
Towards Dataset-scale and Feature-oriented Evaluation of
Text Summarization in Large Language Model Prompts

Sam Yu-Te Lee , Aryaman Bahukhandi , Dongyu Liu and Kwan-Liu Ma

Abstract— Recent advancements in Large Language Models (LLMs) and Prompt Engineering have made chatbot customization
more accessible, significantly reducing barriers to tasks that previously required programming skills. However, prompt evaluation,
especially at the dataset scale, remains complex due to the need to assess prompts across thousands of test instances within a
dataset. Our study, based on a comprehensive literature review and pilot study, summarized five critical challenges in prompt evaluation.
In response, we introduce a feature-oriented workflow for systematic prompt evaluation. In the context of text summarization, our
workflow advocates evaluation with summary characteristics (feature metrics) such as complexity, formality, or naturalness, instead
of using traditional quality metrics like ROUGE. This design choice enables a more user-friendly evaluation of prompts, as it guides
users in sorting through the ambiguity inherent in natural language. To support this workflow, we introduce Awesum, a visual analytics
system that facilitates identifying optimal prompt refinements for text summarization through interactive visualizations, featuring a
novel Prompt Comparator design that employs a BubbleSet-inspired design enhanced by dimensionality reduction techniques. We
evaluate the effectiveness and general applicability of the system with practitioners from various domains and found that (1) our design
helps overcome the learning curve for non-technical people to conduct a systematic evaluation of summarization prompts, and (2) our
feature-oriented workflow has the potential to generalize to other NLG and image-generation tasks. For future works, we advocate
moving towards feature-oriented evaluation of LLM prompts and discuss unsolved challenges in terms of human-agent interaction.

Index Terms—Visual analytics, prompt engineering, text summarization, human-computer interaction, dimensionality reduction

1 INTRODUCTION

Prompting is a new way of biasing Large Language Models (LLMs)
towards the desired output with natural language instructions [9]. Re-
cently, OpenAI’s GPT Store opened the door for non-technical people
to customize chatbots with prompts. The low technical barriers and high
customizability of prompting democratize a wide range of tasks that
previously required programming skills [18], e.g., personalized reading
and writing assistants [37] or visualization creation [16, 52, 59]. On
the other hand, composing a desired prompt (i.e., prompt engineering)
is non-trivial. Design studies in prompt engineering [18, 20, 61] have
pointed out that evaluation in prompt engineering remains arduous be-
cause of five challenges in current evaluation practices, i.e., evaluation
is Opportunistic, Manual, Multi-criteria, Dynamic, and Unactionable.

These challenges exist when the evaluation is done on a few test
instances, and are amplified as the evaluation scales up. For example,
a prompt designed for text summarization on a news article dataset
with one thousand articles requires an evaluation on a larger test set
than just a few instances to ensure its robustness. We refer to this kind
of prompt evaluation as “dataset scale”, which is under-explored yet
challenging. In contrast to machine learning evaluation where quantita-
tive metrics like F1 score are typically used, the quality of a summary
is hard to capture with quantitative metrics. Traditional metrics such
as ROUGE [25] have been criticized in many ways [10], especially
their inability to differentiate between state-of-the-art models, thus not
suitable for evaluating summaries generated by LLM prompts. As a
consequence, people choose the test set opportunisticly, e.g., whatever
they see first or the data points that seem easy to evaluate, instead of
choosing rigorous representatives of the whole dataset. Moreover, the
test set is evaluated by manually scanning through the outputs. This
introduces multiple and dynamic criteria in prompt evaluation, where
people change evaluation criteria as they see fit after the scanning.
Most importantly, this evaluation approach does not necessarily lead

• Sam Yu-Te Lee, Aryaman Bahukhandi, Dongyu Liu and Kwan-Liu Ma are
with University of California, Davis. Email: ytlee, abahukhandi, dyuliu,
klma@ucdavis.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

to actionable insights, i.e., what kind of instruction is needed, or how
should the criteria be expressed to generate the desired output, leading
to a highly unpredictable trial-and-error prompt refinement process.

In this work, we target text summarization prompt refinement and
attempt to explore the tasks that are involved in a systematic evaluation
for dataset-scale prompts and the visualization designs that foster ac-
tionable insights. We target individuals who seek to tailor chatbots for
their specific needs or work requirements using prompts and aspire to
efficiently perform systematic evaluations of their prompts. Through
the lens of text summarization, we seek to generalize our findings to
broader real-world tasks that require dataset-scale evaluation. While
text summarization may not be representative of all possible prompt-
ing tasks that LLMs could perform, it presents challenges that are not
straightforward to solve and studying them could provide insights to-
wards more generalizable solutions. First, summarization is extensively
studied yet NLP researchers can not agree on a robust quality metric
(metrics that seek to quantify the quality of a summary, e.g., ROUGE)
for evaluating state-of-the-art systems. This indicates that quality met-
rics might have reached their limits in differentiating nuanced quality
differences. Second, a significant cognitive load is required to manually
evaluate summaries. Prompt designers need to read the lengthy text and
the summarized text to decide the prompt performance and refinement
directions, making it infeasible at the dataset scale.

Through a pilot study, we found that feature metrics, i.e., computa-
tional metrics that characterize the summary from different facets, are
more desirable than quality metrics for both technical and non-technical
prompt designers. For example, formality and complexity might be two
critical characteristics (features) of a summary if the summarization
goal is to produce academic-level writing. The key distinction of feature
metrics is that each metric evaluates one characteristic of the generated
summary, and the desired summary does not necessarily have a higher
score, e.g., a complexity score suitable for kids (lower scores) might
be more desirable than for professionals (higher scores). Compared to
quality metrics, feature metrics provide a multi-faceted understanding
of the generated summaries and a more concrete refinement direction.

Based on this finding, we introduce a feature-oriented workflow
that involves four tasks: Feature Selection, Example Sourcing, Prompt
Refinement, and Evaluation for Refinement. We develop Awesum, a VA
system that implements the workflow for text summarization, incor-
porating computational linguistics metrics as features and intelligent
agents to support the tasks. It uses cluster visualization to provide an
overview of the dataset and support the identification of ideal examples.

https://orcid.org/0009-0000-2629-3954
https://orcid.org/0009-0000-2470-2881
https://orcid.org/0000-0002-8915-2785
https://orcid.org/0000-0001-8086-0366

Levels of Prompt Editing Support

L4: Prompt Suggestions
User prompt: Summarize the article in

a readable way.

Suggestion: Be more specific about

what ‘readable’ means.

L3: Keyword Replacement
User prompt: [Summarize] the article

in a readable way.

Replaced with: [Briefly describe] the

article in a readable way.

L2: Sentence Replacement
User prompt: [Summarize the article

in a readable way].

Replaced with: Use a tone for kids to

summarize the article

L1: Prompt Replacement
User prompt: Summarize the article in

a readable way

Replaced with: The user instructs you

to [User prompt]. Strictly follow the

user’s instruction.

Levels of Explanations for feature metrics (complexity)

L3: Computational Metric
The Flesch Reading Ease Index is a

readability formula that considers

Average Sentence Length and

Average Word Syllables.

Complexity is thus the inverse of

readability. Higher scores means the

text is very difficult and vice versa.

Formula:

L2: Computational Linguistics
Complexity metrics aim to quantify

the complexity of a piece of writing

by considering various linguistic

features, such as sentence length,

syllable count, familiarity and

commonality or semantic difficulty.

L1: General Description
Complexity is the effort a reader

needs to understand a text based

on its content (vocabulary and

syntax). Lower complexity in a text

eases reading effort and speed for

the general population of readers.

Every writer has a target audience

that they have to adjust their

complexity levels to.

Fig. 1: Left: Levels of explanations for feature metrics (using complexity for demonstration). L1: a textual description that vaguely defines the
complexity of a text. L2: a textual description but in the context of computational linguistics, outlining common linguistic features that are considered.
L3: A specific computation metric for complexity, including a textual description and the computation formula. Right: Levels of prompt editing support.
L1: the system inserts user prompts into a template prompt under the hood. L2: the system suggests a better sentence. L3: the system suggests a
better keyword or noun phrase. L4: the system gives suggestions on the prompt based on established prompting methodology.

It provides prompt suggestions based on established prompting method-
ologies to support prompt refinement. Finally, a scatter plot inspired
by BubbleSets and enhanced with dimensional reduction techniques
supports users generate actionable insights for prompt refinement. We
recruit experts from various domains for practitioner review, from
which we confirm the effectiveness of the system. We report the gener-
alizability of the system to a broader range of tasks and discuss insights
into human-agent interaction. Our contributions are as follows:

• We introduce a feature-oriented workflow to address challenges
in supporting dataset-scale prompt evaluation, which we summa-
rized from a literature review and a pilot study.

• We develop a VA system, Awesum, that supports the feature-
oriented workflow for text summarization with computational
linguistics, intelligent agents, and interactive visualizations.

• We evaluate the effectiveness and generalizability of the system
with a case study and interviews with practitioners from various
domains, and report implications for future directions in prompt
evaluation and human-agent interaction.

2 RELATED WORKS

In this section, we first explore the technical challenges and solutions
of text summarization evaluation. We then examine current interactive
visual interfaces and design studies for iterative prompt engineering,
highlighting the research gap in evaluating dataset-scale prompts.

2.1 Text Summarization Evaluation
Automatic summarization is a classic natural language generation
(NLG) task that converts a lengthy source text into a condensed text
containing the most important information. However, the evaluation
of a summarization system has remained a persistent challenge. In the
past, n-gram overlap metrics like BLEU [36] or ROGUE [25] were used
to assess the quality of a generated summary. Later, they were enhanced
with embeddings-based similarity measurements like BERTScore [62]
and MoverScore [64]. Still, studies have shown that they cannot re-
liably quantify improvements if the difference is too small, because
they are not sensitive enough to capture the subtle differences in high-
quality summaries that humans can perceive [10]. More recently, these
metrics have become ineffective as LLMs demonstrated the capability
of generating human-level summaries. Another limitation with these
metrics is that they all require a labeled dataset (i.e., references) to work
with, essentially transforming the summary quality evaluation into a
similarity evaluation, where a human-written summary is assumed to
be optimal. This is not practical in prompting as the practitioners can be
non-technical and the outcome of prompting can easily exceed in qual-
ity that of any human-labeled dataset. Researchers have been calling
for new metrics to assess the NLG quality of most recent models [7,34].

