
A Practical Solver for Scalar Data Topological Simplification

Mohamed Kissi, Mathieu Pont, Joshua A. Levine, Julien Tierny

Fig. 1: Given an acquired scalar field f of a network of arteries (a), the core structure of the blood vessels can be extracted (grey
filaments, (b)) with upward discrete integral lines, started at 2-saddles above 0.1 (isovalue representing the geometry of the vessels,
transparent isosurface). However, as shown in the persistence diagram D( f ), f contains many saddle-pairs (light purple bars),
corresponding to persistent 1-dimensional generators [38,53] (curves, colored by persistence, bottom zoom, (b)), yielding incorrect
loops in the filament structures (top zoom). In this example, standard techniques for gradient field simplification (i.e., saddle connector
reversal) cannot simplify these spurious loops while maintaining a valid gradient (b), as shown in the bottom histogram (number of
skipped reversals as a function of persistence). Our approach efficiently generates a function g which is close to f and which optimizes
saddle pair cancellation while maintaining the other features (D(g)). This enables the direct visualization and analysis of the simplified
data (c), where isosurface handles have been cut (bottom zoom) and most spurious filament loops have been simplified (top zoom).

Abstract—This paper presents a practical approach for the optimization of topological simplification, a central pre-processing step
for the analysis and visualization of scalar data. Given an input scalar field f and a set of “signal” persistence pairs to maintain,
our approaches produces an output field g that is close to f and which optimizes (i) the cancellation of “non-signal” pairs, while (ii)
preserving the “signal” pairs. In contrast to pre-existing simplification algorithms, our approach is not restricted to persistence pairs
involving extrema and can thus address a larger class of topological features, in particular saddle pairs in three-dimensional scalar data.
Our approach leverages recent generic persistence optimization frameworks and extends them with tailored accelerations specific
to the problem of topological simplification. Extensive experiments report substantial accelerations over these frameworks, thereby
making topological simplification optimization practical for real-life datasets. Our approach enables a direct visualization and analysis of
the topologically simplified data, e.g., via isosurfaces of simplified topology (fewer components and handles). We apply our approach to
the extraction of prominent filament structures in three-dimensional data. Specifically, we show that our pre-simplification of the data
leads to practical improvements over standard topological techniques for removing filament loops. We also show how our approach
can be used to repair genus defects in surface processing. Finally, we provide a C++ implementation for reproducibility purposes.

Index Terms—Topological Data Analysis, scalar data, simplification, feature extraction.

1 INTRODUCTION

As acquisition devices and computational resources are getting more
sophisticated and efficient, modern datasets are growing in size. Con-
sequently, the features of interest contained in these datasets gain in
geometric complexity, which challenge their interpretation and analysis.
This motivates the design of tools capable of robustly extracting the
structural patterns hidden in complex datasets. This task is the purpose
of Topological Data Analysis (TDA) [27, 93], which provides a fam-
ily of techniques for the generic, robust and multi-scale extraction of
structural features. It has been successfully applied in a number of data
analysis problems [50], in various applications, including turbulent com-
bustion [17, 42], material sciences [47, 82], nuclear energy [63], fluid
dynamics [55, 67], bioimaging [3, 15], quantum chemistry [12, 71, 72],
or astrophysics [80, 84]. TDA provides a variety of topological data
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abstractions, which enable the extraction of specific types of features
of interest. These abstractions include critical points [6], persistence
diagrams [8, 28, 38], merge [20, 35, 60] and contour trees [19, 36], Reeb
graphs [13, 37, 73], or Morse-Smale complexes [44, 45, 62, 78, 79]. A
central aspect of TDA is its ability to analyze data at multiple scales.
Thanks to various importance measure [21, 28], these abstractions can
be iteratively simplified, to reveal the prominent structures in a dataset.

In practice, this topological simplification can be achieved in two
fashions: either by (i) a post-process simplification of the abstractions,
or by (ii) a pre-process simplification of the data itself. While the
post-process approach (i) requires specific simplification mechanisms
tailored to the abstraction at hand [21, 41, 73], the pre-process strategy
offers a generic framework which is independent of the considered
abstraction. This generic aspect eases software design, as simplification
needs to be implemented only once [14, 85]. Pre-process simplification
has also the advantage of being reusable by multiple abstractions when
these are combined within a single data analysis pipeline (see [88] for
real-life examples). Also, pre-process simplification enables the direct
visualization of the simplified data itself (e.g. with isosurfaces). Finally,
it is also compatible with further post-process simplification if needed.
For these reasons, we focus on pre-process simplification in this work.

Several combinatorial approaches [2, 5, 10, 29, 59, 81, 86] have been
proposed for the pre-simplification of persistence pairs involving ex-



trema. However, no efficient combinatorial algorithm has been pro-
posed for the pre-simplification of saddle pairs, hence preventing a
more advanced simplification of 3D datasets. In fact, as pointed out
by Chambers et al. [24], optimal simplification (i.e. finding a scalar
field g which is δ -away from an input field f , such that g has a min-
imum number of critical points [10]) is a more general, hence more
difficult, version of the sublevel set simplification problem, itself being
NP-hard in 3D [4]. Then, there may not even exist polynomial time
algorithms for directly solving this problem. This theoretical limitation
requires a shift in strategy. A recent alternative consists in considering
persistence optimization frameworks [22, 70, 83], which optimize the
data in a best effort manner, given criteria expressed with persistence
diagrams. However, while one could leverage these frameworks for
data pre-simplification (i.e., to cancel noisy features while preserving
the features of interest, as much as possible), current frameworks can
require up to days of computation for regular grids of standard size
(Sec. 3), making them impractical for real-life datasets.

This paper addresses this issue and introduces a practical solver for
the optimization of the topological simplification of scalar data. Our
approach relies on a number of pragmatic observations from which we
derived specific accelerations, for each sub-step of the optimization
(Secs. 4.2 and 4.3). Our accelerations are simple and easy to imple-
ment, but result in significant gains in terms of runtimes. Extensive
experiments (Sec. 5.1) report ×60 accelerations on average over state-
of-the-art frameworks (with both fewer and faster iterations), thereby
making topological simplification optimization practical for real-life
datasets. We illustrate the utility of our contributions in two applica-
tions. First, our work enables the direct visualization and analysis of
topologically simplified data (Sec. 5.2). This reduces visual clutter in
isosurfaces by simplifying their topology (fewer components and han-
dles). We also investigate filament extraction in three-dimensional data,
where we show that our approach helps standard topological techniques
for removing filament loops. Second, we show how to use our approach
to repair genus defects in surface processing (Sec. 5.3).

