for U.S. election forecasts.

3 DESIGN SPACE
We planned to follow a systematic approach to designing election fore-
cast visualizations, as we would be facing a real-world event and mas-
sive audiences. However, we did not find any sufficiently well-defined
design space or any direct guidance, as most prior wisdom was tailored
to other contexts. Facing this situation, we decided to map out the de-
sign space for election forecasts ourselves, with the dual aim of illu-
minating this space and paving the way for future exploration of un-
certainty visualization designs. Drawing upon existing uncertainty vi-
sualization literature and current (as of 2022) practices, as well as our
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Fig. 4: Illustration of the data subspace.

own brainstorming and prototyping, we iteratively constructed and re-
constructed our design space until we arrived at three subspaces: data,
visual representation, and animation, each with its own dimensions. As
for interactivity, we listed a small set of considerations.

3.1 Data Subspace (Fig. 4)
To create any data visualization, we must have the underlying data;
thus, we first enumerate the data that could be visualized in a U.S. elec-
tion forecast.
Quantity. Because the U.S. electoral system is dominated by the two
major political parties (Democrats and Republicans), we simplified the
problem and considered only the percentage of total votes from two-
party voters: the vote share. Most probabilistic election forecasts esti-
mate the vote share distribution. As such, a probability density function
(PDF) describes the relative likelihood of any given vote share value;
the area under the PDF within a particular range is the win/loss proba-
bility of the vote share falling within that range. The one-sided proba-
bility P(X > 50%) is the win probability. The probabilities of one can-
didate winning and the other candidate losing always add up to 1. An-
other quantity of interest may be the cumulative distribution function
(CDF), P(X ≤ x). However, CDFs contain more information than is
typically necessary to tell the winner or race competitiveness (all one-
sided probabilities), and may be difficult for lay audiences to compre-
hend [30]. Therefore, we opted for probability density functions, varia-
tions of which are also common practices (see Sec. 2.1). As such, the
core quantities in election forecasts are vote share and win probability.
Both should be conveyed to readers in a probabilistic forecast.
Dimensionality. The two-party system allows for the use of one dis-
tribution to convey both parties’ vote shares and win probabilities, with
each side of the distribution representing one party. We can also show
both candidates’ vote share distributions directly (two distributions).
Transformation. We can transform a vote share distribution, by ag-
gregating or summarizing the distribution to derive point or interval es-
timates. We can also discretize vote shares by binning them to generate
a histogram, or discretize probabilities to generate a quantile dotplot [22,
35] (e.g., each dot represents a probability of 1%).

3.2 Visual Representation Subspace (Fig. 5)
To explore visual representations, we considered both the visual chan-
nels used to encode the data and the layout of resulting visual elements.
We prioritized frequency representations, because a lay audience usu-
ally understands them better than a probability representation [22, 32].
Visual Channel. Among common visual channels, position, lumi-
nance, length, and angle can encode vote share, probability, or probability 
density. For instance, a density plot uses position to encode both vote 
share and probability density. The same encodings with discretization
yield a histogram or a quantile dotplot. We can dual-code the proba-
bilities in a histogram using luminance or color and flatten it to get
histogram intervals, which are truncated within the 95% prediction in-
terval, following a design by The Economist [5]. We also explored a
somewhat adversarial encoding: using luminance to emphasize the
bulk (shrink) or tail (pull out) of a distribution. This was inspired by our
work on subjective probability correction [51]: pull out is an attempt to
correct people’s tendency to ignore small tail probabilities by making
the distribution appear wider. Although it is difficult to apply length 
and angle, they both are feasible when we discretize probabilities (e.g.,
drawing samples based on probability density). For each draw from
the distribution, we can use length or area to encode the vote share, or
map the vote share to angle to get a small pie chart. We eliminated
shape as it is improper for numeric data.
Layout. The most common choice for layout is to use a Cartesian 
coordinate system, though a polar coordinate system is also possible.
More loosely, we can use a grid (icon array), a list, or a bee swarm lay-
out [34] that nudges dot positions (used by FiveThirtyEight [1, 2]). A
common practice for displaying two dotplots is to arrange them verti-
cally, one above the other (juxtaposition [26]). However, the space con-
straints for a website presentation challenge this convention. To have
a more compact design, we first came up with a reflection layout, in-
spired by Northwestern’s pond fountains (see supplementary materi-
als). Based on the insights from the interviews described in Sec. 4, we
revised the reflection layout to a layout that blends two distributions us-
ing half dots . This is a refinement of superposition [26] tailored to
this chart type.