While some reference-free metrics that do not require labels are pro-
posed, such as QA-QG metrics [13, 41] or LLM-as-evaluators [55, 65],
they do not yet show a consistent correlation with human judg-
ments [43], might be capturing spurious correlations [12], or might
exhibit various biases [50]. We argue that metrics that attempt to cap-
ture the overall “quality” of a prompt output (i.e., quality metrics) are
susceptible to misaligning with human judgment, as previous studies

have shown that human judgment is multi-criteria and dynamic [20].
As an alternative, we introduce feature metrics that characterize the
outputs to support sensemaking on the prompt performances. For sum-
marization, we use feature metrics such as formality and naturalness to
support dataset-scale prompt evaluation.

2.2 Interactive Visualizations for Model Refinement
Facilitating model refinement with interactive visualizations is an ex-
tensive field [15]. Many works help model developers debug their
models [27,38,47,57] by visualizing the data flows or training patterns,
but they are designed specifically for the underlying model architecture
and are not applicable in prompt engineering. Works that focus on
model tuning [3, 4, 14, 54] are more similar to the settings in prompt
engineering, where visualizations such as line charts or parallel coor-
dinates [14] are used to visualize the performance metrics and their
relations with hyperparameter settings.

Still, new visualization techniques are needed in prompt engineer-
ing for three reasons. First, previous systems are designed for model
developers. In prompt engineering, the target users are extended to
non-technical people whose knowledge on machine learning can not
be assumed. Second, previous systems evaluate performances with
quantitative metrics such as the F1 score, but these quantitative metrics
are not applicable in most prompt evaluation scenarios. Third, previous
systems guide users by visualizing the relations between certain hyper-
parameter settings and the performance metrics. In prompt engineering,
the search space is all possible text expressions that can not be enumer-
ated, and the non-deterministic nature of prompting introduces a high
uncertainty in the outputs, making it hard to identify relations between
prompts and performances. In our work, we explore the possibility of
evaluating prompt performances with feature metrics, which are more
approachable for non-technical users and can guide them in discovering
the relations between prompts and performances.

2.3 Interactive Prompt Engineering and Design Studies
Given its uniqueness, several design studies have been conducted to ex-
plore the challenges in prompt engineering [18, 61] and evaluation [20].
Zamfirescu et al. [61] found that prompt evaluation practices of non-
technical users are opportunistic rather than systematic, due to the lack
of experience in controlling automatic systems. Jiang et al. [18] found
the mental load of manually skimming large volumes of text introduces
a significant evaluation challenge. Moreover, it is hard to transform
the evaluation into prompt refinement, i.e., little actionable insight is
generated. Kim et al. [20] focused on prompt evaluation and reported
two additional challenges. First, evaluation is multi-criteria, i.e., the
quality of the outputs could not be evaluated with a single criterion.
Second, evaluation is dynamic, i.e., designers expand or change their
criteria as they observe unexpected flaws in the outputs.

Many works have attempted to support prompt engineering in an
interactive, code-free environment. PromptIDE [48] and PromptItera-
tor [49] support the iterative experimentation process. As researchers
and practitioners introduce more prompting techniques and best prac-
tices [1,2], Kim et al. [19] and Arawjo et al. [6] propose to design chains
of reusable blocks to separate prompt design, model selection, and eval-

uation. Another line of work focuses on providing prompt suggestions,
ranging from word-level [32], sentence-level [8], to prompt-level [29],
where users prompts are replaced with an expert prompt template.

Previous design studies and applications either focus on evaluation
at the instance scale, where the prompt is tested on at most a few
instances, or support only evaluation at the dataset scale in supervised
settings, where performances can be measured with loss or accuracy
with labeled datasets. In our work, we explore the tasks and designs
to support text summarization evaluation at the dataset scale, which is
under-explored and calls for new visualization techniques.

3 PILOT STUDY

From the literature review, we have learned that quality metrics are in-
effective in text summarization evaluation [7, 10, 34] and hypothesized
that feature metrics, such as complexity and naturalness, could be a new
way of dataset-scale prompt evaluation. As prompting is a relatively
new research area and the typical workflows and challenges are not
well-studied, we conducted semi-structured interviews with 6 partici-
pants to verify findings from existing works [18, 20, 61], explore new
challenges that emerge at dataset scale, and confirm the feasibility of
using feature metrics for dataset-scale prompt evaluation. We recruited
users of LLMs from both technical and non-technical backgrounds
(e.g., ChatGPT). Below, we report our study design and findings.

3.1 Study design
In our interview, seek to answer the following research questions (RQs):
• RQ1: What are the challenges in dataset-scale summarization

prompt evaluation?
• RQ2: Can feature metrics address the challenges in RQ1?
• RQ3: What is the preferred level of explanation of feature metrics?
• RQ4: What is the preferred way of supporting prompt optimization?
To provide context for the participants, we used summarization on
a news article dataset as a simulated scenario in the interview. For
RQ1, participants were first asked to write an initial prompt that can
summarize a news article, and then brainstorm ways to evaluate it. Then,
we introduced a set of potential features to be used for evaluation, and
then asked participants to brainstorm ways of evaluation again (RQ2).
To answer RQ3 and RQ4, we prepared different levels of feature metric
explanations and prompt editing support, as shown in Figure 1, and
asked the participants to choose levels that they prefer and explain why.

Participants We recruited participants with varying backgrounds:
two data/visualization scientists (P1-2), two NLP researchers (P3-4),
and two non-technical researchers with backgrounds in environmental
science (P5-6). They also have varying levels of experience with
prompts. The most experienced participant is an LLM researcher who
has worked on multiple related research projects and an internship.
Middle-level experienced participants (N=2) had designed prompts
programmatically. The least experienced participants (N=3) had used
ChatGPT for preparation of presentations, or summarizing long texts.
Participants reported frequent usage of prompts for at least half a year.

Procedure The 30-minute interview was conducted in a semi-
structured way. We started by asking about the participants’ back-
ground, experience with prompting, and their typical workflow. Then,
we introduced a simulated scenario in which they designed a summa-
rization prompt for news articles, that takes one news article and outputs
one summary and emphasized that the prompt should be generalizable
to 100 articles. Participants were not required to write actual prompts
since we were only interested in their thought process. Finally, we
asked about their preferences on different levels of feature metrics and
prompting support. All participants received a 5 USD compensation.

3.2 Findings
Regardless of their backgrounds, all participants reported a similar
workflow for prompting: first write an initial prompt to get a baseline
response, and iteratively refine the prompt by skimming through the
responses. The reported challenges align with the five challenges we
summarized from the literature review. In addition, we identified several
new findings when prompts are evaluated at the dataset scale:

F1 Dataset-scale evaluation is infeasible without support. The
simulated scenario revealed that some external support is necessary for
dataset-scale evaluation (RQ1). In their current practice, participants
would randomly pick a few examples to see if the prompt works well.
All participants (P1-6) agree that such a way of evaluation becomes
infeasible as the evaluation scales up to a dataset as they would need to
manually skim through hundreds of summaries, far beyond the physical
cognitive limit of human beings. Some (P3, P4) suggested automated
metrics as a possible solution, but “it is hard to find a metric that can
generalize across the diverse tasks enabled by prompting”. The non-
deterministic nature of prompting makes it hard to guarantee that the
prompts can generalize well without actually executing the prompts,
which would be costly in time and slow down the iterative refinement.
F2 Features are critical to dataset-scale evaluation. Decomposing

goals into features presents opportunities to address the dynamic and
unactionable challenge. When asked to evaluate prompts that generate
an “academic” summary, participants were clueless about the suitable
evaluation criteria. However, after introducing the feature metrics, all
participants realized and agreed that these metrics could be used as
evaluation criteria to cover various summarization requirements (RQ2).
For example, “academic” could be expressed as complex, very formal,
and having a neutral sentiment. Previous works have pointed out the
dynamic challenge, Our interview revealed that not knowing which
features constitute the intended goal is the major cause of the dynamic
challenge, where designers frequently change the evaluation criteria and
redefine “success” after finding unexpected flaws in the output [20]. By
assisting designers to systematically make sense of potential features
and select the most appropriate ones, the evaluation criteria are less
likely to change, and designers can identify weak aspects in the iterative
refinement process, addressing the unactionable challenge.
F3 Metrics are guidance, not target. When asked about the pre-

ferred explanation of feature metrics (RQ3), participants predominantly
(P2-6) chose L2: textual definitions in computational linguistics (Fig-
ure 1). Most participants excluded L1 for being too generic and L3 for
being too specific for the model to follow as an instruction. Moreover,
some (P2, 4, 6) had doubts about the reliability of the L3 computational
formula, questioning that “it might not be a good representation of
complexity”. P2 emphasizes that “(designers) should not optimize for
the formula, because LLMs can understand complexity more deeply”.
This observation echoes with GoodHart’s Law [46]: when a measure
becomes a target, it ceases to be a good measure, and is reflective of
the current situation in text summarization, where researchers are dis-
couraged from using metrics like ROGUE to evaluate LLM-generated
summaries. As a result, we assign each feature with semantically
meaningful categorizations and refrain from showing metric values.
F4 Prompting methodology is more important. All participants

preferred prompt suggestions over prompt replacements (RQ4), despite
the different levels of prompt editing support introduced in previous
works. P6 commented that “(receiving suggestions) is a more learnable
experience”. Other participants also expressed the desire to learn to
design good prompts, i.e., the methodology of prompting [1, 2]. We
also found that even without knowledge of the established method-
ologies, participants developed similar methodologies through their
own prompting experience, such as chain of thoughts (CoT) [56] or
providing examples. This suggests that the design of prompting support
should communicate the underlying prompting methodologies.
4 REQUIREMENT ANALYSIS

Combining the literature review and the pilot study findings, we iden-
tified four tasks that users must perform in a systematic evaluation
workflow: Feature Selection, Example sourcing, Prompt Refinement,
and Evaluation for Refinement, as shown in Figure 2. Since the work-
flow is guided by features, we refer to it as a feature-oriented workflow.
Next, we introduce each task and discuss its necessity in detail.