1.1 Related work

Beyond post-process simplification schemes tailored for specific topo-
logical abstractions (e.g. for merge/contour trees [18], Reeb graphs [73]
or Morse-Smale complexes [40, 41, 43]), the literature related to pre-
process simplification can be classified into two categories.
Combinatorial methods: the first combinatorial approach for the
topological simplification of scalar data on surfaces has been proposed
by Edelsbrunner et al. [29]. This work can be seen as a generalization
of previous approaches in terrain modeling where only persistence pairs
involving minima were removed [2, 81]. Attali et al. [5] extended this
framework to generic filtrations, while Bauer et al. [10] extended it
to discrete Morse theory [31]. Tierny et al. presented a generalized
approach [86], supporting a variety of simplification criteria, which was
later extended by Lukasczyk et al. [59] with an efficient shared-memory
parallel algorithm. Such combinatorial simplification algorithms can be
used directly within optimization procedures [69], to remove noise in
the solution at each iteration. While most of the above approaches were
specifically designed for scalar data on surfaces, they can be directly
applied to domains of higher dimensions. However, they can only
simplify persistence pairs involving extrema. For instance, this means
that they cannot remove saddle pairs in three-dimensional scalar fields,
thus preventing an advanced simplification of this type of datasets.
Optimal simplification [10] of scalar data is a more general variant of
the sublevel set simplification problem, itself being NP-hard in 3D [4].
Then, a polynomial time algorithm solving this problem may not even
exist. This theoretical limitation requires a shift in strategy.
Numerical methods: in contrast to combinatorial methods, which
come with strong guarantees on the result, numerical approaches aim
at providing an approximate solution in a best effort manner. In other
words, these methods may not fully simplify three-dimensional scalar
fields up to the desired tolerance either, but they will do their best to
provide a result as close as possible to the specified simplification. As
such, this type of approaches appear as a practical alternative overcom-
ing the theoretical limitation of combinatorial approaches discussed

above. In geometric modeling, several techniques have been described
to generate smooth scalar fields on surfaces, with a minimal number of
critical points [34, 68, 75]. Bremer et al. [16] proposed a method based
on Laplacian smoothing to reconstruct a two-dimensional scalar field
corresponding to a pre-simplified Morse-Smale complex. This work
has been extended by Weinkauf et al. [90] to bi-Laplacian optimiza-
tion, with an additional enforcement of gradient continuity across the
separatrices of the Morse-Smale complex. While an extension of this
work has been documented for the 3D case [39], it only addresses the
simplification of persistence pairs involving extrema, without explicit
control on the saddle pairs. Recently, a new class of methods dedicated
to persistence optimization has been documented. Specifically, these
approaches introduce a framework for optimizing a dataset, according
to criteria expressed with persistence diagrams, with applications in var-
ious tasks including surface matching [76], point cloud processing [33],
classification [22] and more. Solomon et al. [83] presented an ap-
proach based on stochastic subsampling applied to 2D images. Carriere
et al. [22] presented an efficient and generic persistence optimization
framework, supporting a wide range of criteria and applications, exploit-
ing the convergence properties of stochastic sub-gradient descent [57]
for tame functions [26]. Nigmetov et al. [70] presented an alternative
method, drastically reducing the number of optimization iterations, but
at the cost of significantly more computationally expensive steps. As de-
scribed in Sec. 3, one can leverage these frameworks for the problem of
topological simplification, however, with impractical runtimes for three-
dimensional datasets of standard size (e.g. up to days of computation).
We address this issue in this work by proposing a practical approach for
topological simplification optimization, with substantial accelerations
over state-of-the-art frameworks for persistence optimization [22].

1.2 Contributions
This paper makes the following new contributions:

1. Algorithm: We introduce a practical solver for the optimization
of topological simplification for scalar data (Sec. 4). Our algo-
rithm is based on two accelerations, which are tailored to the
specific problem of topological simplification:

• We present a simple and practical procedure for the fast update
of the persistence diagram of the data along the optimization
(Sec. 4.2), hence preventing a full re-computation at each step.

• We describe a simple and practical procedure for the fast update
of the pair assignments between the diagram specified as target,
and the persistence diagram of the optimized data (Sec. 4.3),
also preventing a full re-computation at each step.

Overall, the combination of these accelerations makes topological
simplification optimization tractable for real-life datasets.

2. Applications: Thanks to its practical time performance, our work
sets up ready-to-use foundations for several concrete applications:

• Visualization of topologically simplified data (Sec. 5.2): we il-
lustrate the utility of our framework for the direct visualization
and analysis of topologically simplified data. Our approach
reduces visual clutter in isosurfaces by simplifying connected
components as well as, in contrast to previous work, surface
handles. We also investigate prominent filament extraction
in 3D data, where we show that our approach helps standard
topological techniques for removing filament loops.

• Surface genus repair (Sec. 5.3): we show how to use our frame-
work to repair genus defects in surface processing, with an
explicit control on the employed primitives (cutting or filling).

3. Implementation: We provide a C++ implementation of our algo-
rithm that can be used for reproducibility purposes.

2 PRELIMINARIES

This section presents the background to our work. We refer the reader
to textbooks [27, 93] for introductions to computational topology.



Fig. 2: Persistent diagrams for the lexicographic filtration of a clean (left)
and a noisy (right) terrain example. Minimum-saddle persistence pairs
are show with cyan bars in the birth-death space, while saddle-maximum
pairs are shown with purple bars. Generators with infinite persistence
are marked with an upward arrow. The persistence of each topological
feature is given by the height of its bar. Critical simplices are shown in
the data with spheres, with a radius proportional to their persistence.

2.1 Input data

The input data is provided as a piecewise-linear (PL) scalar field f :
K→R defined on a d-dimensional simplicial complexK (with d≤ 3 in
our applications). If the data is provided on a regular grid, we consider
for K the implicit Freudenthal triangulation of the grid [49, 52]. In
practice, the data values are defined on the nv vertices of K, in the
form of a data vector, noted v f ∈ Rnv . f is assumed to be injective on
the vertices (i.e., the entries of v f are all distinct), which can be easily
obtained in practice via a variant of simulation of simplicity [30].

2.2 Persistence diagrams

Persistent homology has been developed independently by several re-
search groups [7, 28, 32, 77]. Intuitively, persistent homology considers
a sweep of the data (i.e., a filtration) and estimates at each step the cor-
responding topological features (i.e., homology generators), as well as
maps to the features of the previous step. This enables the identification
of the topological features, along with their lifespan, during the sweep.

In this work we consider the lexicographic filtration (as described
in [38]), which we briefly recall here for completeness. Given the
input data vector v f ∈ Rnv , one can sort the vertices of K by increasing
data values, yielding a global vertex order. Based on this order, each
d′-simplex σ ∈K (with d′ ∈ [0,d]) can be represented by the sorted list
(in decreasing values) of the (d′+1) indices in the global vertex order
of its (d′+1) vertices. Given this simplex representation, one can now
compare two simplices σi and σ j via simple lexicographic comparison,
which induces a global lexicographic order on the simplices of K. This
order induces a nested sequence of simplicial complexes /0 = K0 ⊂
K1 ⊂ . . . ⊂ Knσ

= K (where nσ is the number of simplices of K),
which we call the lexicographic filtration of K by f .

At each step i of the filtration, one can characterize the pth homology
group of Ki, noted Hp(Ki), for instance by counting its number of
homology classes [27, 38] (i.e., the order of the group) or its number
of homology generators (i.e., the rank of the group, a.k.a. the pth Betti
number, noted βp). Intuitively, in 3D, the first three Betti numbers (β0,
β1, and β2) respectively provide the number of connected components,
of independent cycles and voids of the complexKi. For two consecutive
steps of the filtration i and j, the corresponding simplicial complexes
are nested (Ki ⊂K j). This inclusion induces homomorphims between
the homology groupsHp(Ki) andHp(K j), mapping homology classes
at step i to homology classes at step j. Intuitively, for the 0th homology
group, one can precisely map a connected component at step i to
a connected component at step j because the former is included in
the latter. In general, a p-dimensional homology class γi at step i
can be mapped to a class γ j at step j if the p-cycles of γi and γ j are
homologous inK j [27,38]. Then, one can precisely track the homology
generators between consecutive steps of the filtration. In particular,
a persistent generator is born at step j (with j = i+ 1) if it is not
the image of any generator by the homomorphims mapping Hp(Ki)
to Hp(K j). Symmetrically, a persistent generator dies at step j if it
merges with another, older homology class, which was born before
it (this is sometimes called the Elder rule [27]). Each p-dimensional