3.3 Animation Subspace (Fig. 6)
Uncertainty visualization often uses animation to convey uncertainty
or randomness [27, 29, 53]. At the time, both Matt and I were passion-
ate about animated visualizations: animation might help people expe-
rience uncertainty or engage them through a narrative. We were also
fortunate to have two experts on dynamic displays at Northwestern—
Ouxun Jiang, a Ph.D. student, and her advisor, Steven Franconeri.
They have been working on collecting and cataloging different dy-
namic displays. They shared with us a few guidelines summarized
from the literature, such as staging [27, 36], drawing trajectories [16],
considering user control [37], and being mindful of the number of mov-
ing objects [4]. Our animation subspace was partly inspired by their
hard work.
Narrative. A common form of animated uncertainty visualization
without a narrative is a hypothetical outcome plot (HOP) [29, 32, 53],
looping through possible outcomes. Generalizing Matt’s early version
of Presidential Plinko [7], animation can depict an accumulation process,
implying a storyline by gradually adding more draws from the distri-
bution. The reverse is a dissipation process, removing draws from the
distribution. One possibility to convey the relation between vote share 
and probability is to combine accumulation with dissipation (e.g., count-
ing dots, the second sketch in Fig. 2). A narrative alone can be abstract,
but it can also be combined with an analogy to help viewers grasp the
intention of the animation.
Analogy. To help viewers grasp the meaning of an animation, the ani-
mation can be designed with an analogy to reflect a real-world concept
or a natural process. A first step is to relate the animation to a plausible
but abstract process, such as removing or adding dots, which we term
an abstract analogy. Then, a simple association between the animation
and a real-world entity is a figurative analogy, such as replicating a nee-
dle or compass. A further step involves an analogy that fully connects
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the animation to the data generation process, such that the underlying
mechanism of the real-world process can give rise to the same probabil-
ity distribution being depicted; we call this a mechanistic analogy. Our
only attempt for a mechanistic analogy was Plinko, designed to reflect
the data generation by using the Binomial distribution to approximate
the vote share distribution. Another example of a mechanistic analogy
used in election forecast visualization is dice rolling [11].
Configuration. We can configure the same narrative and analogy dif-
ferently. We can vary the number of frames per second (FPS), animation 
duration, trajectory functions, changes in visual elements (e.g., color) over
time, and the numbers of elements animated simultaneously, particularly
in dotplot-like designs.

3.4 Interactivity Considerations (Fig. 7)
We decided not to have specific designs for interactivity. One reason
was that the primary goal of a forecasting website is to inform view-
ers (i.e., it is communicative), so interactivity (more crucial for explo-
ration) is a secondary consideration. However, a minimal level of inter-
activity can show more information and improve user experience. In a
discretized design, a viewer can hover over an element (e.g., a dot, a bar)
to gain more information about the underlying data, perhaps to make
a possible election outcome more concrete. In an animated design, a
viewer can choose to click on a button or mouse over an element to trig-
ger the animation, lending them agency or control.

3.5 Design Generation & Internal Evaluation
Our design space gave us numerous possible visualization designs. We
permuted different dimensions and eliminated impractical or overly
complex combinations. Many of the animated designs could not (and
cannot still) be implemented by the ggdist package [34] created and
maintained by Matt. After assessing feasible combinations, I used
D3.js to implement more than 40 visualization designs. These designs
are hosted at https://forecasts.cs.northwestern.edu/2022-initial-
prototypes, and the code is provided in supplementary materials.

As this set was infeasible for any formal quantitative or qualitative
study, and it was unnecessary to evaluate all designs, we went to our
colleagues for a first round of feedback. We first distributed the pro-
totypes in our lab meeting with about 10 Ph.D. students and 1 faculty
member. The lab meeting had two sessions. Each person explored 3–
4 prototypes for about 25 minutes (to allow time for typing in feed-
back). All lab members then had a focal discussion for about 25 min-
utes. Both sessions had a set of seed questions to guide the thinking
and discussion (e.g., How do you think these charts show the uncer-
tainty in the outcome?). We also arranged another hour-long meeting
with Ouxun Jiang and Steven Franconeri to go over each prototype and
its configurations.

All discussions and feedback were incredibly valuable. One impor-
tant guideline we received is “let the animation feel natural.” We ad-
justed all animation configurations towards this goal and eliminated a
few unnatural designs (e.g., Bubble disspation).