4.1 Systematic Workflow
T1 Feature Selection: Designers need to make sense of the poten-

tial features and their correlations, and then pick a subset that
best represents the intended goal. Designers should avoid fix-
ating on minor feature values F3 , and instead set target ranges

T4: Evaluation for Refinement

Identify features that
are not expressed

correctly in the prompt

Actionable Insights

Inspect the features
of execution results

Evaluation

T3: Prompt Refinement

Follow established
methodologies to

write prompts

Methodologies

Sample a validation
set before

refinement starts

Validation set

T2: Example Sourcing

Inspect the examples
to validate feature

configurations

Validation

Use feature
configurations to

find ideal examples

Identifying Examples

T1: Feature Selection

Decompose the goal
into features and
their target levels

Feature Configuration

Make sense of the
features and their

correlations

Feature Sensemaking

Refine

Evaluate

Change

Examples

Prompt

Validate

Configure

Fig. 2: The feature-oriented workflow for a systematic dataset-scale prompt evaluation. T1 : Feature Selection. Designers should make sense
of potential features to use for evaluation and their correlations, and then select a feature configuration that consists of a subset of features and
corresponding target ranges. T2 : Example Sourcing. Designers should use the feature configuration to find ideal examples, which are used to
validate (and refine) the configuration and in the prompt. T3 : Prompt Refinement. First, select a validation set before the refinement starts, and then
follow established prompting methodologies to write the prompt that expresses the feature configurations. Execute the prompt for validation when
ready. T4 : Evaluation for Refinement. Inspect the evaluation result on selected features, identify cases that do not fit the feature configuration, and
refine the prompt accordingly. We emphasize that features should be used as guidance, not targets.

(configurations) of the features. As indicated by F2 , making
Feature Selection explicit and systematic enables the subsequent
evaluation to become less dynamic and more predictable.

T2 Example Sourcing: Once the features are selected, designers
should find ideal examples that fit the features, which can be used
to validate the feature configurations. Examples are also used in
the prompts or compare the outputs in subsequent tasks.

T3 Prompt Refinement: To guarantee a systematic evaluation, de-
signers need to also refine prompts systematically. First, a repre-
sentative validation set must be chosen statistically to guarantee
its validity. Then, prompting should follow the methodologies
proposed by prompt engineers and researchers to write better
and more controllable prompts F4 . Finally, prompt drafts are
executed on the validation set to generate insights for refinement.

T4 Evaluation for Refinement: With previous tasks, we establish
a base to ensure that a systematic evaluation is possible. After
getting feedback from the selected features, we emphasize that
designers should use features as guidance, not targets F3 . Once
the refinement on the validation set is completed, designers can
test the prompt on the whole dataset to confirm the performance.

Ideally, designers would complete the tasks sequentially (Figure 2, yel-
low arrows). Nevertheless, the workflow supports an iterative process:
designers can use the feedback from a later task to refine a previous
task (purple arrows). For example, if T3 shows that the examples are
not representative, designers can go back to T2 for better examples.
Such a systematic workflow presents a structured way of refining and
evaluating prompts, allowing easy identification of failure points.

4.2 Design Requirements

A systematic evaluation with the above tasks is non-trivial for prompt
designers to do properly F1 , especially for non-technical people. We
summarized four design requirements to support T1–4 :

R1 Support sensemaking and recommendation of feature metrics.
As our target audience does not necessarily come from a technical
background, selecting features introduces a steep learning curve.
Our system should support an automatic recommendation of fea-
ture metrics based on the user’s goal and provide explanations.

R2 Support overview and identification of ideal examples. Identi-
fying and validating ideal examples at the dataset scale is cogni-
tively demanding. To facilitate this process, our system should
use statistical analysis to guarantee the soundness of the examples
and interactive visualizations to reduce the cognitive load.

R3 Provide suggestions based on established methodologies.
Prompting is a relatively new area and methodologies are con-
stantly improving. As our users might not be aware of such
advancements, our system should be designed to enforce state-of-
the-art methodologies and give suggestions when necessary.

R4 Support visual tracking of prompt refinement effects. It is
critical yet demanding for designers to track the evaluation results
with pure statistics. Our system should support such tracking
through visualization and convey the performance of each prompt.

5 Awesum: SYSTEM DESIGN

Based on the design requirements, we developed Awesum1, a visual
analytics system that supports the feature-oriented workflow on dataset-
scale summarization prompt refinement and evaluation (Figure 3). Next,
we introduce the details of each component in detail.
5.1 Feature Computation
Awesum characterizes summaries with six features and guides users
toward their goals. We use well-established metrics for complexity,
formality, and sentiment, but no known metrics suit our needs for faith-
fulness and naturalness, so we introduce new computations for them.
Following R1 , we categorize each metric into easy-to-understand lev-
els, encouraging users to not fixate on minor differences in metric
values. Below, we briefly summarize their definitions. Computational
details and categorizations are presented in the appendix.

Complexity The complexity score characterizes the ease with
which a reader can understand a written text. We use the Flesch Reading
Ease Index [21] to measure the complexity of a text based on sentence
count, word count, and syllable count. We simplify its original eight-
level categorization into five levels: Elementary, Middle School, High
School, College, and Professional, which indicates the knowledge level
required for a reader to easily understand the text.

Formality The formality score characterizes how formal a piece
of text is in terms of linguistic structures, conventions, and vocabulary.
We use the measure of textual lexical diversity (MTLD) [30], which is
calculated from the ratio of unique word stems to the number of words.
We categorize it into Informal, Standard, Formal and Very Formal.

Sentiment The sentiment score characterizes the emotional tone
expressed in a piece of text. We use VADER [17], a lexical-based
sentiment analysis model to measure the sentiment of a text, which
generates a score between [−1,1]. Then we categorize the sentiment
into Negative, Neutral, and Positive using a threshold of 0.3.

Faithfulness Faithfulness characterizes the degree to which a gen-
erated text is consistent with the input information in terms of semantic
similarity, completeness, and accuracy [26]. We incorporate this feature
in response to the “hallucination” issue that exists in most LLMs and
is of the most concern to prompt designers. Although more advanced
approaches exist, we calculate the faithfulness score based on Named
Entity Recognition overlap (NER-overlap) [23] for its transparency,
robustness, fast computation speed, and reasonable alignment with
human judgment. We categorize it into Bad, Low, Avg, and Good.

Naturalness Naturalness characterizes how well a text reads like
human-written. To the best of our knowledge, no metrics have been
proposed to evaluate the naturalness of texts. Based on the insights from
Pu et al. [33] that LLM-generated text exhibits statistical differences
in certain linguistic features, such as part-of-speech (POS) tags, we
conducted experiments on a dataset [63] that contains both human-
written and LLM-generated summaries to select differentiable linguistic
features and use them to compute the naturalness score with a weighted
sum. The score is similarly categorized into Bad, Low, Avg and Good.

1https://github.com/SamLee-dedeboy/Awesum

https://github.com/SamLee-dedeboy/Awesum

(1) Overall performance is bad

(3) Refine Complexity and Length in the prompt

(2) Complexity and Length are not satisfied

gf

e

d1

dcba

h2

h1T3 T4

T2T1

Fig. 3: Actions done by Alice in the case study. Alice uses Feature Selection View (a) to decompose the summarization goal “appeal to teenagers”
into feature configurations T1 . After setting the configuration, the system finds the closest cluster in (b) and highlights it in a green bubble. She uses
Recommendation View (d) to validate the examples and adjust the feature configuration in (c) T2 . Then, she moves on to Prompt Editor View (e)
and writes the first prompt according to the feature configuration T3 , with the help of the prompt suggestions given by a chatbot. She executes the
first prompt and to compare it with the baseline prompt in Prompt Comparator View (f), which provides visual tracking of all the versions of prompts.
From Bubble Plot (h1), she can see that the prompt is performing badly, as the dark and light gray bubbles are overlapping and not close to the green
bubble. She goes to the dot plot (g) and finds that complexity and length are not satisfied, as many validation cases are falling out of the green bars.
She refines the prompt by adjusting how she expresses complexity and length T4 by taking prompting suggestions from the system, and the new
prompt yields much better performance (h2), as the dark gray bubble overlaps significantly with the green bubble, and most of the curves are yellow.

Length We use word count as the length of a text. Although a
simple feature, prompt designers and our pilot study participants have
reported difficulties in controlling the length of the generated text. We
thus include it and categorize it into Short, Mid, Long, and Very Long.

Finally, we construct a feature vector F = (f1, f2, f3, . . .) for each
summary, where fi is the numerical score of a feature calculated on the
generated summary. Then for each feature, we compute its z score as
the value of each dimension in the feature vector. The feature vector of
each summary is the basic computation unit in other parts of the system,
namely correlation analysis, clustering, and dimensionality reduction.

We chose the above six feature metrics because there is a clear
semantic meaning to each feature. Considering that our target users
could include non-technical people, the interpretability of the met-
rics is essential to a systematic and rigorous evaluation. Moreover,
we refrain from using LLM-evaluators to support user-defined fea-
tures [20], even though it might broaden the applicability of the system,
for three reasons. First, LLM evaluators have received criticism for
their inconsistent alignment with human judgment [43] and potential
biases [50]. Second, we have conducted experiments to show that the
non-deterministic nature of LLMs makes them unreliable in dataset-
scale evaluation. Experimentation details are presented in supplemental
materials. Third, the goal of developing Awesum in this paper is to
verify the effectiveness of the feature-oriented workflow on text sum-
marization task. Considering the above limitations of LLM evaluators,
it might introduce unnecessary confounding factors in the evaluation.