Fig. 3: The Wasserstein distanceW2 between D( f ) (top) and D(g) (bot-
tom) is computed by assignment optimization (Eq. 1) in the 2D birth-death
space (right). The optimal assignment φ∗ (arrows) encodes a minimum
cost transformation of D( f ) into D(g), which displaces persistence pairs
in the birth-death space or cancel them by sending them to the diagonal.

persistent generator is associated to a persistence pair (σb,σd), where
σb is the p-simplex introduced at the birth of the generator (at step
b) and where σd is the (p+ 1)-simplex introduced at its death (at
step d). A p-simplex which is involved in the birth or the death of a
generator is called a critical simplex and, in 3D, we call it a minimum,
a 1-saddle, a 2-saddle, or a maximum if p equals 0, 1, 2, or 3 [38, 78],
respectively. The persistence of the pair (σb,σd), noted p(σb,σd),
is given by p(σb,σd) = v f (vd)− v f (vb), where vb and vd (the birth
and death vertices of the pair) are the vertices with highest global
vertex order of σb and σd . We call zero-persistence pairs the pairs with
vb = vd . Some p-simplices of K may be involved in no persistence pair.
These mark the birth of persistent generators with infinite persistence
(i.e., which never die during the filtration) and they characterize the
homology groups of the final step of the filtration (Knσ

=K).
The set of persistence pairs induced by the lexicographic filtration

of K by f can be organized in a concise representation called the
persistence diagram (Fig. 2), notedD( f ), which embeds each non zero-
persistence pair (σb,σd) as a point in a 2D space (called the birth-death
space), at coordinates

(
v f (vb),v f (vd)

)
. By convention, generators

with infinite persistence are reported at coordinates
(
v f (vb),v f (vmax)

)
,

where vmax is the last vertex in the global vertex order.

2.3 Wasserstein distance between persistence diagrams
Two diagramsD( f ) andD(g) can be reliably compared in practice with
the notion of Wasserstein distance. For this, the two diagramsD( f ) and
D(g) need to undergo an augmentation pre-processing phase. This step
ensures that the two diagrams admit the same number of points, which
will facilitate their comparison. Given a point p = (pb, pd) ∈D( f ), we
note ∆(p) its diagonal projection: ∆(p) =

( 1
2 (pb + pd),

1
2 (pb + pd)

)
.

Let ∆ f and ∆g be the sets of the diagonal projections of the points of
D( f ) and D(g) respectively. Then, D( f ) and D(g) are augmented by
appending to them the set of diagonal points ∆g and ∆ f respectively.
After this augmentation, we have |D( f )|= |D(g)|.

Then, given two augmented persistence diagrams D( f ) and D(g),
the Lq Wasserstein distance between them is defined as:

Wq
(
D( f ),D(g)

)
= min

φ∈Φ

(
∑

p∈D( f )
c
(

p,φ(p)
)q
) 1

q
, (1)

where Φ is the set of all bijective maps between the augmented diagrams
D( f ) and D(g), which specifically map points of finite (respectively
infinite) r-dimensional persistent generators to points of finite (respec-
tively infinite) r-dimensional persistent generators. For this distance,
the cost c(p, p′) is set to zero when both p and p′ lie on the diagonal
(i.e., matching dummy features has no impact on the distance). Other-
wise, it is set to the Euclidean distance in birth-death space ||p− p′||2.

The Wasserstein distance induces an optimal assignment φ∗ from
D( f ) toD(g) (Fig. 3), which depicts how to minimally transformD( f )
into D(g) (given the considered cost). This transformation may induce



Fig. 4: Optimizing the simplification of an input scalar field f = f0 into a field g = f f inal for the removal of a user selected saddle-maximum pair (cyan).
At each iteration ( j < j′ < j′′), given the point pi ∈D( f j) to cancel, the data values of its birth and death vertices vib and vid (cyan spheres in the data)
are modified to project pi to the diagonal. In this example, this results in a scalar field g which is close to f , with the prescribed topology.

point displacements in the birth-death space, as well as projections to
the diagonal (encoding the cancellation of a persistence pair).

2.4 Persistence optimization
Several frameworks have been introduced for persistence optimization
(Sec. 1.1). We review a recent, efficient, and generic framework [22].

Given a scalar data vector v f ∈ Rnv (Sec. 2.1), the purpose of per-
sistence optimization is to modify v f such that its persistence diagram
D( f ) minimizes a certain loss L, specific to the considered problem.
Then the solution space of the optimization problem is Rnv .

Let F : Rnv → Rnσ be the filtration map, which maps a data vector
v f from the solution space Rnv to a filtration represented as a vector
F(v f ) ∈ Rnσ , where the ith entry contains the index of the ith simplex
σi of K in the global lexicographic order (Sec. 2.2). For convenience,
we maintain a backward filtration map F+ : Rnσ →Rnσ , which maps a
filtration vector F(v f ) to a vector in Rnσ , whose ith entry contains the
index of the highest vertex (in global vertex order) of the ith simplex in
the global lexicographic order.

Given a persistence diagram D( f ), the critical simplex persistence
order can be introduced as follows. First, the points of D( f ) are sorted
by increasing birth and then, in case of birth ties, by increasing death.
Let us call this order the diagram order. Then the set of persistence
pairs can also be sorted according to the diagram order, by interleaving
the birth and death simplices corresponding to each point. This results
in an ordering of the critical simplices, called the critical simplex
persistence order, where the (2i)th and (2i+ 1)th entries correspond
respectively to the birth and death simplices of the ith point pi in the
diagram order. Critical simplices which are not involved in a persistence
pair (i.e., corresponding to homology classes of infinite persistence) are
appended to this ordering, in increasing order of birth values.

Let us now consider the persistence map P : Rnσ → Rnσ , which
maps a filtration vectorF(v f ) to a persistence imageP

(
F(v f )

)
, whose

ith entry contains the critical simplex persistence order (defined above)
for the ith simplex in the global lexicographic order. For convenience,
the entries corresponding to filtration indices which do not involve
critical simplices are set to −1.

Now, to evaluate the relevance of a given diagram D( f ) for the
considered optimization problem, one needs to define a loss term. Let
E :Rnσ →R be an energy function, which evaluates the diagram energy
given its critical simplex persistence order. Then, given an input data
vector v f , the associated loss L : Rnv → R is given by:

L(v f ) = E ◦P ◦F(v f ).

Since distinct functions can admit the same persistence diagram, the
global minimizer of the above loss may not be unique. However, given
the search space (Rnv ), the search for a global minimizer is still not
tractable in practice and local minimizers will be searched instead.

If E is locally Lipschitz and a definable function of persistence, then
the composition E ◦P ◦F is also definable and locally Lipschitz [22].
This implies that the generic loss L is differentiable almost everywhere
and admits a well defined sub-differential. Then, a stochastic sub-
gradient descent algorithm [57] converges almost surely to a critical

point of L [26]. In practice, this means that the loss can be decreased
by displacing each diagram point pi in the diagram D( f ) according to
the sub-gradient. Assuming a constant global lexicographic order, this
displacement can be back-propagated into modifications in data values
in the vector v f , by identifying the vertices vib and vid corresponding to
the birth and death (Sec. 2.2) of the ith point in the diagram order:

vib = F+
(
P−1(2i)

)
vid = F+

(
P−1(2i+1)

)
,

(2)

and by updating their data values v f (vib) and v f (vid ) accordingly.

3 APPROACH

This section describes our overall approach for the optimization of the
topological simplification of scalar data.