4 INTERVIEW
Although the remaining set (about 10–20) was manageable for in-lab
studies, it was still too large to be deployed on a public website. Matt
then suggested a qualitative study, which would help quickly narrow
down our scope and gain deep insights. Nick (the third-to-last au-
thor) also made the same suggestion. I had never formally conducted
a qualitative study myself, but I trusted their judgment and believed

this was feasible given my experience in supervising in-person experi-
ments. We therefore designed an interview study incorporating a think-
aloud protocol complemented by a series of elicitation questions. This
study gave us valuable insights into people’s interpretations of uncer-
tainty visualizations, informing our later revisions.

4.1 Methods
Prototypes. We selected nine visualizations and a text representation
to cover a range of design dimensions and ensure a reasonable inter-
view time. We felt it necessary to compare designs with both one and
two distributions, so we included a single quantile dotplot ( 1-Dotplot)
and dual quantile dotplots ( 2-Dotplot). The animated narrative of a
quantile dotplot could be Particle, and with a mechanistic analogy,
this turned into Plinko. People might confuse vote share percentage
and probability of winning [48], so we wanted to include designs that
explains these concepts. For this reason, we included Playground, an
animation explaining a conversion between vote share and probability
through dropping dots. We also selected Needle (used by New York
Times [10]), and its discretized version Compass (shooting dots).
Additionally, we selected Mint to test the angle encoding, and the
animation of Mint was Moonphase, which also illustrated the con-
version between vote share and probability through dropping dots (or
moons). In summary, we had ten prototypes: 1-Dotplot, 2-Dotplot,

Particle, Plinko, Playground, Needle, Compass, Mint,
Moonphase, and 50

50 Text. These prototypes covered the variations of
transformation, dimensionality, visual encoding, layout, narrative, and
analogy. They also contained basic annotations, as shown in Fig. 8.
Stimuli. We drew 100 samples from Normal(52.5%, 2.5%) to gener-
ate a forecast vote share distribution. This roughly corresponds to the
known polling errors in the U.S. and a 74% win probability, similar
to the 2016 U.S. presidential forecast [8]. We had two different fore-
cast distributions, depending on which party’s vote share was being
predicted. We showed each participant all ten prototypes using a Latin
square to counterbalance learning and carryover effects. We had five
prototypes showing a Democratic win, while the other five showed a
Republican win. The order of the favored party was also roughly bal-
anced. The interface used in the interview is hosted at https://forec 
asts.cs.northwestern.edu/2022-interview-prototypes, and the video
and code are available in supplementary materials.
Interview protocol. I conducted all interviews over Zoom. The base
payment was 30 USD for an hour and 2.5 USD for every additional five
minutes. Participants could choose to turn off their cameras. After con-
sent, I asked participants to open the link to the interface, share their
screen, and follow a think-aloud approach. I then instructed them to
view each visualization and answer questions after each. The interview
questions were, again, a reflection of all the authors’ efforts. The core
questions for each visualization are listed below, while the full proto-
col is available in supplementary materials.
• Can you describe this visualization/animation to me? What does it

tell you about who might win?
• How does this animation/visualization make you feel about this

race? Does it make you feel more or less uncertain about the race?
Does it make you feel more or less worried about the race?

• If the [Democratic|Republican] candidate wins, what would you
think about the quality of this forecast?

• What do you like or dislike about this visualization/animation? Is
there anything you find confusing or distracting?

I told participants that the true winner was the predicted winner except
on the fifth and tenth visualizations they saw, where I told them the
forecast was “wrong”. At the end, I asked them which visualizations
they liked the most and least, which visualizations they would share
with their friends and family, and whether they preferred to have more
control over the animation. Both their screen and audio were recorded.
Participants. As we needed participants interested in and experi-
enced with election forecasts, we recruited from the 145 participants
who completed the long branch of the formative survey (see Sec. 2.2).
I started with a signup form and contacted all 18 signups. In total, I in-
terviewed 13 participants from 10 states (see Tab. 1).

https://asts.cs.northwestern.edu/2022-interview-prototypes
https://forec
https://forecasts.cs.northwestern.edu/2022-initial
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Fig. 8: The ten prototypes in the interviews, including (A) a text description, (BCJ) three static designs, and (DEFHIK) six animated designs.