5.2 Feature Selection
Feature Selection View supports T1 with two sub-tasks: feature corre-
lation analysis and feature recommendation R1 , which supports users
to set feature configuration for their goals of the summarization prompt.

Feature Correlation Matrix Feature correlation matrix shows the
Pearson correlation coefficients between all pairs of features (Figure 4-
a), which is designed to prevent users from selecting conflicting features
that are hard to accomplish simultaneously. For example, if the correla-

tion matrix suggests that complexity and naturalness have a negative
correlation, users should not pick a configuration that has both high
(or low) complexity and naturalness. Visualizing the correlations as
a matrix allows users to avoid such conflicts at a glance R1 . The L2
explanations of each feature can be inspected by hovering over the
feature tags. Based on the result of the baseline prompt, the system
calculates all the feature vectors F on the generated summaries and
the Pearson correlation coefficient between all pairs of features. If the
coefficient exceeds a threshold, we use a square to indicate its signif-
icance and encode the correlation strength with the length. Negative
and positive correlations are encoded by red and green, respectively.
Features omitted by the user in the configuration are shaded in stripes.

Feature Recommendation In case the feature correlation matrix
does not provide a concrete idea for the user, Feature Recommendation
Panel (Figure 4-c and -d) integrates a chatbot to recommend feature
configurations. Users can express their goals in natural language (e.g.,
generate summaries suitable for academic writing), and the chatbot
will respond with a recommended configuration with explanations R1 .
Under the hood, we provide the L2 feature definitions and their catego-
rizations to the chatbot to ensure reasonable responses. If significant
correlations exist in the features, the chatbot would highlight the cor-
relations and give suggestions accordingly. The system automatically
fills in the recommended configuration (Figure 4-b). Dropdown menus
are provided to change feature levels manually.

5.3 Example Sourcing

Example Sourcing View supports T2 with Cluster Plot (Figure 3-b),
which presents an overview of the dataset, and a side panel that can be
switched between Cluster Profiles (Figure 5), which visualizes cluster
feature characteristics; and Feature Distributions (Figure 3-c), which
provides finer control over feature ranges selection R2 . Users can
inspect Cluster Profiles or Feature Distributions and narrow down the
target feature ranges (green bubble in Figure 3-b and green ranges
in Figure 3-c) to identify ideal examples.

c

b
a d

L2 Explanation

Fill in
hover

Fig. 4: Feature Selection View is designed to support T1 . The feature
correlation matrix (a) facilitates sensemaking of the feature definitions
and their correlations. If the correlation exceeds a certain threshold, it is
encoded by a red (negative) or green (positive) square. The rows and
columns are sketched out in stripes if the user deems a feature irrelevant
to the goal. Then, users can manually set the feature configuration
in (b) using the dropdown menus, or use the feature recommendation
chatbot (c) to get recommendations. The chatbot responds in (d) with
a recommended configuration by considering the L2 definition of each
feature and the user’s goal and automatically fills them in (b).

Cluster Analysis The system applies the OPTICS clustering al-
gorithm [5] on the initial summaries using their feature vectors. The
OPTICS algorithm has several benefits over other clustering algorithms
such as KMeans [28]. First, OPTICS is more flexible as it automatically
detects the cluster densities to decide cluster numbers and thus does
not require prior knowledge of the dataset’s cluster shapes. Second, it
ensures that all generated clusters have low variance in feature vectors,
making each cluster distinctive. Third, it removes “noises” that are not
close to any clusters, which is ideal for identifying examples as our
users might not have the cognitive power to identify examples from a
large amount of data. These benefits make the OPTICS algorithm ideal
for our system. In addition, The clustering results are used to generate
the validation set by under-sampling [60], i.e., cluster centroids are
assigned to the validation set, ensuring the diversity of the validation
set for robust evaluation.

Cluster Plot In Cluster Plot, each initial summary is encoded as a
circle and colored by their corresponding cluster. Awesum applies Ker-
nel PCA [40] with cosine distance on the feature vectors of the initial
summaries to generate 2D coordinates, which plots clusters with similar
feature characteristics closer to each other, effectively creating regions
in 2D space that represent certain characteristics. One design consid-
eration for Cluster Plot is to maintain the visual continuity between
example identification and tracking prompt refinement effects (sub-
section 5.6). Thus, we look for parametric dimensionality reduction
methods, where an explicit mapping function (i.e., projection to low-
dimensional space) can be reused, excluding popular non-parametric
methods like t-SNE [51], UMAP [31] or MDS [11]. Kernel PCA
allows us to reuse the same projection in subsequent steps where a
visual tracking of the performances of different versions of prompts
is provided, while capturing the non-linear feature relationships in the
data. In addition, we employ two techniques to improve visual clar-
ity. First, we hide noise points deemed by the OPTICS algorithm as
they are not representative. We provide a toggle to show the noise in
case users are interested. Second, we apply collision detection and a
force-directed layout that attracts each point to its cluster’s centroid.
Although this would affect point positions given by Kernel PCA pro-
jections, this is acceptable as the exact position of each point would not
affect users identifying ideal examples T2 . Since our target audience
is non-technical prompt designers, we emphasize clarity over accuracy.

Cluster Profiles Cluster Profiles show the feature ranges of each
cluster in a scaled vertical bar chart (Figure 5). Considering R2 , we
want to highlight distinguishing feature characteristics among clus-
ters through Cluster Profiles. Inspired by the Difference Overlay
design [44], we scale the bars by aligning the global mean of each
metric at the center of a profile. Then, we take the maximum of
(global_max−global_mean,global_mean−global_min) as the range
of half of the width and scale each bar accordingly. This way, users can
easily identify the distinctive features of each cluster. Clicking on a

global_mean

max(

global_max - global_mean,
global_mean - global_min)

Fig. 5: Cluster Profiles visualize the feature ranges of each cluster with a
scaled vertical bar chart. Each cluster is encoded by a unique color. The
bars are aligned by the center vertical line, which encodes the global
mean. The half of the profile width is encoded by max(global_max−
global_mean,global_mean− global_min). This way, the bars are scaled
to show the distinctiveness of each cluster. Hovering over a bar chart
shows the ranges in values and categorization.

cluster profile highlights its position in Cluster Plot (green bubble) and
automatically sets the cluster points as ideal examples.

Feature Distributions Feature Distribution Panel (Figure 3-c) sup-
ports users in identifying ideal examples with finer control over the
feature configurations R2 . It shows the unscaled ranges of each cluster
for each feature, which complement the scaled ranges in Cluster Profile
while maintaining the same visual encoding for colors (cluster label),
emphasizing visual continuity and simplicity. The cluster bars are or-
dered from top to bottom by their mean value on the corresponding
feature. For each feature, users can click on a cluster bar to set its range
as a target or drag the double-direction slider at the top to adjust the
target range, indicated by a light green background. Supporting T2 at
a finer scale ensures the system adapts to diverse goals.

5.4 Recommendation

Recommendation View (Figure 3-d) supports validation of the target
ranges of the features T2 . It shows the content of the examples with
their feature categorizations. After inspecting the examples, users can
click the star icon and add them to the prompt.

The design of Recommendation View considers two weaknesses
in Example Sourcing View. First, it is hard for users to estimate the
number of recommended examples in Cluster Plot, as users would need
to estimate the region’s area to estimate the number. To complement,
we use a fixed height for each example in Recommendation View by
collapsing excessive content, ensuring as many examples are shown
in the viewport as possible. This allows users to estimate the number
of examples at a glance with the total height of the examples. Second,
Cluster Profiles are scaled so they do not strictly encode the range of
each feature. This could mislead the users into choosing the wrong
feature configuration. To complement, we encode the feature values
in horizontal green bars (Figure 3-d1). Users can skim through the
examples with awareness of the true ranges of each feature at a glance.

5.5 Prompt Editor

Prompt Editor View supports users with Prompt Refinement T3 . In-
formed by state-of-the-art prompting methodologies [1, 2], we divide
a prompt into five blocks: Persona, Context, Constraints, Examples
and Data. In each block, users have a clear goal for the content of
the section R3 . For example, Persona block should specify a role-
based identity for the AI to adopt. This explicit division of a prompt
enforces the users to follow established prompting methodologies with
a minimum requirement for knowledge of the methodologies. Once a
prompt is written, users can click the “Apply” button to test it on the
validation set. In addition, users can hover over the block titles to learn
the purpose of the block and get suggestions specific to their feature
configuration from a chatbot R3 , as shown in Figure 3-e.

worse

With Trajectory

With Trajectory

v3 trajectory + direction + bubbles
Goal: Move points towards green bubble

Old

New

Bubbles:

Closer
Farther

Trajectories:

Fig. 6: Final design of Bubble Plot. The light green bubble represents the
goal. Light and dark gray bubbles (representing old and new prompts)
allow users to estimate prompt performances by the distances from the
green bubble. A visual pattern that indicates a “better” prompt (top) would
have the dark bubble moving closer to the light green bubble, and vice
versa (bottom). Colored curves connect validation cases in old and new
prompts, with color encoding changes in feature values (yellow for better,
purple for worse, gray for insignificant). The importance of a validation
case is encoded by the circle size (and trajectory width).

5.6 Prompt Comparator
Prompt Comparator View supports T4 with two components: Prompt
Tracking Panel (Figure 3-f) and Bubble Plot (Figure 6). Both compo-
nents incorporate visualizations to reduce the cognitive load of keeping
track of multiple iterations of prompts and their performances R4 .
Since the refinement is conducted on the validation set, a “Test” button
is provided to execute the prompt on the whole dataset once users are
satisfied with the prompt. Next, we introduce each component in detail.