Given the diagram D( f ) of the input field f , we call a signal pair a
persistence pair of D( f ) which is selected by the user for preservation.
Symmetrically, we call a non-signal pair a persistence pair of D( f )
which is selected by the user for cancellation. Note that this distinction
between signal and non-signal pairs is application dependent. In prac-
tice, the user can be aided by several criteria, such as persistence [28],
geometric measures [21], etc. Then, topological simplification can be
expressed as an optimization problem, with the following objectives:

1. Penalizing the persistence of the non-signal pairs;

2. Enforcing the precise preservation of the signal pairs.
In short, we wish to penalize the undesired features (objective 1),

and, at the same time, enforce the precise preservation of the features of
the input which are deemed relevant (objective 2). The latter objective is
important in practice to preserve the accuracy of the features of interest.
As later discussed in Sec. 4.3 (and illustrated in Fig. 6), non-signal
and signal pairs do interact during the optimization, thereby perturbing
signal pairs. In our experiments (Sec. 5), at each optimization iteration,
11% of the signal pairs are perturbed by non-signal pairs (on average,
and up to 32%). In certain configurations, this can drastically alter the
persistence of signal pairs. Hence, to address this issue, the precise
preservation of the signal pairs should be explicitly constrained.

In the following, we formalize this specific optimization problem
based on the generic framework described in Sec. 2.4. Our novel solver
(for efficiently solving it) is presented in Sec. 4.

Let DT be the target diagram. It can be obtained by copying the
diagram D( f ) of the input field f , and by removing the non-signal
pairs. DT encodes the two objectives of our problem: it describes the
constraints for the cancellation of the noisy features of f (objective 1)
as well as the lock constraints for its features of interest (objective 2).

In general, a perfect reconstruction (i.e., a scalar field g, close to f ,
such that D(g) =DT ) may not exist in 3D (deciding on its existence is
NP-hard [4]). Thus, a practical strategy consists in optimizing the scalar
field f such that its diagram D( f ) gets as close as possible to DT (and
relaxing || f −g||∞). For this, we consider the following simplification
energy E (to be used within the generic loss L, introduced in Sec. 2.4):

E
(
D( f )

)
=W2

(
D( f ),DT

)2
. (3)



Algorithm 1 Baseline optimization approach for topological simplification.

Input: Input scalar field f = f0 :K→ R.
Input: Target diagram DT .
Input: Stopping conditions s ∈ [0,1], jmax ∈ N.
Output: Topologically simplified scalar field g = f f inal :K→ R.

1: j← 0
2: D( f j)← PersistenceDiagramComputation(v f j )

3:
(
L(v f j ),φ

∗
j

)
←WassersteinDistanceComputation

(
D( f j),DT

)
4: do
5: j← j+1
6: v f j ← GradientDescentStep

(
φ ∗j−1,v f j−1

)
7: D( f j)← PersistenceDiagramComputation(v f j )

8:
(
L(v f j ),φ

∗
j

)
←WassersteinDistanceComputation

(
D( f j),DT

)
9: while L

(
v f j

)
> sL

(
v f0

)
and j < jmax

Since the Wasserstein distance is locally Lipschitz and a definable
function of persistence [22], the optimization framework of Sec. 2.4
can be used to optimize L = E ◦P ◦F with guaranteed convergence.

Specifically, at each iteration, given the optimal assignment φ∗ in-
duced by the Wasserstein distance between D( f ) and DT (Sec. 2.3),
one can displace each point pi in D( f ) towards its individual target
φ∗(pi) by adjusting accordingly the corresponding scalar values v f (vib)
and v f (vid ) (Eq. 2). In practice, the generic optimization framework re-
viewed in Sec. 2.4 computes this displacement (given φ∗) via automatic
differentiation [22] and by using Adam [57] for gradient descent.

However, depending on the employed step size, a step of gradient
descent on v f may change the initial filtration order (Sec. 2.2). Thus,
after a step of gradient descent, the persistence diagram of the optimized
data needs to be recomputed and, thus, so does its optimal assignment
φ∗ to the target DT . This procedure is then iterated, until the loss at
the current iteration is lower than a user-specified fraction s of the loss
at the first iteration (or until a maximum number jmax of iterations).
We call this overall procedure the baseline optimization for topological
simplification. It is summarized in Alg. 1 and illustrated in Fig. 4.

As shown in Alg. 1, each iteration j of the optimization involves a
step of gradient descent, the computation of the diagram D( f j) and the
computation of its Wasserstein distance to DT . While the first of these
three steps has linear time complexity, the other two steps are notori-
ously computationally expensive and both have cubic theoretical worst
case time complexity, O(n3

σ ). In practice, practical implementations
for persistence diagram computation tend to exhibit a quadratic behav-
ior [8, 9, 38]. Moreover, the exact optimal assignment algorithm [66]
can be approximated in practice to improve runtimes, for instance with
Auction-based [11, 56, 89] or sliced approximations [23].

However, even when using the above practical implementations for
persistence computation and assignment optimization, the baseline
optimization approach for topological simplification has impractical
runtimes for datasets of standard size. Specifically, for the simpli-
fications considered in our experiments (Sec. 5), this approach can
require up to days of computations per dataset. When it completes
within 24 hours, the computation spends 20% of the time in persistence
computation and 75% in assignment optimization.

4 ALGORITHM

This section describes our algorithm for topological simplification
optimization. It is based on a number of practical accelerations of the
baseline optimization (Alg. 1), which are particularly relevant for the
problem of topological simplification.

4.1 Direct gradient descent
Instead of relying on automatic differentiation and the Adam optimizer
[57] as done in the generic framework reviewed in Sec. 2.4, similar
to [76], we can derive the analytic expression of the gradient of our
energy on a per-iteration basis (Eq. 3) and perform at each iteration
a direct step of gradient descent, in order to improve performance.
Specifically, at the iteration j (Alg. 1), given the current persistence
diagram D( f j), if the assignments between diagonal points are ignored
(these have zero cost, Sec. 2.3), Eq. 3 can be re-written as:

Fig. 5: Updated vertices (dark purple vertices, center insets) along the
topological simplification optimization of a noisy terrain (non-signal pairs,
to simplify, are shown in cyan). In this example, only 20% of the vertices
are updated per iteration on average. The discrete gradient (at the core
of a recent, fast persistence computation algorithm [38]) only needs to be
recomputed for these, yielding a x2 speedup for persistence computation.

E
(
D( f j)

)
= min

φ∈Φ
∑

pi∈D( f j)

||pi−φ(pi)||22.

As the optimal assignment φ∗j (i.e., minimizing the energy for a fixed
D( f j)) is constant at the iteration j, the energy can be re-written as:

E
(
D( f j)

)
= ∑

pi∈D( f j)

(
pib −φ

∗
j (pi)b

)2
+
(

pid −φ
∗
j (pi)d

)2
.

Then, given Eq. 2, for the iteration j, the overall optimization loss
L(v f j ) can be expressed as a function of the input data vector v f j :

L(v f j ) = ∑
pi∈D( f j)

(
v f j (vib)−φ

∗
j (pi)b

)2
+
(
v f j (vid )−φ

∗
j (pi)d

)2
.

Then, for the iteration j, given the constant assignment φ∗j , this loss is
convex with v f j (in addition to being locally Lipschitz) and gradient
descent can be considered. Specifically, let ∇vib ∈ Rnv be a vector with
zero entries, except for the ibth entry, set to 1. Let ∇vid ∈ Rnv be the
vector constructed similarly for vid . Then, by the chain rule, we have:

∇L(v f j ) = ∑
pi∈D( f j)

(
2
(
v f j (vib)−φ

∗
j (pi)b

)
∇vib

+ 2
(
v f j (vid )−φ

∗
j (pi)d

)
∇vid

)
.