Table 1: The interview participants’ demographics
No. Age Gen. St. Education Party identification 
P1 39 W TX College A strong Democrat 
P2 32 M TX Masters'/doctorates Independent 
P3 34 M DC Some college A not very strong Democrat 
P4 33 M FL Masters'/doctorates Independent (Democrat-leaning) 
P5 37 M TX Some college Independent 
P6 52 W VA College Independent (Democrat-leaning) 
P7 38 M IL College A strong Democrat 
P8 32 M MS Some college A strong Democrat 
P9 65 M FL Masters'/doctorates A not very strong Democrat 
P10 59 W CA Some college Independent (Democrat-leaning) 
P11 71 W TX Masters'/doctorates A strong Democrat 
P12 50 M CO College A strong Republican 
P13 63 W NE College A strong Democrat 

Analysis. The 13 participants together provided about 15 hours of
video. I analyzed all the videos twice. I first transcribed the interview
videos and verified all the transcripts. I started with open coding on the
transcripts while rewinding the videos to compile a codebook. After
the first pass, I read all the transcripts and codes, and used axial coding
to merge them into different axes. Though reliving the confusion and
frustration the participants endured was an unforgettably painful expe-
rience, this analysis yielded invaluable insights, as shown below.

4.2 Themes Shared across Visualizations

Theme 1 Mistakenly construing visual encodings as real-world 
concepts 

A discretized forecast visualization such as 1-Dotplot gave partici-
pants a sense of visual concreteness. However, this concreteness (e.g.,
showing a dot) also reminded participants of concrete real-world enti-
ties, especially when they did not understand the visual encodings. Par-
ticipants thought a dot (or a sector in Moonphase) could represent
a vote (7 ), a poll (3 ), a person (3 ), a district (1 ), a state (1 ), or
a simulation (1 ). Participants thought an animation like Needle or

Particle could represent votes coming in (6 ) or that the model was
simulating data onsite (4 ). For example, "It was just heavily calculat-
ingwhatpoll andall thatwas that itwasprobablydoing someof thediffer-
ent polls and simulations that they made had factored in." (P3) When par-
ticipants didn’t understand the visual encodings, they attempted to use
their real-world experiences to arrive at an explanation or make up a
story. For example, one participant was confused with dots disappear-
ing in Playground, and used a story of voting in a town to explain it:
"I don't know. I don't think it was or half the people voted in a town. Peo-
ple didn't vote. I'm just thinking thatwas just to make it look edgier or real. 
The ones that fell off ended up back on there or somehow. " (P10) 

Theme 2 Confusion about vote share and win probability 

Participants had two strategies to reason about the race presented in
a visualization: comparing the two win probability numbers (7 ) and
combining vote shares with win probabilities (5 ), except for 1 .
Comparing two win probability numbers (74 cf. 26 by subtraction or
division) caused an illusion of the race being decisive: "Because I saw 
that,Democrats 71, 74after the 100and theRepublicansgotonly26. That's 
a big difference." (P5). Participants were often confused about these two
quantities: they thought vote share is the win probability (5 ), the win
probability is vote share (5 ), or did not understand the relation be-
tween them (5 ). Participants felt the two quantities were two pieces
of disconnected and conflicting evidence. Still, they tended to believe
the evidence they felt they understood better—most of the time, win
probability. One and only one participant understood the conversion
between the two quantities when seeing 50

50 Text: "Because all the other 
simulations, I was assuming that at 74% meant they thought it was going 
to a 74 to 26 outcome. That really truly means 55 to 45 outcome." (P11) 

Theme 3 Using visual cues to reason about race competitiveness 

All participants relied on visual cues or heuristics to grasp a visualiza-
tion and reason about race competitiveness. The most common visual
cue was area/magnitude (12 ) (e.g., comparing the area of red and blue
or the magnitude of red and blue balls). Here, a discretized design (e.g.,

1-Dotplot) invited participants to count the dots, which might be per-
ceived as too onerous (6 ): "...it's just kind of you bring out your calcula-

tor and like basically average it out. You're so much a lot of people might 
be like, oh, we're not going to do math." (P3) 

They also relied on color or gradient as a visual clue. This was most
common in Needle (9 ) but also in Moonphase (2 ) and Mint 
(2 ). For example, "So I can clearly see the side is getting more shaded 
areas. I also like that the shaded areas are color-coded, so that's another 
easy visual that allows me to understand this graph better." (P7) Another
commonly-used visual cue was height (9 ): "And the balls are stacked 
up like really nicely all over the place. And it's obvious, by the way, that 
the blue ones are piled up much higher." (P10) 

Less commonly, participants (6 ) relied on a left and right separation 
(e.g., in 1-Dotplot and Particle), and referred to outliers (5 ) to rea-
son about the possible election results: "Thisprediction is saying thatRe-
publicans can win by as much as 10% on election night." (P7) They also
looked at length (4 ), because in Playground and Moonphase, the
winner dots were aligned on a line. Participants appealed to shape or
skewness in 1-Dotplot (1 ), 2-Dotplot (1 ), Playground (1 ), and