Prompt Tracking Prompt Tracking Panel (Figure 3-f) stores all
the prompts that the user has written, including the prompt content,
the examples, and their evaluation result using a horizontal dot plot
(Figure 3-g). Tracking the history of prompts is essential as prompt
refinement and evaluation is a highly iterative process. To provide visual
tracking R4 , each prompt snippet includes a dot plot that visualizes
the performance of the prompt in detail, where each row is a feature
and each dot in a row is a validation case. Since the validation set is
generated from the cluster centroids, we encode the dot size with its
corresponding cluster size to indicate its importance, i.e., larger dots
are more important because they represent more points. We stroke the
feature configuration in light green on the dot plot to clearly present the
goal of the prompt: make all the dots fall into the light green bars.

Bubble Plot Bubble Plot (Figure 6) supports visual comparison
between any two prompts and visualizes their “distances” from the
ideal examples to support T4 . As illustrated in subsection 5.3, we
reuse the Kernel PCA projection in Cluster Plot for all points in the plot
to ensure visual continuity. Ideal examples are highlighted in a light
green bubble as an indication of the goal. Two iterations (old and new)
of the validation cases are plotted as circles, where the circle radius
encodes its corresponding cluster size to suggest importance, and are
surrounded in light and dark gray bubbles, respectively. This allows
the user to estimate the performance of a prompt through the distance
between its bubble and the green bubble R4 . The expected visual
pattern for a “better” prompt is that the dark bubble is “moving towards”
the green bubble, and vice versa. To make the comparison more explicit,
we connect the same validation case from two versions of prompts with

v2 trajectory + directionv1 straight trajectory

Fig. 7: Previous designs of Bubble Plot. v1: Validation cases are encoded
by cluster colors. Animated dotted straight lines connect validation cases
from old and new prompts. It is cluttered and hard to gain any valuable
insight. v2: Cluttering is reduced by using curves to connect points,
which are generated by sampling in high-dimensional space. Colors are
based on the directions (green for better, red for worse). The brightness
(light to dark) encodes the connection direction (old to new prompt). The
visual pattern highlights comparison, but it is hard to make sense of the
performance of individual prompts.

curves generated with linear sampling in high-dimensional space. This
effectively visualizes the “trajectory” of the validation case incurred by
the new prompt. Specifically, for each pair of feature vectors (F1,F2),
we linearly sample ε = 100 points between F1 and F2 and project each
point to 2D space, thus forming the curve and encoding the importance
with curve width. Since the projection is non-linear, the sampled
trajectory appears to be curved. Also, using a fixed number of sampling
points (ε) makes long trajectories appear dotted. We use a color-blind-
friendly color palette to indicate the direction of the trajectory: yellow
if the validation case is moving closer to the ideal examples, and vice
versa, purple. Validation cases with non-significant changes (below a
threshold) are colored in gray. Users can click the “Select Comparison”
button to select any two iterations of prompts to compare.

Bubble Plot Design Iteration The design of Bubble Plot went
through three iterations, as shown in Figure 7. In v1, we encoded the
cluster of each validation case with color and connected validation cases
from two different prompts with an animated straight dotted line to
indicate their moving directions. However, the lines were cluttered, and
interactions were needed for further analysis. Barely any insights can
be generated at a glance. Inspired by Scheepens et al. [39], in v2, we
mitigated the clutter issue by connecting validation cases with curves
generated by linearly sampling in high-dimensional space and used
green (closer) and red (further) to encode the moving direction from the
validation cases. Users can now compare two prompts at a glance, but
it was hard to estimate the performance of individual prompts, which
is critical in R4 . This motivated us to surround the validation cases
with BubbleSets to indicate the relative distance from the target bubble,
providing a clear visual tracking of prompt performance.

6 CASE STUDY

We demonstrate how a non-technical prompt designer with no prior
prompting experience can use Awesum to refine and evaluate prompts.

Alice is a middle school teacher and she wants to customize a chatbot
that can summarize sports news in a way that appeals to teenagers. She
loads the sports-related materials into Awesum and uses a baseline
prompt to generate the initial summaries. The system executes the
prompt and processes the summaries. Alice starts by selecting the
features that make a summary appeal to teenagers T1 . She asks in
Feature Recommendation Panel: “I’m a middle school teacher. How to
make the summaries appeal to teenagers?”. The chatbot answers with a
recommended feature configuration with explanations. She checks the
definitions of the features and adjusts “sentiment” to “positive” as she
wants the summaries to be more energetic, as shown in Figure 3-a.

After setting the feature configuration, she then proceeds to find
ideal examples that fit this configuration T2 . She clicks the arrow
in the green background at the top right, which triggers the system
to automatically find a cluster that best fits the feature configuration.
The system highlights the purple cluster in a green background and

dotted lines that connect to “recommendations” at the top (Figure 3-b).
She skims through the content and the feature ranges of the purple
cluster in Recommendation View (Figure 3-d) to ensure that they fit
her expectations. She is satisfied with the cluster and selects the two
best examples to use in the prompt (starred in green).

After Feature Selection and Example Sourcing, Alice proceeds to
write the prompt T3 . Even without prior prompting experience, she can
easily understand what each block means and what should be written as
the blocks resemble interaction patterns with chatbots. She clicks the
“Get Suggestions” button to brainstorm some ideas for Persona block
(Figure 3-e), then decides to put “You are a middle school teacher who
is trying to get students interested in sports news” in Persona block.
She repeats similarly for Context block and Constraints block and then
executes the prompt on the validation set. The system executes the
prompt and recalculates the features. The new prompt’s content and its
evaluation result are presented in Prompt Tracking Panel (Figure 3-f),
with the new prompt colored in dark gray and the baseline prompt
colored in light gray. From Bubble Plot (Figure 3-h1), she can quickly
tell that the new prompt has a bad overall performance as the gray
bubble is not moving closer to the green bubble. She inspects the
dot plot (Figure 3-g) and finds that Complexity and Length are not
being satisfied. She thus goes back to the prompt and refines the parts
where she describes complexity and length T4 , seeking the prompt
suggestion chatbot for help. After the refinement, the new prompt is
much better as the dark gray bubble has significant overlaps with the
green bubble with only a few exceptions. The trajectories show that
most validation cases are moving towards the green bubble, and only a
few do not have significant changes. Alice is satisfied with this prompt
and she clicks the “Test” button to test it on the whole dataset, which
shows that the prompt works as expected.

This case study shows that the system is effective in supporting
dataset-scale prompt refinement and evaluation. Using the system, even
non-technical people with no prior prompting experience could write
a reasonably good prompt, evaluate the prompt, and figure out which
parts need to be refined. By following the systematic feature-oriented
workflow behind the system, users overcome the first four challenges
(opportunistic, manual, multi-criteria, and dynamic) in prompt eval-
uation. Cluster Plot and Bubble plot allow users to overcome the
unactionable challenge by visualizing the prompt performance.

7 PRACTITIONER REVIEW AND DISCUSSION

Awesum is evaluated through a practitioner review. Even though the
system is designed for text summarization, we aim to explore a broader
range of tasks in people’s everyday work that can also be supported.
We recruit practitioners from various backgrounds who are interested
in customizing LLMs to automate their professional workflow. We
evaluate the effectiveness of the system with them and discuss its
generalizability. In addition, we report challenges in prompt evaluation
and human-agent interaction that arise in professional usage.

7.1 Participants and Procedure
Four practitioners from different backgrounds were recruited: C1 is
a correspondent for the New York Times specializing in scientific
topics; C2, C3, and C4 are researchers in ecology, NLP, and sociology,
respectively. C1, C2, and C4 came from non-technical backgrounds
and had only prompted in ChatGPT. All participants expressed strong
interest in customizing LLMs with prompts to automate their workflow.

The review procedure consists of three sessions, 20 minutes each.
In the first session, we introduce the background and give a quick
walkthrough of the interface. In the second session, participants choose
a topic (from Politics, Sport, Technology, and Business), propose a
summarization goal, and then use Awesum to write prompts that fulfill
that goal. Finally, participants engage in a semi-structured interview.
We provide at least 25 US dollars in compensation for all participants.

7.2 User Feedback
Overall, the system received positive feedback on usability and user-
friendliness. Still, a minimum amount of training is needed to use the
system. Below, we report the practitioner review on system design,
prompting methodology, learning curve, and visualization literacy.

System Design The system was highly praised for being easy to
follow despite its complexity. Participants commented that “I have
no trouble understanding what I should do (C2)” and that “The or-
ganization makes a lot of sense (C1)”. All participants successfully
wrote a well-performed prompt for their goals based on the feedback
from the system. As C3 said, “You can tell (from Bubble Plot) that
initially my prompt wasn’t good, then I changed the prompt according
to the features (L2 descriptions) and it’s giving exactly what I wanted.”
Bubble Plot and dot plots facilitated participants to examine and locate
unfulfilled features and the L2 descriptions helped them refine prompts.

Prompting Methodology Providing suggestions supported by the
established prompting methodologies inspired less experienced partici-
pants to explore more possibilities, going beyond our initial expectation
that simply facilitates prompt writing: “(C4): If I had just a blank text
box, I would not know how to write the first sentence . . . and I would
not know that this is something that you can do. ” Most inexperienced
prompt designers find prompting challenging because they do not know
what the model is capable of. Before using the system, C4 did not
know that designers could instruct the model to adopt a persona, and
that inspired her to explore what could be used as a persona. As op-
posed to L1–3 prompt editing support (Figure 1), providing prompting
suggestions (L4) taught participants what to expect from the model.

Learning Curve There is still a non-trivial learning curve to over-
come, despite being highly praised for its clarity. For C1, “without you
to talk me through (the interface), it would have been hard to figure out,
(because) there is a ton of information onto one page.” This shows that
for people from non-technical backgrounds, engaging in a systematic
workflow is not something they are familiar with and could be challeng-
ing at the beginning. Still, the clarity of the workflow and visualization
design helped smooth this process, as C1 and C4 both commented that

“it was like playing a game”. By visualizing the prompt’s performance
with Bubble Plot, the system provided a clear goal and abundant visual
hints for the participants to grasp their current status and how far away
they were from the goal, leading to a less unpredictable experience.