We now observe that the gradient can be split into two terms, a birth
gradient (noted ∇L(v f j )b) and a death gradient (noted ∇L(v f j )d):

∇L(v f j )b = ∑pi∈D( f j) 2
(
v f j (vib)−φ∗j (pi)b

)
∇vib

∇L(v f j )d = ∑pi∈D( f j) 2
(
v f j (vid )−φ∗j (pi)d

)
∇vid .

(4)

Then, given the above gradient expressions, a step of gradient de-
scent is obtained by:

v f j+1 = v f j −
(
(αb∇L(v f j )b +αd∇L(v f j )d

)
,

where αb,αd ∈R are the gradient step sizes for the birth and death gra-
dients respectively. Such individual step sizes enable an explicit control
over the evolution of the persistence pairs to cancel (see Sec. 5.3).

4.2 Fast persistence update
As described in Sec. 3, each optimization iteration j involves the com-
putation of the persistence diagram of the data vector v f j , which is
computationally expensive (20% of the computation time on average).
Subsequently, for each persistence pair pi, the data values of its vertices
vib and vid will be updated given the optimal assignment φ∗j .

A key observation can be leveraged to improve the performance of
the persistence computation stage. Specifically, the updated data vector
v f j+1 only contains updated data values for the subset of the vertices of
K which are the birth and death vertices vib and vid of a persistence pair
pi. Then, only a small fraction of the vertices are updated from one iter-
ation to the next, as shown in Fig. 5. In practice, for the simplifications
considered in our experiments (Sec. 5), 90% of the vertices of K do
not change their data values between consecutive iterations (on average
over our datasets, with the baseline optimization). This indicates that a
procedure capable of quickly updating the persistence diagramD( f j+1)
based on D( f j) has the potential to improve performance in practice.



Fig. 6: Interactions between non-signal and signal pairs during the
optimization. A multi-saddle vertex can be involved in both a non-signal
pair p (cyan bar in D( f )) and a signal pair p′ (vertically aligned purple
bar in D( f )). At iteration j, the update of the non-signal pair p unfolds
the multi-saddle into multiple simple saddles of distinct values, effectively
perturbing the birth of the signal pair p′ and making it non-still. In real-life
data, especially in 3D, such configurations occur often, and cascade. In
our experiments (Sec. 5), at each iteration, 11% of the signal pairs are
perturbed this way by non-signal pairs (on average, and up to 32%). This
is addressed by our loss (Sec. 3) which enforces signal pair preservation.

Several approaches focus on updating a persistence diagram based on
a previous estimation [25, 61], with a time complexity that is linear for
each vertex order transposition between the two scalar fields. However,
this number of transpositions can be extremely large in practice.

Instead, we derive a simple procedure based on recent work for
computing persistent homology with Discrete Morse Theory (DMT)
[31, 38, 78], which we briefly review here for completeness. Specifi-
cally, the Discrete Morse Sandwich (DMS) approach [38] revisits the
seminal algorithm PairSimplices [28] within the DMT setting, with
specific accelerations for volume datasets. This algorithm is based on
two main steps. First, a discrete gradient field is computed, for the fast
identification of zero-persistence pairs. Second, the remaining persis-
tence pairs are computed by restricting the algorithm PairSimplices
to the critical simplices (with specific accelerations for the persistent
homology groups of dimension 0 and d−1).

The first key practical insight about this algorithm is that its first step,
discrete gradient computation, is documented to represent in practice,
in 3D, 66% of the persistence computation time on average [38] (in
sequential mode). This indicates that, if one could quickly update the
discrete gradient between consecutive iterations, the overall persistence
computation step could be accelerated by up to a factor of 3 in practice.

The second key practical insight about this algorithm is that the dis-
crete gradient computation is a completely local operation, specifically
to the lower star of each vertex v [78] (i.e., the co-faces of v containing
no higher vertex than v in the global vertex order).

Thus, we leverage the above two observations to expedite the com-
putation of the diagram D( f j), based on the diagram D( f j−1). Specifi-
cally, we mark as updated all the vertices of K for which the data value
is updated by gradient descent at iteration j−1 (Sec. 4.1). Then, the
discrete gradient field at step j is copied from that at step j−1 and the
local discrete gradient computation procedure [78] is only re-executed
for these vertices for which the lower star may have changed from step
j− 1 to step j, i.e. the vertices marked as updated or which contain
updated vertices in their star. This localized update guarantees the
computation of the correct discrete gradient field at step j, with a very
small number of local re-computations. Next, the second step of the
DMS algorithm [38] (i.e., the computation of the persistence pairs from
the critical simplices) is re-executed as-is.

4.3 Fast assignment update
As described in Sec. 3, each optimization iteration j involves the com-
putation of the optimal assignment φ∗j from the current diagram D( f j)

to the target DT , which is computationally expensive.
However, for the problem of simplification, a key practical obser-

vation can be leveraged to accelerate this assignment computation. In
practice, an important fraction of the pairs ofD( f j) to optimize (among
signal and non-signal pairs) may only move slightly in the domain from
one iteration to the next (as illustrated in Fig. 6), and some do not move
at all. For these pairs which do not move at step j, the assignment can
be re-used from the step j−1, hence reducing the size of the assignment
problem (Sec. 2.3), and hence reducing its practical runtime.

Given two persistence diagrams D( f j) and D( f j−1), we call a
still persistence pair a pair of points (pi, p′i) with pi ∈ D( f j) and
p′i ∈ D( f j−1) such that vib = vi′b

and vid = vi′d
. In other words, a still

persistence pair is a pair which does not change its birth and death
vertices from one optimization iteration to the next. In practice, for
the simplifications considered in our experiments (Sec. 5), 84% of the
persistence pairs of D( f j) are still (on average over the iterations and
our test datasets, Sec. 5). This indicates that a substantial speedup could
be obtained by expediting the assignment computation for still pairs.

Let S be the set of still pairs between the iteration j and j−1. Then,
for each pair (pi, p′i) ∈ S , we set φ∗j (pi)← φ∗j−1(p′i). Concretely, we
re-use at step j the assignment at step j−1 for all the still pairs.

Next, let D( f j) be the reduced diagram at step j, i.e., the subset
of D( f j) which does not contain still pairs: D( f j) = D( f j)−{pi ∈
D( f j),(pi, p′i) ∈ S}. Similarly, let DT j be the reduced target at step j,
i.e., the subset of DT which has not been assigned to still pairs: DT j =

DT −{p′′i ∈DT , p′′i = φ∗j (pi),(pi, p′i)∈ S}. Then, we finally complete
the assignment between D( f j) and DT by computing the Wasserstein
distance between D( f j) and DT j, as documented in Sec. 2.3.

Note that, in the special case where the reduced target DT j is empty
(i.e., all signal pairs are still), the reduced diagram D( f j) only contains
non-signal pairs. Then, the optimal assignment can be readily obtained
(without any assignment optimization) by simply assigning each point
pi in D( f j) to its diagonal projection ∆(pi). However, from our ex-
perience, such a perfect scenario never occurs on real-life data, at the
notable exception of the very first iteration (before the data values are
actually modified by the solver). For the following iterations, many
signal pairs are not still in practice. Fig. 6 illustrates this with a simple
2D example involving a multi-saddle vertex. However, in real-life data,
such configurations occur very often, and cascade. Also, these con-
figurations get significantly more challenging in 3D. For instance, the
birth and death vertices of a given signal pair can both be multi-saddles,
themselves possibly involved with non-signal pairs to update (hence
yielding perturbations in the signal pair). In certain configurations, this
can drastically alter the persistence of the signal pairs affected by such
perturbations. This is addressed by our loss (Sec. 3) which enforces the
preservation of the signal pairs via assignment optimization.