Particle (2 ). Very rarely, they looked at mode (1 in 2-Dotplot),
frequency (1 in Needle), or the spread of the two sides (1 in Par-

ticle): "...it seems like there's more piles here on the Republican side than 
the Democrat side." (P12) 

The cues here were different from those reported by Kale et al. [32].
While both concerns how people reason about uncertainty visualiza-
tions, all four visualizations studied by Kale et al. show two distribu-
tions. We had many one-distribution visualizations, which diminished
cues like distance but emphasized cues like height and shape.

Theme 4 Trading the animation time for engagement 
Visualizations designed in an animated form could be engaging (4 ),
especially engaging with elections (2 ). Animations could create en-
tertainment value (4 ) and capture attention and interest (8 ): "Thean-
imation more interesting, they showed them running up the edge, but 
up just to make it more eye catching or stimulating." (P10) Participants in-
deed felt uncertain (4 ). However, participants also felt the animation
was unnecessary (5 ), distracting (3 ), or that they had to wait (3 ).
An animation was perceived as a narrative, and the ending of the ani-
mation created a sense of certainty or conclusion (3 ): "When it's com-
pleted, the needle will stop. Or it's predicting who will win. But it's a slow 
process to get there." (P9) However, animations were slow in many par-
ticipants’ browsers (10 ), a confound we fixed in our later revisions.

Theme 5 Predicting the winner is most, but not all, of trust 
In general, participants trusted a forecast when it correctly “predicted”
the winner (all 13 ), and distrusted one that did not predict the winner
(11 ). However, they might distrust a “correct” forecast for a variety
of reasons: confusion and ambiguity (4 ), untrustworthy polls (4 ),
low trust propensity like some believed forecasts were biased (1 ),
complexity (1 ), deviation from election results (2 ), no transparency
about the method (2 ), the animation or representation (2 ; see

Plinko and Playground below), or even the 95% confidence (1 
thought this was forecasters’ confidence, and felt it was low).

They also used election results (5 ), win probability (1 ), and their
prior knowledge (1 ) in judging the forecast quality: "It would make 
me question the quality of the forecast if the Democrat wins, because 
it clearly shows that the Republicans have a much more likely chance 
to win." (P7) They might use the vote share in their judgment, when
mistakenly thinking it was the win probability, especially if the win
probability matched up with the vote share coincidentally in their state:
"...since California's very, very blue state, the odds are very high that the 
Democrats, 74%, ...a blue state have 74%. That sounds normal." (P10) 
Theme 6 Reading annotations accompanies sensemaking 
Participants usually expressed their thinking or understanding of a vi-
sualization upon reading the annotations (9 ). For example, after read-
ing annotations, "I see a bit of an explanation, which is essentially what I 
was able to tell by just looking at it", P2 said, "So you got the information 
fromlike theoverall just thedots." Reading annotations was occasionally
followed by confusion (4 ). Five participants found annotations gener-
ally helpful. However, the same number of participants also indicated
the annotation of Compass were too complex, and one commented
on the annotation for Plinko, "I find it unnecessary." (P9) 



4.3 Reactions to Specific Visualizations

1-Dotplot was very clear (10 ). However, this clarity also engen-
dered a sense of certainty (all ) especially if participants further con-
trasted between the left and right sides. For example, "I feel more cer-
tain and more confident that the Democrats will be able to win just based 
on how how much it is skewed in the Democrats favor." (P4) 

2-Dotplot was complex and onerous to interpret (4 ): "It takes 
time to understand what the different axis means and then when the 
more number of piles of dots are and things like that." (P4) However, this
complexity gave a bit more information (4 ): "I think, it's a little more 
what I do like about this one. I think this one makes me understand the 
dots better." (P12) 2-Dotplot also caused confusion (12 ): magnitude 
was a more salient cue than the distance between the two distributions,
but the magnitude was the same for the two distributions. These mis-
guided participants (4 ) to conclude the election was a precise 50–50
split: "...the red dots of the Republican the way and then the blue at the 
bottom, they look the same, but just on different sides, like. But why does 
it just show you like who wins? I mean, who how would you know?...I don't 
know. It’s confusing." (P2) However, this confusion and misperception
also mistakenly resulted in a sense of uncertainty (8 ): "...the 50% di-
viding by and having them are having one on the top and one on the bot-
tom. It's like there's this specific couple of outcomes that make it look like it 
could easily come down to a handful of votes." (P8) Additionally, one par-
ticipant mentioned that placement at the bottom of the plot could carry
negative connotations. We fixed this later using the blend layout.