Visualization Literacy For people unfamiliar with high-
dimensional visualization, Cluster Plot could be confusing. As
C2 mentioned, “I can understand that each region has its own
characteristics and that the green bubble is my goal, but I would still
want to know how it works under the hood to really make sure I’m
not misunderstanding.” C4 also raised a similar concern: “Figuring
out what these functionalities do is one thing; figuring out what these
functionalities mean, that’s another thing.” This is a valid concern
since Kernal PCA introduces distortion in the two-dimensional scatter
plot, which could mislead users who are not aware of it. Even though
we designed Bubble Plot with loose encodings to mitigate this issue
and encouraged users to use metrics as guidance, users could still fixate
on absolute metric values without a minimum amount of training.

7.3 Design Implications
In this section, we first discuss how the system can be generalized
to a broader range of tasks. Then, we report three implications on
human-agent interaction: the issue of trust, experimenting with LLM
capabilities, and using features as boundary objects.

Supporting Information-Condensing Tasks Beyond summariza-
tion, using the system to evaluate prompts for condensing information
is a highly praised usage. When asked about how well the system could
be generalized to other tasks in their professional work, all participants
agreed its strong potential in condensing information, e.g., generating
logical relations for multiple articles (C1), leading to the importance of
proper evaluation, as C4 mentioned:

“Say I take 2000 tweets, something I might do with AI is to clean
these tweets because not all tweets have meaningful things according
to my use. . . but I can’t use it unless I have a grasp of what the AI’s
assumption is about ‘meaningful’.” Challenges in evaluating informa-
tion condensing tasks resemble those in text summarization in many
ways: there is a great amount of information (data); it is cognitively
demanding to evaluate even a small amount of outputs; and it is proba-
bly unreliable to evaluate all of them with quality metrics. Participants
agreed that the current feature metrics in Awesum most scenarios for

their professional work, which is reasonable because the standards for
“professional writing” are quite similar. In general, the system is shown
to readily apply to information-condensing tasks.

Shift in Task Formulation We observe a shift in the formulation of
researchable tasks from practical tasks in the practitioner review. For
example, to understand a large amount of customer feedback quickly
(practical), researchers in traditional machine learning formulate the
task as sentiment analysis or topic modeling task (researchable). In
the pilot study and practitioner review, non-technical participants can
design prompts that directly solve the practical task at hand. In prompt
engineering, it is less important to rigorously define a researchable
task given the high customizability of prompts. Therefore, while the
system seems not applicable to many existing NLP tasks, such as data
extraction [24], making it less advantageous for NLP researchers, it
still brings much value to non-technical practitioners.

Applying to Image Generation Tasks C3 was very positive about
applying the system to image generation tasks: “you would need some
other metrics (for image generation) like the styles of the images, but
the other things are more or less the same.” The system design makes
it easy to extend feature metrics for a broader range of tasks. Given the
right set of features, the rest of the system is agnostic of the underlying
features because OPTICS clustering and Kernel PCA both operate on
feature vectors. For image generation prompt evaluation, a potential
direction for computing feature metrics is to evaluate the style of an
image through image similarity analysis [35]. For example, one could
collect a dataset of cartoon images and calculate the similarity between
a generated image and the dataset to quantify how “cartoony” the image
is. Such stylistic metrics could be used as feature metrics to evaluate
image generation prompts. In general, the system has the potential to
be extended for image generation tasks, but developing corresponding
feature metrics is out of scope and we leave it for future work.

Beyond generalizability, participants also brought up topics related
to human-agent interaction in their professional work.

Experimenting with LLM Capabilities By observing the changes
in features, designers can experiment with prompts to better understand
the capability of LLMs, as shown by two unexpected usages by C3 and
C4 during the practitioner review. C4 tried paraphrasing, e.g., chang-
ing the persona from “reporter” to “editor”, and observing changes
in relevant features, such as complexity and formality. For inexperi-
enced prompt designers, coping with the ambiguity inherent in natural
language has been one of the reasons why prompting is challenging.
Experimenting with prompts mitigates this issue as it guides designers
in sorting through the ambiguity: “It’s actually not putting stuff in
unambiguous form, but still less ambiguous enough that you can track
where things are going. (C4)” C3 used the system for a more technical
experiment, where he tested the positional bias [53] of LLMs. C3 put
conflicting instructions in different parts of the prompt, e.g., asking the
model to adopt the persona of “an elementary school teacher writing for
kids” but generate summaries “as academic as you can”, and observing
which part of the instruction is followed based on the features. Both
usages showed that evaluation through features has the potential for
understanding and even diagnosing LLMs.

Features as Boundary Objects The practitioner review revealed
the potential to use features as boundary objects [45], i.e., a common
ground that could be reached between humans and agents in prompting.
C2 and C4 both felt that using natural language to communicate with
AI agents is different from communication with humans. When asked
why, C4 replied that “I know what I want, but how do I say it has to
do with context”, suggesting that context needs to be presented before
proper communication can continue with each new conversation. C2
pointed out that the ability to sort through vague communication is
critical: “If the professor tells me to make something better, I’ll figure
out myself what is ‘better’ and how to make it better. But with GPT,
I have to say exactly what is better.” We believe that this issue could
be mitigated by using features as boundary objects and reverting the
initiative in feature selection. Instead of a human selecting the feature
configuration, the agent could use the features to make confirmations
with the human. For example, to generate an “academic level” summary,

the agent could confirm with the human what “academic level” means
by asking for confirmations on the complexity level, formality level, and
so on. Incorporating features as boundary objects presents a promising
direction for supporting better human-agent interaction.

Issue of Trust As a professional journalist, C1 had serious trust
issues with applying intelligent agents in journalism work: “Because I
know about GPT hallucinations, and if I am saying false things in this
material that I produce, that’s really bad for me.” For C1, the level of
trust needed for the agent seems unreachable: “ (To trust it) I have to
check every single thing that it says, and it defeats the purpose of having
a tool that increases my efficiency.” In the feature-oriented evaluation
workflow, we do not consider the evaluation of the trustworthiness
of the prompts as it can not be easily measured through any feature
that we know of. Supporting the evaluation of trustworthiness remains
challenging yet critical for many professional tasks.

8 LIMITATIONS AND FUTURE WORK

Limitations of the system are centered around features. First, the
feature metrics have their limitations. For example, the Faithfulness
score computation is confined to the token level, which could hinder its
accuracy when the entities have different meanings across sentences.
The capability of Awesum to capture user intent accurately is thus
limited by the feature metrics. We provide a more thorough discussion
of the limitations of feature metrics in the supplemental material.

Developing or selecting suitable features that match the task at hand
remains a challenge in the feature-oriented workflow, especially for
non-technical prompt designers. This includes the challenge to decom-
pose a complicated task into subtasks that are easier to evaluate, which
remains hard even for technical designers with relevant training [58].
One possible solution is to maintain a repository of features and pro-
vide recommendation support for each task, following the approach for
facilitating the selection of layouts for large graphs [22]. The practi-
tioner review revealed that the evaluation criteria of most prompting
tasks could be decomposed into a combination of features, making
it possible to cover endlessly long-tail tasks with a finite amount of
features. This observation aligns with the findings of Kim et al. [20],
that task-specific considerations are often secondary to broader criteria.
Technical contributors can conduct meta evaluation on the features to
guarantee their efficacy and maintain a repository of the results, thereby
benefiting non-technical prompt designers.

Reliance on the dataset hinders generalizability, as one is not always
available in every application scenario. A potential solution is LLM-
powered data augmentation [42]. Given a small dataset, LLMs have
the capability to generate high-quality data points by retrieving and
extrapolating from large datasets with sufficient contextual information.
The discussion with C3 revealed that data augmentation is a promising
direction to deal with the absence of a dataset.

Finally, certain social factors might not be applicable to the feature-
oriented workflow, such as trustworthiness, privacy, ethics, and social
biases, which have a significant impact on the adoption of LLM-based
intelligent agents deeper into our everyday lives. As mentioned in the
practitioner review, the level of trust needed for an intelligent agent to
conduct certain professional tasks might take a long time to be gained,
defeating the purpose of adopting them for efficiency in the first place.
This is the same for other social factors, in that intelligent agents can
not be recognized without a transition process that lasts for a significant
period. We believe evaluating these social factors is critical before
deploying prompts for high-stake tasks, but it is out of the scope of our
work and we call for future work to continue on this issue.

9 CONCLUSION

Evaluating human-level summarizations of LLMs requires capturing nu-
anced quality differences, surpassing the capabilities of quality metrics.
Via Awesum , we have shown that feature metrics have the potential
to provide actionable insights in the summarization prompt evaluation
setting. While still limited, the practitioner review reveals positive di-
rections to extend the feature-oriented workflow for broader prompting
tasks. We call for more research to follow this direction to advance
prompt evaluation via a human-in-the-loop approach.

ACKNOWLEDGMENTS

This research is supported in part by the UC Climate Action Initiative.