5 RESULTS

This section presents experimental results obtained on a computer with
two Xeon CPUs (3.0 GHz, 2x8 cores, 64GB of RAM). We imple-
mented our algorithm (Sec. 4) in C++ (with OpenMP) as a module for
TTK [14, 85]. We implemented the baseline optimization approach
(Sec. 3) by porting the original implementation by Carriere et al. [22]
from TensorFlow/Gudhi [1, 64] to PyTorch/TTK [74] and by applying
it to the loss described in Sec. 3. We chose this approach as a base-
line, since its implementation is simple and publicly available, and
since it provides performances comparable to alternatives [70]. In our
implementations, we use the DMS algorithm [38] for persistence com-
putation (as it is reported to provide the best practical performance for
scalar data) and the Auction algorithm [11, 56] for the core assignment
optimization, with a relative precision of 0.01, as recommended in the
literature [56]. Persistence computation with DMS [38] is the only step
of our approach which leverages parallelism (see [38] for a detailed
performance analysis). Experiments were performed on a selection of
10 (simulated and acquired) 2D and 3D datasets extracted from public
repositories [58, 87], with an emphasis on 3D datasets containing large
filament structures (and thus possibly, many persistent saddle pairs).
The 3D datasets were resampled to a common resolution (2563), to
better observe runtime variations based on the input topological com-
plexity. Moreover, for each dataset, the data values were normalized to
the interval [0,1], to facilitate parameter tuning across distinct datasets.

Our algorithm is subject to two meta-parameters: the gradient step
sizes αb and αd . To adjust them, we selected as default values the
ones which minimized the runtime for our test dataset with the largest
diagram. This resulted in αb = αd = 0.5 (which coincides, given a



Table 1: Time performance comparison between the baseline optimiza-
tion approach (Sec. 3) and our solver (Sec. 4), for a basic simplification
(non-signal pairs: input pairs less persistent than 1% of the function
range). The column N.S.S.P. reports the average percentage of non-still
signal pairs for our solver. The stopping condition is set to s = 0.01.

Dataset d |D( f )| |DT | Baseline (Sec. 3) Our solver (Sec. 4)
#It. Time/It (s.) Time (s.) N.S.S.P. #It. Time/It (s.) Time (s.) Speedup

Cells 2 7,676 2,635 89 0.58 52 0.07% 10 0.20 2 26
Ocean Vortices 2 12,069 2,781 87 0.61 53 8.02% 12 0.25 3 18
Aneurysm 3 38,490 24,725 80 29.89 2,391 3.70% 8 11.63 93 26
Bonsai 3 168,489 55,464 67 56.73 3,801 3.90% 10 13.50 135 28
Foot 3 754,965 474,271 60 914.47 54,868 11.28% 4 104.25 417 132
Neocortical Layer Axon 3 765,406 483,791 89 735.36 65,447 32.04% 8 263.38 2,107 31
Dark Sky 3 1,140,653 774,793 NA NA > 24h 9.08% 6 122.00 732 > 118
Backpack 3 1,331,362 84,402 66 305.58 20,168 21.46% 9 62.22 560 36
Head Aneurysm 3 1,345,168 234,672 NA NA > 24h 6.68% 5 83.80 419 > 206
Chameleon 3 3,641,961 32,578 55 210.51 11,578 18.22% 8 74.75 598 19

persistence pair to cancel, to a displacement of its birth and death ver-
tices halfway towards the other, in terms of function range). For the
baseline optimization approach (Sec. 3), we set the initial learning rate
of Adam [57] to the largest value which still enabled practical conver-
gence for all our datasets (specifically, 10−4). For both approaches, we
set the maximum number of iterations jmax to 1,000 (however, it has
never been reached in our performance experiments).

5.1 Quantitative performance
The time complexity of each iteration of the baseline optimization is
cubic in the worst case, but quadratic in practice (Sec. 3). As discussed
in Sec. 4, our approach has the same worst case complexity, but behaves
more efficiently in practice thanks to our accelerations.

Tab. 1 provides an overall comparison between the baseline opti-
mization (Sec. 3) and our solver (Sec. 4). Specifically, it compares
both approaches in terms of runtime, for a basic simplification scenario:
non-signal pairs are identified as the input pairs with a persistence
smaller than 1% of the function range (see Appendix A for an aggres-
sive simplification scenario). For both approaches, we set the stopping
criterion s to 0.01, such that both methods reach a similar residual
loss at termination (and hence produce results of comparable quality).
This table shows that for a basic simplification scenario, our approach
produces results within minutes (at most 35). In contrast, the baseline
approach does not produce a result after 24 hours of computation for
the largest examples. Otherwise, it still exceeds hours of computation
for diagrams of modest size. Overall, our approach results in an average
×64 speedup. This acceleration can be explained by several factors.
First, the direct gradient descent (Sec. 4.1) requires fewer iterations
than the baseline approach (we discuss this further in the next para-
graph, presenting Tab. 3). Second, our approach also results in faster
iterations, given the accelerations presented in Sec. 4.

In practice, the overall runtime for our solver is a function of the
size of the input and target diagrams (large diagrams lead to large
assignment problems). The size of the topological features in the
geometric domain also plays a role (larger features will require more
iterations). Finally, the number of still signal pairs also plays a role
given our fast assignment update procedure (Sec. 4.3, a large number
of still signal pairs leads to faster assignments). For instance, the total
number of pairs (input plus target) for the Neocortical Layer Axon
dataset is about ×20 larger than that of the Aneursym dataset, and the
ratio between their respective runtime is also about 20. Moreover, the
Foot and Neocortical Layer Axon datasets have comparable overall sizes.
However, the latter dataset results in a computation time ×5 larger.
This can be partly explained by the fact that the topological features are
larger in this dataset, yielding twice more iterations (hence explaining a
×2 slowdown). Moreover, the per-iteration runtime is also×2.5 slower
(explaining the overall ×5 slowdown), due the higher percentage of
non-still signal pairs, increasing the size of the assignment problem.

The runtime gains provided by our individual accelerations are pre-
sented in Tab. 2. Specifically, our procedure for fast Persistence update
(Sec. 4.2) can save up to 41.4% of overall computation time, and
6.6% on average. Our procedure for fast assignment update (Sec. 4.3)
provides the most substantial gains, saving up to 97% of the overall
computation time for the largest target diagram, and 76% on average
(see Appendix A for a discussion regarding aggressive simplifications).

Tab. 3 compares the quality of the output obtained with the baseline
optimization (Sec. 3) and our algorithm (Sec. 4), for the simplification
parameters used in Tab. 1. The quality is estimated based on the value

Table 2: Individual gains (in percentage of runtime) for each of our
accelerations for the topological simplification parameters used in Tab. 1.

Dataset d |D( f )| |DT | Persistence Update Assignment Update
(Sec. 4.2) (Sec. 4.3)

Cell 2 7,676 2,635 5.6 79.2
Ocean Vortices 2 12,069 2,781 −0.4 79.8
Aneurysm 3 38,490 24,725 41.4 24.8
Bonsai 3 168,489 55,464 12.1 80.6
Foot 3 754,965 474,271 0.2 90.9
Neocortical Layer Axon 3 765,406 483,791 0.0 74.6
Dark Sky 3 1,140,653 774,793 3.2 96.7
Backpack 3 1,331,362 84,402 1.1 74.5
Head Aneurysm 3 1,345,168 234,672 1.3 93.4
Chameleon 3 3,641,961 32,578 1.5 61.3

Table 3: Quality comparison between the baseline optimization approach
(Sec. 3) and our solver (Sec. 4) for the parameters used in Tab. 1.