Compass was also complex (5 ). Likely due to confusion, it
also engendered a sense of uncertainty (10 ) rather than certainty (4 ).
Participants could grasp the analogy of a compass (6 ) and thought
it showed dynamics in elections: "...the way the polls and the election 
works, just like on TV, when they show up, down or down fast or the num-
bers go up or whatever because they get the vote shares, you know, then 
they go at the same time." (P5) 

Mint was both confusing and clear, depending on how partici-
pants made sense of its encoding. If their focus was the outer circle
(showing win probability), they found it clear (9 ) and praised for its
simplicity and clarity (9 ). However, this also engendered a sense of
certainty (2 ): "So it is showing it heavily Republican by being more red 
and pinkish and the Democrats last." (P9) If participants started with the
inner pie of vote share , they felt confused (7 ) and subsequently un-
certain about the election (3 ): "So each side has a half a red side and 
therefore blue side. I don't know what point that serves." (P9) 

Moonphase was complex (3 ), hard to follow (5 ), and con-
fusing (9 ). Again, the confusion, complexity, and angle encoding
prompted a sense of uncertainty (6 ): "Kind of close. Probably lean Re-
publican. Probably not likely Republican. But. Okay, I was going to say, 
it's like halfway." (P8) However, the animation created a narrative con-
cluding with the win probabilities, and the probabilities were clear and
easy to understand. Thus, participants still found a sense of certainty
despite their confusion (7 ): "I felt very confident that the Democrats 
will win. Just looking at the number of models that to the left of the 0% 
line." (P4) 

Needle. Participants understood the analogy of a needle and made
comparisons to The New York Times’ needle (11 ). They construed
the metaphor as a ruler (1 ) or a measure (1 ), and felt uncertain (8 ):
"Come on, come on, go to the blue, you know, so basically you're wait-
ing for it to move back the other way. So it's to you have to watch to see 
which way it's moving." (P10) However, the two win probability numbers
on the side also created a sense of certainty (12 ). Though participants
understood the analogy, they still found the animation confusing and
hard to digest (6 ): "...they're here to show the light, like light blue and 
light red. Then some shows are dark red. I'm confused about that. Why? 
Why does that matter? See how good a dark red light then of you to be 
light? Or is the maybe the higher go, the lighter it goes? I don't know." (P5) 

Particle was an animation designed to convey uncertainty, but par-
ticipants perceived it as illustrating certainty (11 ): "...you already knew 

where the ball was going to land. It was either blue or red. The blue ones 
were on the blue side, the red on the red side, like it was predictable." (P10) 
This perception was again related to the clarity and simplicity of Par-

ticle (9 ): "When it started lining up you could clearly see that it was go-
ing to line up for the Republicans to win. You could just tell by the place-
ment of the balls, though that part was easy." (P6) 

Plinko. Most participants understood the design analogy of a
Plinko game board (7 ), but one participant was unfamiliar with it, and
thought it was a maze. They perceived Plinko as entertaining (5 ) 
and game-like (3 ). One participant thought it was attractive: "...the 
simulations, each one going into a plinko-type game. I think that it makes 
me smile still. It makes me smile. It's just a fun way of showing. It's just 
a fun way of showing a reelection forecast." (P12) However, another par-
ticipant showed strong distrust: "So animation itself makes me feel un-
trustworthy or unreliable on the race itself because I'm like, I don't know 
if this data or if this result is actually correct." (P4) Again, the animation
rendered a sense of uncertainty (10 ): "It would probably make me feel 
more uncertain because I'm always hopeful on the other side" (P13), but
the dropping point and the narrative painted a sense of certainty (11 ):
"I would say the Democratic side would win because that's where the ball 
is starting centered" (P10).

Playground was confusing (10 ). However, similar to Moon-

phase, even if participants did not understand the animation, they
found the win probabilities at the bottom clear (6 ), and the end of the
animation (or its narrative) strengthened this impression. Only two par-
ticipants (2 ) understood the converting process: "It's taking informa-
tion from the top and bringing to the bottom to fill. In a clearer picture like 
this is all together in blue." (P1) Similar to 2-Dotplot, the two distribu-
tions appeared equal, and participants mistakenly believed the election
was 50–50 and thereby felt uncertain (9 ): "So it factors in like equal 50-
50 like over here, maybe a bunch of Republicans just stay home..." (P8) 
50

50 Text created a sense of uncertainty in the appropriate way (not due
to confusion or misperception) (9 ). Participants understood the vote
share and found the two candidates’ vote shares were close. Text was
also perceived simple and clear (5 ). However, if participants focused
on win probabilities, they still felt inappropriately certain about elec-
tion outcomes (7 ): "...the top part where it says it has the 74 and the 
26. That to me seems like it's going to be a decisive election." (P13) 
Text helped change one participant’s mental model of the forecast.