REFERENCES

[1] Prompt engineering from openai. https://platform.openai.com/
docs/guides/prompt-engineering. Accessed: 2024-02-12. 2, 3, 6

[2] Prompt engineering guide. https://www.promptingguide.ai/. Ac-
cessed: 2024-02-12. 2, 3, 6

[3] Mljar. https://mljar.com/, 2018. Accessed: 2024-06-12. 2
[4] Sigopt. https://sigopt.com/, 2018. Accessed: 2024-06-12. 2
[5] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: ordering

points to identify the clustering structure. In SIGMOD ’99, 12 pages, p.
49–60. ACM, New York, 1999. doi: 10.1145/304182.304187 6

[6] I. Arawjo, C. Swoopes, P. Vaithilingam, M. Wattenberg, and E. L. Glass-
man. Chainforge: A visual toolkit for prompt engineering and llm hypoth-
esis testing. In CHI ’24, article no. 304, 18 pages. ACM, New York, 2024.
doi: 10.1145/3613904.3642016 2

[7] M. Bhandari, P. N. Gour, A. Ashfaq, P. Liu, and G. Neubig. Re-evaluating
evaluation in text summarization. In B. Webber, T. Cohn, Y. He, and
Y. Liu, eds., EMNLP ’20, pp. 9347–9359. ACL, Online, 2020. doi: 10.
18653/v1/2020.emnlp-main.751 2, 3

[8] S. Brade, B. Wang, M. Sousa, S. Oore, and T. Grossman. Promptify: Text-
to-image generation through interactive prompt exploration with large
language models. In UIST ’23, article no. 96, 14 pages. ACM, New York,
2023. doi: 10.1145/3586183.3606725 3

[9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds., Advances in Neural
Information Processing Systems, vol. 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. 1

[10] D. Deutsch, R. Dror, and D. Roth. Re-examining system-level correlations
of automatic summarization evaluation metrics. In M. Carpuat, M.-C.
de Marneffe, and I. V. Meza Ruiz, eds., Proceedings of the 2022 Confer-
ence of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 6038–6052. ACL, Seattle,
2022. doi: 10.18653/v1/2022.naacl-main.442 1, 2, 3

[11] J. Douglas Carroll and P. Arabie. Chapter 3 - multidimensional scaling.
In M. H. Birnbaum, ed., Measurement, Judgment and Decision Mak-
ing, Handbook of Perception and Cognition (Second Edition), pp. 179–
250. Academic Press, San Diego, 1998. doi: 10.1016/B978-012099975-0.
50005-1 6

[12] E. Durmus, F. Ladhak, and T. Hashimoto. Spurious correlations in
reference-free evaluation of text generation. In S. Muresan, P. Nakov,
and A. Villavicencio, eds., Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp.
1443–1454. ACL, Dublin, 2022. doi: 10.18653/v1/2022.acl-long.102 2

[13] A. Fabbri, C.-S. Wu, W. Liu, and C. Xiong. QAFactEval: Improved QA-
based factual consistency evaluation for summarization. In M. Carpuat,
M.-C. de Marneffe, and I. V. Meza Ruiz, eds., Proceedings of the 2022
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 2587–2601.
ACL, Seattle, 2022. doi: 10.18653/v1/2022.naacl-main.187 2

[14] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley.
Google vizier: A service for black-box optimization. In KDD ’17, 9 pages,
p. 1487–1495. ACM, New York, 2017. doi: 10.1145/3097983.3098043 2

[15] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in
deep learning: An interrogative survey for the next frontiers. IEEE TVCG,
25(8):2674–2693, 2019. doi: 10.1109/TVCG.2018.2843369 2

[16] Q. Huang, M. Lu, J. Lanir, D. Lischinski, D. Cohen-Or, and H. Huang.
Graphimind: Llm-centric interface for information graphics design, 2024.
doi: 10.48550/arXiv.2401.13245 1

[17] C. Hutto and E. Gilbert. Vader: A parsimonious rule-based model for
sentiment analysis of social media text. In Proceedings of the international
AAAI conference on web and social media, vol. 8, pp. 216–225, 2014. doi:
10.1609/icwsm.v8i1.14550 4

[18] E. Jiang, K. Olson, E. Toh, A. Molina, A. Donsbach, M. Terry, and C. J.
Cai. Promptmaker: Prompt-based prototyping with large language models.
In CHI EA ’22, CHI EA ’22, article no. 35, 8 pages. ACM, New York,
2022. doi: 10.1145/3491101.3503564 1, 2, 3

[19] T. S. Kim, Y. Lee, M. Chang, and J. Kim. Cells, generators, and lenses:
Design framework for object-oriented interaction with large language
models. In UIST ’23, article no. 4, 18 pages. ACM, New York, 2023. doi:
10.1145/3586183.3606833 2

[20] T. S. Kim, Y. Lee, J. Shin, Y.-H. Kim, and J. Kim. Evallm: Interactive
evaluation of large language model prompts on user-defined criteria. In
CHI ’24, article no. 306, 21 pages. ACM, New York, 2024. doi: 10.
1145/3613904.3642216 1, 2, 3, 5, 9

[21] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom. Deriva-
tion of new readability formulas (automated readability index, fog count
and flesch reading ease formula) for navy enlisted personnel. 1975. doi:
10.21236/ada006655 4

[22] O.-H. Kwon, T. Crnovrsanin, and K.-L. Ma. What would a graph look like
in this layout? a machine learning approach to large graph visualization.
IEEE TVCG, 24(1):478–488, 2018. doi: 10.1109/TVCG.2017.2743858 9

[23] P. Laban, T. Schnabel, P. N. Bennett, and M. A. Hearst. SummaC: Re-
visiting NLI-based models for inconsistency detection in summarization.
Transactions of the Association for Computational Linguistics, 10:163–
177, 2022. doi: 10.1162/tacl_a_00453 4

[24] B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang. Eval-
uating chatgpt’s information extraction capabilities: An assessment of
performance, explainability, calibration, and faithfulness, 2023. doi: 10.
48550/arXiv.2304.11633 9

[25] C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In
Text Summarization Branches Out, pp. 74–81. ACL, Barcelona, 2004. 1, 2

[26] J. Liu, T. Yang, and J. Neville. Cliqueparcel: An approach for batching
llm prompts that jointly optimizes efficiency and faithfulness, 2024. doi:
10.48550/arXiv.2402.14833 4

[27] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training processes
of deep generative models. IEEE TVCG, 24(1):77–87, 2018. doi: 10.1109/
TVCG.2017.2744938 2

[28] S. Lloyd. Least squares quantization in pcm. IEEE TIT, 28(2):129–137,
1982. doi: 10.1109/TIT.1982.1056489 6

[29] S. MacNeil, A. Tran, J. Kim, Z. Huang, S. Bernstein, and D. Mogil.
Prompt middleware: Mapping prompts for large language models to ui
affordances, 2023. doi: 10.48550/arXiv.2307.01142 3

[30] P. M. McCarthy and S. Jarvis. Mtld, vocd-d, and hd-d: A validation study
of sophisticated approaches to lexical diversity assessment. Behavior
research methods, 42(2):381–392, 2010. doi: 10.3758/BRM.42.2.381 4

[31] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approxi-
mation and projection for dimension reduction, 2020. doi: 10.48550/arXiv
.1802.03426 6

[32] A. Mishra, U. Soni, A. Arunkumar, J. Huang, B. C. Kwon, and C. Bryan.
Promptaid: Prompt exploration, perturbation, testing and iteration using
visual analytics for large language models, 2023. doi: 10.48550/arXiv.
2304.01964 3

[33] A. Muñoz-Ortiz, C. Gómez-Rodríguez, and D. Vilares. Contrasting linguis-
tic patterns in human and llm-generated text, 2023. doi: 10.48550/arXiv.
2308.09067 4

[34] J. Novikova, O. Dušek, A. Cercas Curry, and V. Rieser. Why we need
new evaluation metrics for NLG. In M. Palmer, R. Hwa, and S. Riedel,
eds., EMNLP ’27, pp. 2241–2252. ACL, Copenhagen, 2017. doi: 10.
18653/v1/D17-1238 2, 3

[35] G. Palubinskas. Image similarity/distance measures: what is really behind
mse and ssim? International Journal of Image and Data Fusion, 8(1):32–
53, 2017. doi: 10.1080/19479832.2016.1273259 9

[36] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In P. Isabelle, E. Charniak, and
D. Lin, eds., Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pp. 311–318. ACL, Philadelphia, 2002.
doi: 10.3115/1073083.1073135 2

[37] S. Petridis, N. Diakopoulos, K. Crowston, M. Hansen, K. Henderson,
S. Jastrzebski, J. V. Nickerson, and L. B. Chilton. Anglekindling: Support-
ing journalistic angle ideation with large language models. In CHI ’23,
article no. 225, 16 pages. ACM, New York, 2023. doi: 10.1145/3544548.
3580907 1

[38] N. Pezzotti, T. Höllt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and
A. Vilanova. Deepeyes: Progressive visual analytics for designing deep
neural networks. IEEE TVCG, 24(1):98–108, 2018. doi: 10.1109/TVCG.
2017.2744358 2

[39] R. Scheepens, C. Hurter, H. Van De Wetering, and J. J. Van Wijk. Visualiza-
tion, selection, and analysis of traffic flows. IEEE TVCG, 22(1):379–388,
2016. doi: 10.1109/TVCG.2015.2467112 7

https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://www.promptingguide.ai/
https://mljar.com/
https://sigopt.com/
https://doi.org/10.1145/304182.304187
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.18653/v1/2020.emnlp-main.751
https://doi.org/10.18653/v1/2020.emnlp-main.751
https://doi.org/10.1145/3586183.3606725
https://doi.org/10.18653/v1/2022.naacl-main.442
https://doi.org/10.1016/B978-012099975-0.50005-1
https://doi.org/10.1016/B978-012099975-0.50005-1
https://doi.org/10.18653/v1/2022.acl-long.102
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.48550/arXiv.2401.13245
https://doi.org/10.1609/icwsm.v8i1.14550
https://doi.org/10.1609/icwsm.v8i1.14550
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3586183.3606833
https://doi.org/10.1145/3586183.3606833
https://doi.org/10.1145/3613904.3642216
https://doi.org/10.1145/3613904.3642216
https://doi.org/10.21236/ada006655
https://doi.org/10.21236/ada006655
https://doi.org/10.1109/TVCG.2017.2743858
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.48550/arXiv.2304.11633
https://doi.org/10.48550/arXiv.2304.11633
https://doi.org/10.48550/arXiv.2402.14833
https://doi.org/10.48550/arXiv.2402.14833
https://doi.org/10.1109/TVCG.2017.2744938
https://doi.org/10.1109/TVCG.2017.2744938
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.48550/arXiv.2307.01142
https://doi.org/10.3758/BRM.42.2.381
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.2304.01964
https://doi.org/10.48550/arXiv.2304.01964
https://doi.org/10.48550/arXiv.2308.09067
https://doi.org/10.48550/arXiv.2308.09067
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.1080/19479832.2016.1273259
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3544548.3580907
https://doi.org/10.1145/3544548.3580907
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2017.2744358
https://doi.org/10.1109/TVCG.2015.2467112