Dataset d Baseline (Sec. 3) Our solver (Sec. 4)
L(vg) || f −g||2 || f −g||∞ L(vg) || f −g||2 || f −g||∞

Cells 2 0.0003 0.2939 0.0054 0.0003 0.2996 0.0070
Ocean Vortices 2 0.0006 0.3710 0.0055 0.0005 0.3769 0.0074
Aneurysm 3 0.0007 0.3481 0.0063 0.0006 0.3174 0.0117
Bonsai 3 0.0064 1.0243 0.0060 0.0053 1.0541 0.0117
Foot 3 0.0326 2.0526 0.0058 0.0297 2.0483 0.0127
Neocortical Layer Axon 3 0.0271 2.0876 0.0085 0.0279 2.1435 0.0154
Dark Sky 3 NA NA NA 0.0166 1.8617 0.0148
Backpack 3 0.0339 2.4438 0.0070 0.0312 2.1991 0.0159
Head Aneurysm 3 NA NA NA 0.0750 3.7571 0.0130
Chameleon 3 0.1679 5.1264 0.0055 0.1736 4.7773 0.0143

of the loss at termination (L(vg)), which assesses the quality of the
topological simplification. To estimate the proximity of the solution g
to the input f , we also evaluate the distances || f −g||2 (giving a global
error for the entire dataset) and || f −g||∞ (giving a pointwise worst case
error). We refer the reader to Appendix B for complementary quality
statistics. Overall, Tab. 3 shows that our approach provides comparable
losses to the baseline approach (sometimes marginally better). In terms
of data fitting, our approach also provides comparable global distances
|| f −g||2 (sometimes marginally better). For the pointwise worst case
error (|| f − g||∞), our approach can result in degraded values (by a
factor 2). This can be explained by the fact that, when tuning the
parameters of our approach, we optimized the gradient step size to
minimize running time, hence possibly triggering in practice bigger
pointwise shifts in data values. In contrast, the baseline approach
uses the Adam [57] algorithm, which optimizes step sizes along the
iterations, possibly triggering milder pointwise shifts in data values. In
principle, the || f −g||∞ distance could be improved for our solver by
considering smaller step sizes, but at the expense of more iterations.

5.2 Analyzing topologically simplified data
Our approach enables the direct visualization and analysis of topolog-
ically simplified data. This is illustrated in Fig. 1, which shows the
processing of an acquired dataset (“Aneurysm”) representing a network
of arteries. As documented in the literature [51, 65], this network ex-
hibits a typical tree-like structure, whose accurate geometric extraction
is relevant for medical analysis. The filament structure of the arteries
can be simply extracted by considering the discrete integral lines [38]
(a.k.a. v-paths [31]) which connect 2-saddles to maxima and which
have a minimum function value above 0.1 (scalar fields are normalized).
This value 0.1 generates an isosurface (transparent surfaces, Fig. 1)
which accurately captures the geometry of the blood vessels. Hence,
selecting the discrete integral lines above that threshold guarantees the
extraction of the filament structures within the vessels.

As shown in Fig. 1, the diagram D( f ) contains several saddle pairs,
corresponding to persistent 1-dimensional generators [38, 53] (curves
colored by persistence in the inset zooms), which yields incorrect
loops in the filament structure (which is supposed to have a tree-like
structure [51]). To remove loops in networks of discrete integral lines,
an established topological technique, relying on standard discrete Morse
theory [31], consists in reversing the discrete gradient [40] along saddle
connectors. We recap this procedure here for completeness. Given the
persistence diagram D( f ), we process its non-signal saddle pairs in
increasing order of persistence. For each saddle pair (σb,σd), its saddle
connector is constructed by following the discrete gradient of f from
σd down to σb. Next, the pair of critical simplices (σb,σd) is cancelled,
in the discrete sense, by simply reversing the discrete gradient along
its saddle connector [31] (i.e., each discrete vector is reversed to point
to the preceding co-face). Such a reversal is marked as valid if it does



Fig. 7: Topological simplification optimization for a challenging dataset (“Dark Sky” : dark matter density in a cosmology simulation, (a), signal pairs:
pairs with a persistence larger than 0.25). The geometry of the cosmic web [80,84] is captured (b) by an isosurface (at isovalue 0.4) and its core
filament structure is extracted by the upward discrete integral lines, started at 2-saddles above 0.4. The latter structure contains many small-scale
loops as many, persistent saddle connector reversals could not be performed (bottom left histogram). The local minimum g of the simplification
energy (Eq. 3) found by our solver (c) has a number of non-signal pairs reduced by 92%. This results in a less cluttered visualization, as the cosmic
web has a less complicated topology (noisy connected components are removed and small scale handles are cut, inset zooms). This also induces
fewer skips of persistent saddle connector reversals (bottom right histogram), hence simplifying more loops and revealing the main filament structure.

Fig. 8: Handle removal on a torus example. (a) The input surface S (left)
is used to compute a 3D signed distance field f (right, color map). f
contains a persistent saddle pair (large spheres) encoding the handle
of the torus and many low-persistence minimum-saddle pairs (smaller
spheres, radius scaled by persistence) which are artifacts (located on
the medial axis of S) of the sampling of the distance field (which has
discontinuous derivatives). The handle can be removed in the output
surface S′ (b,c) by considering the zero level set of a simplified field g
obtained with our approach (in this example, only the persistent generator
of f with infinite persistence has been maintained). The handle can be
removed either by cutting (b) (by only using the birth gradient, Eq. 4) or
by filling (c) (by only using the death gradient, Eq. 4).

not create any cycle in the discrete gradient field. The validity of a
reversal is important since invalid reversals result in discrete vector
fields which no longer describe valid scalar fields, and from which
the subsequent extraction of integral lines can generate further loops
(which we precisely aim to remove). The cancellation of a saddle pair
(σb,σd) is skipped if the reversal of its saddle connector is not valid, or
if its saddle connector does not exist. The latter case occurs for instance
for nested saddle pairs, when an invalid reversal of a small persistence
pair prevents the subsequent reversal of a larger one. Finally, when all
the non-signal saddle pairs have been processed, the simplified filament
structures are simply obtained from the simplified discrete gradient, by
initiating integral lines from 2-saddles up to maxima.

However, in the example of Fig. 1, this saddle connector reversal pro-
cedure fails at simplifying the spurious loops in the filament structures,
while maintaining a valid discrete gradient (Fig. 1(b)). As discussed
in the literature [40], integral line reversal is indeed not guaranteed to
completely simplify saddle pairs (v-path co-location [54] as well as
specific cancellation orderings [46, 48] can challenge reversals, the lat-
ter issue being a manifestation of the NP-hardness of the problem [4]).
This is evaluated in the bottom left histogram, which reports the number
of skipped saddle connector reversals as a function of the persistence
of the corresponding pair. Specifically, this histogram shows that the
reversal of several high-persistence saddle pairs could not be performed,

hence the presence of large loops in the extracted filament structures.
Our approach can be used to efficiently generate a function g which

is close to the input f and from which the removal of saddle pairs
has been optimized, while maintaining intact the rest of the features
(see the resulting diagram D(g), Fig. 1). Specifically, we set as non-
signal pairs all the saddle pairs of the input, and we set as signal
pairs all the others (irrespective of their persistence). This enables a
direct visualization and analysis of the topologically simplified data,
where isosurface handles have been cut (Fig. 1c, bottom-right zoom vs.
Fig. 1b, bottom-right zoom) and where most spurious filament loops
have been consequently simplified (Fig. 1, top zoom). Note that, as
shown in the bottom right histogram, our optimization modifies the
input data f into a function g where reversal skips still occur. This
is due to the fact that our solver identifies a local minimum of the
simplification energy (Eq. 3) and that, consequently, a few saddle
pairs, with low persistence, may still remain (we recall that sublevel
set simplification is NP-hard [4], see Sec. 5.4 for further discussions).
However, the skipped reversals which remain after our optimization
(Fig. 1, bottom right histogram) only involve very low persistence pairs,
hence allowing the cancellation of the largest loops overall.