The participant was confused about vote share and win probability
throughout the interview, but successfully connected the two concepts
after reading the text description: "...the percentage we're looking to go 
in 74, 26. That doesn't sound realistic. But now they're saying that 74 
means it's going to be 45, 59, and 26 means 41 to 55...that pie chart was 
trying to say, that 74 out of 100 is really saying 45 to 59. And now those 
little pies were numbers between 45 and 59. What I'm trying to sort of 
make the pie thing make sense." (P10) However, participants could mis-
interpret that 95% confidence (intervals) were forecasters’ confidence:
"But I would not trust the forecast only because of their 95% certain." 
(P11) Some thought Text provided enough information (7 ) and even
more information (2 ): "And it's something that provides a feel more in-
formation than the visualizations ironically." (P2) But three participants
thought Text provided less or not enough information (2 ) and visu-
alizations made them feel more confident (1 ) and had entertainment
value: "It's just not quite as fun, I guess. And you don't have the visualiza-
tion, which does help." (P8) 

4.4 Summarized Insights
How people interpret election forecast visualizations 
• Participants rely on preexisting knowledge to interpret the visual en-

codings, particularly in more concrete designs. For example, they
may mistakenly think a dot is a vote (Theme 1).

• They have deep confusion about win probability and vote share; a
variety of reasons could lead them to compare the two candidates
in the probability space, creating an illusion of a decisive election
(Theme 2).

• They rely on visual cues for understanding visualizations, and use
different visual cues in one and two distributions (Theme 3).



Design lessons we learned 

• In general, participants seem averse to complexity ( 2-Dotplot,
Compass) and prefer simplicity ( 1-Dotplot, Particle, Mint).

• They appear to seek certainty and show a reluctance towards accept-
ing uncertainty ( Moonphase, Needle, Particle, Playground,
50

50 Text).
• Clarity can foster a sense of certainty ( 1-Dotplot, Mint); confu-

sion can lead to a sense of uncertainty ( 2-Dotplot, Moonphase).
• Animation creates a narrative, and participants consciously and un-

consciously focus on the end of the narrative ( Moonphase, Play-

ground), which can engender a sense of certainty despite the anima-
tion process itself being perceived as uncertain ( Plinko).

• Animation has entertainment value; while some participants find it
engaging, others find it unscientific or untrustworthy ( Plinko).

• All animated designs in the interviews were somewhat confusing,
but familiar and mechanistic analogies seem to mitigate confusion.

• Text seems to cause the least confusion and map to a different men-
tal model, but also carries the least amount of information.

5 REVISION
Learning about what did not work was frustrating; however, we were
able to use these insights to carefully revise and improve our designs.

Our key approach to addressing misinterpretation and confusion
was to design extensive annotations [44] (see Fig. 9) surrounding how
to read a forecast visualization. We first darkened and thickened all
labels, axes, text, and lines to help ensure people would notice (and
read) them. To avoid confusion about the meaning of a dot, we infor-
mally tested a variety of text explanations, eventually landing on “1 • 
= 1 election outcome”, which was the most straightforward way we
found to convey the visual encoding. We placed this annotation at the
top to ensure it would not be ignored by viewers. It was also neces-
sary to explain the meaning of a pile, and we annotated the most likely
outcome—we experimented with a handful of participants and asked
them to write down their takeaways based on annotations of different
piles, but found no difference. Both anecdotally and empirically, we
felt that annotations were most effective when crafted as complete sen-
tences. We tested with different placements, and finally broke down
annotations and interweaved them into visualization components to
guide viewers through the components of the visualization (see Fig. 9).
We also undertook multiple iterations to condense the annotations into
as few words as possible, and moved secondary annotations to the bot-
tom. Our design sketches are provided in supplementary materials.