[40] B. Schölkopf, A. Smola, and K.-R. Müller. Kernel principal component
analysis. In W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, eds.,
Artificial Neural Networks — ICANN’97, pp. 583–588. Springer Berlin
Heidelberg, Berlin, 1997. doi: 10.1007/BFb0020217 6

[41] T. Scialom, P.-A. Dray, S. Lamprier, B. Piwowarski, J. Staiano, A. Wang,
and P. Gallinari. QuestEval: Summarization asks for fact-based evaluation.
In M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih, eds., EMNLP ’21,
pp. 6594–6604. ACL, Online and Punta Cana, 2021. doi: 10.18653/v1/
2021.emnlp-main.529 2

[42] M. Seo, J. Baek, J. Thorne, and S. J. Hwang. Retrieval-augmented data
augmentation for low-resource domain tasks, 2024. doi: 10.48550/arXiv.
2402.13482 9

[43] C. Shen, L. Cheng, X.-P. Nguyen, Y. You, and L. Bing. Large language
models are not yet human-level evaluators for abstractive summarization.
In H. Bouamor, J. Pino, and K. Bali, eds., Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 4215–4233. ACL, Singa-
pore, 2023. doi: 10.18653/v1/2023.findings-emnlp.278 2, 5

[44] A. Srinivasan, M. Brehmer, B. Lee, and S. M. Drucker. What’s the
difference? evaluating variations of multi-series bar charts for visual
comparison tasks. In CHI ’18, 12 pages, p. 1–12. ACM, New York, 2018.
doi: 10.1145/3173574.3173878 6

[45] S. L. Star and J. R. Griesemer. Institutional ecology, ‘translations’ and
boundary objects: Amateurs and professionals in berkeley’s museum of
vertebrate zoology, 1907-39. Social Studies of Science, 19(3):387–420,
1989. doi: 10.1177/030631289019003001 9

[46] M. Strathern. ‘improving ratings’: audit in the british university system.
European Review, 5(3):305–321, 1997. doi: 10.1017/s1062798700002660
3

[47] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. Lstmvis: A tool
for visual analysis of hidden state dynamics in recurrent neural networks.
IEEE TVCG, 24(1):667–676, 2018. doi: 10.1109/TVCG.2017.2744158 2

[48] H. Strobelt, A. Webson, V. Sanh, B. Hoover, J. Beyer, H. Pfister, and A. M.
Rush. Interactive and visual prompt engineering for ad-hoc task adaptation
with large language models. IEEE TVCG, 29(01):1146–1156, 2023. doi:
10.1109/TVCG.2022.3209479 2

[49] S. Sučik, D. Skala, A. Švec, P. Hraška, and M. Šuppa. Prompterator: Iter-
ate efficiently towards more effective prompts. In Y. Feng and E. Lefever,
eds., Proceedings of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pp. 471–478. ACL,
Singapore, 2023. doi: 10.18653/v1/2023.emnlp-demo.43 2

[50] L. Tjuatja, V. Chen, S. T. Wu, A. Talwalkar, and G. Neubig. Do llms
exhibit human-like response biases? a case study in survey design, 2024.
doi: 10.48550/arXiv.2311.04076 2, 5

[51] L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579–2605, 2008. 6

[52] C. Wang, J. Thompson, and B. Lee. Data formulator: Ai-powered concept-
driven visualization authoring. IEEE TVCG, 30(1):1128–1138, 2024. doi:
10.1109/TVCG.2023.3326585 1

[53] P. Wang, L. Li, L. Chen, Z. Cai, D. Zhu, B. Lin, Y. Cao, Q. Liu, T. Liu,
and Z. Sui. Large language models are not fair evaluators, 2023. doi: 10.
48550/arXiv.2305.17926 9

[54] Q. Wang, Y. Ming, Z. Jin, Q. Shen, D. Liu, M. J. Smith, K. Veeramacha-

neni, and H. Qu. Atmseer: Increasing transparency and controllability in
automated machine learning. In CHI ’19, 12 pages, p. 1–12. ACM, New
York, 2019. doi: 10.1145/3290605.3300911 2

[55] Y. Wang, Z. Yu, Z. Zeng, L. Yang, C. Wang, H. Chen, C. Jiang, R. Xie,
J. Wang, X. Xie, W. Ye, S.-B. Zhang, and Y. Zhang. Pandalm: An
automatic evaluation benchmark for llm instruction tuning optimization.
In ICLR 2024, 2024. doi: 10.48550/arXiv.2306.05087 2

[56] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi, Q. V.
Le, and D. Zhou. Chain-of-thought prompting elicits reasoning in large
language models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, eds., Advances in Neural Information Processing
Systems, vol. 35, pp. 24824–24837. Curran Associates, Inc., 2022. doi: 10.
48550/arXiv.2201.11903 3

[57] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing dataflow graphs
of deep learning models in tensorflow. IEEE TVCG, 24(1):1–12, 2018.
doi: 10.1109/TVCG.2017.2744878 2

[58] T. Wu, H. Zhu, M. Albayrak, A. Axon, A. Bertsch, W. Deng, Z. Ding,
B. Guo, S. Gururaja, T.-S. Kuo, J. T. Liang, R. Liu, I. Mandal, J. Milbauer,
X. Ni, N. Padmanabhan, S. Ramkumar, A. Sudjianto, J. Taylor, Y.-J.
Tseng, P. Vaidos, Z. Wu, W. Wu, and C. Yang. Llms as workers in human-
computational algorithms? replicating crowdsourcing pipelines with llms,
2023. doi: 10.48550/arXiv.2307.10168 9

[59] Y. Ye, J. Hao, Y. Hou, Z. Wang, S. Xiao, Y. Luo, and W. Zeng. Gener-
ative ai for visualization: State of the art and future directions. Visual
Informatics, 8(2):43–66, 2024. doi: 10.1016/j.visinf.2024.04.003 1

[60] S.-J. Yen and Y.-S. Lee. Cluster-based under-sampling approaches for
imbalanced data distributions. Expert Systems with Applications, 36(3,
Part 1):5718–5727, 2009. doi: 10.1016/j.eswa.2008.06.108 6

[61] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang. Why
johnny can’t prompt: How non-ai experts try (and fail) to design llm
prompts. In CHI ’23, article no. 437, 21 pages. ACM, New York, 2023.
doi: 10.1145/3544548.3581388 1, 2, 3

[62] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore:
Evaluating text generation with bert, 2020. doi: 10.48550/arXiv.1904.
09675 2

[63] T. Zhang, F. Ladhak, E. Durmus, P. Liang, K. McKeown, and T. B.
Hashimoto. Benchmarking Large Language Models for News Summa-
rization. Transactions of the Association for Computational Linguistics,
12:39–57, 2024. doi: 10.1162/tacl_a_00632 4

[64] W. Zhao, M. Peyrard, F. Liu, Y. Gao, C. M. Meyer, and S. Eger. Mover-
Score: Text generation evaluating with contextualized embeddings and
earth mover distance. In K. Inui, J. Jiang, V. Ng, and X. Wan, eds.,
EMNLP-IJCNLP, pp. 563–578. ACL, Hong Kong, 2019. doi: 10.18653/
v1/D19-1053 2

[65] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Neumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, eds., Advances in
Neural Information Processing Systems, vol. 36, pp. 46595–46623. Curran
Associates, Inc., 2023. doi: 10.48550/arXiv.2306.05685 2

https://doi.org/10.1007/BFb0020217
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.48550/arXiv.2402.13482
https://doi.org/10.48550/arXiv.2402.13482
https://doi.org/10.18653/v1/2023.findings-emnlp.278
https://doi.org/10.1145/3173574.3173878
https://doi.org/10.1177/030631289019003001
https://doi.org/10.1017/s1062798700002660
https://doi.org/10.1109/TVCG.2017.2744158
https://doi.org/10.1109/TVCG.2022.3209479
https://doi.org/10.1109/TVCG.2022.3209479
https://doi.org/10.18653/v1/2023.emnlp-demo.43
https://doi.org/10.48550/arXiv.2311.04076
https://doi.org/10.1109/TVCG.2023.3326585
https://doi.org/10.1109/TVCG.2023.3326585
https://doi.org/10.48550/arXiv.2305.17926
https://doi.org/10.48550/arXiv.2305.17926
https://doi.org/10.1145/3290605.3300911
https://doi.org/10.48550/arXiv.2306.05087
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.1109/TVCG.2017.2744878
https://doi.org/10.48550/arXiv.2307.10168
https://doi.org/10.1016/j.visinf.2024.04.003
https://doi.org/10.1016/j.eswa.2008.06.108
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.48550/arXiv.1904.09675
https://doi.org/10.48550/arXiv.1904.09675
https://doi.org/10.1162/tacl_a_00632
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.48550/arXiv.2306.05685

	Introduction
	Related Works
	Text Summarization Evaluation
	Interactive Visualizations for Model Refinement
	Interactive Prompt Engineering and Design Studies

	Pilot Study
	Study design
	Findings

	Requirement Analysis
	Systematic Workflow
	Design Requirements

	Awesum: System Design
	Feature Computation
	Feature Selection
	Example Sourcing
	Recommendation
	Prompt Editor
	Prompt Comparator

	Case Study
	Practitioner review and Discussion
	Participants and Procedure
	User Feedback
	Design Implications

	Limitations and Future Work
	Conclusion