Fig. 7 illustrates our simplification optimization for a challenging
dataset (“Dark Sky”: dark matter density in a cosmology simulation).
The isosurface capturing the cosmic web [80, 84] (inset zooms) has a
complicated topology (many noisy connected components and handles),
which challenges its visual inspection. Its core filament structure also
contains many small-scale loops since many persistent saddle connector
reversals could not be performed (Fig. 7, bottom left histogram). Our
solver provides a local minimum g to the simplification energy (Eq. 3)
with a number of non-signal pairs reduced by 92% (see Appendix C for
further stress experiments). This results in a less cluttered visualization,
as the resulting cosmic web (Fig. 7(c)) has a less complicated topology
(noisy connected components are removed and small scale handles are
cut, inset zooms). Moreover, our optimization modifies the data in a
way that is more conducive to persistent saddle connector reversals
(bottom right histogram), hence simplifying more loops and, thus, better
revealing overall the large-scale filament structure of the cosmic web.

5.3 Repairing genus defects in surface processing
Our work can also be used to repair genus defects in surface processing,
where surface models, in particular when they are acquired, can include
spurious handles due to acquisition artifacts. While several approaches
have been proposed to address this issue [24, 91, 92], they typically
rely on intensive automatic optimizations, aiming at selecting the best
sequence of local simplification primitives (i.e. cutting or filling). In
contrast, our approach relies on a simpler and lightweight procedure,
which provides control to the user over the primitives to use. Moreover,
most existing techniques simplify only one sublevel set, while our



Fig. 9: Removal of a spurious handle from an acquired surface S (a). First, the signed distance field f is computed from S (b). f is shown with a
color map on the clipped volume, with its critical simplices colored per dimension, with a sphere with a radius proportional to their persistence.
The extraction of the 1-dimensional persistent generators [38, 53] ((c), colored by persistence) reveals the existence of a short generator in f ,
corresponding to a small handle defect in S (under the Pegasus front left hoof, see inset zooms). Our framework can repair this defect by simplifying
the corresponding saddle pair, either by cutting ((d), by only using the birth gradient, Eq. 4) or by filling ((e), by only using the death gradient, Eq. 4).

approach processes the whole function range. For this, we consider
the three-dimensional signed distance field f to the input surface S,
computed on a regular grid (i.e., f encodes for each grid vertex v the
distance to the closest point on the surface S, multiplied by −1 if v is
located within the volume enclosed by S). For such a field, the zero
level set f−1(0) coincides with S. Then, the removal of a handle in
S can be performed by creating a simplified signed distance field g,
where the corresponding saddle pair has been canceled. Finally, the
zero level set g−1(0) provides the simplified surface S′.

This process is illustrated in Fig. 8 where the handle of a torus is
removed. Note that, from a topological point of view, this operation can
be performed in two ways: either by cutting the handle (Fig. 8(b)), or
by filling it (Fig. 8(c)). This can be controlled in our solver by simply
adjusting the step sizes for the birth and death gradients (Sec. 4.1).
Specifically, given a saddle pair to remove pi ∈D( f ), handle cutting
is obtained by setting αd to zero. Then, the death vertex vid will not
be modified (above the zero level set), while only the birth vertex vib
(located in the star of the 1-saddle creating the handle) will increase
its value above 0, effectively disconnecting the handle in the output
surface S′. Handle filling is obtained symmetrically, by setting αb to
zero (effectively forcing the 2-saddle to decrease its value below 0).

Fig. 9 presents a realistic example of an acquired surface from
a public repository [87], which contains a spurious handle, due to
acquisition artifacts. First, the signed distance field is computed and its
1-dimensional persistent generators [38, 53] are extracted. The shortest
generator corresponds to a small handle, which happens to be a genus
defect in this example. Then, the user can choose to repair this defect
via cutting or filling, resulting in a repaired surface S′ which is close to
the input S, and from which the spurious handle has been removed.

5.4 Limitations

Our approach is essentially numerical and, thus, suffers from the same
limitations as previous numerical methods for topological simplifica-
tion (Sec. 1.1). Specifically, the non-signal pairs are canceled by our
approach by decreasing their persistence to a target value of zero. How-
ever, this decrease is ultimately limited by the employed numerical
precision (typically, 10−6 for single-precision floating point values).
From a strictly combinatorial point of view, this can result in resid-
ual pairs with an arbitrarily small persistence (i.e., in the order of
the numerical precision). In principle, this drawback is common to
all numerical methods (although sometimes mitigated via smoothing).
Then, when computing topological abstractions, these residual pairs
need to be removed from the computed abstraction (e.g., with integral
line reversal, Sec. 5.2). However, as discussed in the literature [40, 43],
post-process mechanisms for simplifying topological abstractions may
not guarantee a complete simplification of the abstractions either (this
is another concrete implication of the NP-hardness of sublevel set sim-
plification [4]). However, our experiments (Sec. 5.2) showed that our

numerical optimization helped such combinatorial mechanisms, by pre-
processing the data in a way that resulted eventually in fewer persistent
reversal skips (Figs. 1 and 7, right versus left histograms).

Similar to previous persistence optimization frameworks, our ap-
proach generates a local minimum of the simplification energy (Eq. 3),
and thus it is not guaranteed to reach the global minimum. As a re-
minder, in 3D, an optimal simplification (i.e., D(g) = DT ) may not
exist and finding a sublevel set simplification is NP-hard [4]. However,
our experiments (Sec. 5.1) showed that our approach still generated
solutions whose quality was on par with the state-of-the-art (compa-
rable losses and distances to the input), while providing substantial
accelerations. Moreover, as shown in Sec. 5.2, these solutions enabled
the direct visualization of isosurfaces whose topology was indeed sim-
plified (fewer components and handles) and they were also conducive
to improved saddle connector reversals.

6 CONCLUSION

This paper introduced a practical solver for topological simplification
optimization. Our solver is based on tailored accelerations, which are
specific to the problem of topological simplification. Our accelerations
are simple and easy to implement, but result in significant gains in terms
of runtime, with ×60 speedups on average on our datasets over state-
of-the-art persistence optimization frameworks (with both fewer and
faster iterations), for comparable output qualities. This makes topologi-
cal simplification optimization practical for real-life three-dimensional
datasets. We showed that our contributions enabled a direct visualiza-
tion and analysis of the topologically simplify data, where the topology
of the extracted isosurfaces was indeed simplified (fewer connected
components and handles). We applied our approach to the extraction
of prominent filament structures in 3D data, and showed that our pre-
simplification of the data led to practical improvements for the removal
of spurious loops in filament structures. We showed that our contribu-
tions could be used to repair genus defects in surface processing, where
handles due to acquisition artifacts could be easily removed, with an
explicit control on the repair primitives (cutting or filling).

While it is tailored to the problem of simplification, our solver is still
generic and could in principle be used for other persistence optimization
problems, however, with possibly less important performance gains. In
the future, we will consider other optimization problems and investigate
other acceleration strategies for these specific problems. Since our
solver can optimize persistence pairs localized within a neighborhood
of the field, we will also investigate divide-and-conquer parallelizations.
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