Because all the animations were confusing, we kept only the most
understandable ones, Plinko and Needle, and designed extensive
annotations for them. We also attempted to improve Playground 
and Needle by simplifying the visuals and including more annota-
tions. However, we had further conversations with Jessica Hullman
(a co-author on [50] and an expert on animated uncertainty visualiza-
tion) and Anna Wiederkehr (who formerly worked on forecast visu-
alizations at FiveThirtyEight); both suggested the improved designs
were still overly complicated. Ultimately, we were also unsure about
the value of the non-mechanistic Needle analogy, and eventually de-
cided not to deploy it, keeping only the mechanistic Plinko analogy.

We also made a number of other revisions. To address the negative
connotation associated with being at the bottom in 2-Dotplot (reflec-
tion), we came up with 2-Dotplot (blend)—this was likely inspired by
color blending (e.g., mixing little blue and red dots to get purple). The
angle encoding ( Mint and Moonphase) emerged as a possible rep-
resentation to link vote share with win probability. We simplified it by
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Fig. 9: Illustration of the revisions we made.

deleting half of each circle (e.g., to D ), but this still resulted in a
“dizzy” visualization (per Anna Wiederkehr). Finally, as participants
preferred simplicity, we added back Intervals.

The deep confusion about win probability and vote share can be dif-
ficult to resolve, which motivated our work on a probability correction
to directly adjust displayed probabilities [51]. Given the ethical impli-
cations of this approach, we further explored this correction in a subse-
quent paper that measures trust in election forecasts over time [52].

6 ENDING

It took us more than eight months to reach this point. We ultimately
deployed four revised designs: 1-Dotplot, 2-Dotplot, Plinko, and
Intervals, each with extensive annotations. Based on the sequel to

this story [50], and the sequel to the sequel [52], which also received
a best paper award at CHI, our revisions, particularly the annotations,
helped address many issues in the earlier designs, though some ambi-
guity persisted. These sequels also revealed meaningful differences in
the data and visual spaces, such as the potential for visualizations to ex-
acerbate polarization [50], and the impact of partisanship [50, 52] and
education level [52] on trust in different designs.

Designing election forecast visualizations for massive audiences
was challenging and required navigating a complex research space.
Looking back, our primary challenge was to connect a theoretical de-
sign space with the practice of making real visualizations that people
actually understand. Our earlier designs were considered “standard”.
But our audience consisted of diverse individuals with varied cultural,
educational, and political backgrounds, who would also view a visual-
ization in different contexts—at night, on the street, or after a conver-
sation with a friend. This variety can strongly influence how individu-
als interpret the visualizations. Consequently, aligning audience under-
standing with our intended messages became our primary goal.

There is no such thing as a universally “intuitive”, broadly un-
derstandable visualization in our design space, or perhaps in any
space. Even when certain visualization types work well in one do-
main (e.g., quantile dotplots for bus arrival predictions [22, 35]),
when transplanted to a new domain, they can yield unexpected and
challenging misunderstandings (e.g., misconstruing a dot as a vote
instead of an election outcome). Our (partial) solution was to create
extensive and high-quality annotations. Beyond captions, labels, and
axes, empirically, we found other visual design parameters, such as
font size, line thickness, and visual hierarchy, contribute to viewers’
(mis)understanding and (dis)trust in a visualization.

No work is flawless, and ours is no exception. Given finite re-
sources, we necessarily had to eliminate some designs we might have
liked to explore, such as those based on CDFs or those tailored to dif-
ferent devices (e.g., mobile, tablet). Owing to our concentration on
U.S. elections, much of our design space may not readily apply to
multi-party systems—expanding data dimensionality could help. Ad-
ditionally, the line between figurative and mechanistic analogies is
blurry and worth exploring (for example, how should we classify a
bingo ball blower? [3]). Future work could more formally define and
assess how different types of analogies impact understanding or trust.

We are reaching the end of our journey. It is only now that we can
truly see the forest for the trees. Each prior paper had its own focus,
and this backstory paper allowed us to step back, think, and reflect.
Our methodological approach might be similar to those suggested
for design studies [43, 47]. However, backed up by our sequels—our
quantitative studies—we felt free to embrace a more narrative writ-
ing style than is typical. This way feels most authentic to us and more
engaging for readers without sacrificing too much scientific merit. Ini-
tially, we were uncertain about how the community would react to our
submission. The encouragement we received from reviewers has re-
assured us that this could be a promising way to share design studies
and experiences. We hope that our design space has illuminated new
possibilities and that the insights from our interviews have left read-
ers pondering. Further, we hope that our backstory ignites readers to
take on the challenge of designing uncertainty visualizations for broad
audiences, and to unlock the potential of visualizations that engage,
inform, and inspire.
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