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Abstract—Numerical simulation serves as a cornerstone in scientific modeling, yet the process of fine-tuning simulation parameters
poses significant challenges. Conventionally, parameter adjustment relies on extensive numerical simulations, data analysis, and expert
insights, resulting in substantial computational costs and low efficiency. The emergence of deep learning in recent years has provided
promising avenues for more efficient exploration of parameter spaces. However, existing approaches often lack intuitive methods
for precise parameter adjustment and optimization. To tackle these challenges, we introduce ParamsDrag, a model that facilitates
parameter space exploration through direct interaction with visualizations. Inspired by DragGAN, our ParamsDrag model operates
in three steps. First, the generative component of ParamsDrag generates visualizations based on the input simulation parameters.
Second, by directly dragging structure-related features in the visualizations, users can intuitively understand the controlling effect of
different parameters. Third, with the understanding from the earlier step, users can steer ParamsDrag to produce dynamic visual
outcomes. Through experiments conducted on real-world simulations and comparisons with state-of-the-art deep learning-based
approaches, we demonstrate the efficacy of our solution.

Index Terms—Parameter exploration, feature interaction, parameter inversion.

1 INTRODUCTION

Numerical simulations are integral to modern scientific inquiry, bridg-
ing theoretical models and real-world phenomena. These simulations
enable scientists to investigate complex physical processes, verify scien-
tific hypotheses, and refine the underlying physical models. In scientific
research, the iterative process of conducting multiple simulation runs
with varying simulation parameter conditions is essential for exploring
the uncertainties inherent in physical parameters. For instance, in cos-
mological simulations, by performing a multitude of simulations and
analyzing under a wide range of initial conditions, scientists can gain
insights into the formation and evolution of the universe and the impact
of different initial conditions on structural formation.

However, optimizing simulation parameters is a complex and compu-
tationally resource-intensive task. Each parameter adjustment requires
rerunning the simulation and evaluating its effects, a process that de-
mands significant computational power and substantial storage for the
resulting data. Furthermore, exploring valuable insights from these
extensive datasets necessitates visualization and in-depth analysis of
each simulation run’s outcomes. Scientists refine simulation parameters
by analyzing the key features and structures revealed in these results,
moving closer to achieving their research goals. For example, scientists
often employ simulations to repeat the formation of galaxy clusters
or dark matter halos in studying the universe’s large-scale structures.
They may need to repeatedly adjust initial conditions and other relevant
parameters to produce structures and physical properties corresponding
to observational data. This process includes not only fine-tuning the
parameters but also continuously monitoring the simulation outcomes.
Scientists usually require this process to adjust simulation parameters
to facilitate the formation of the anticipated structures.

The advent of deep learning models has introduced novel ap-
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proaches to parameter exploration in numerical simulations. Recent
research has introduced surrogate models, such as InSituNet [13], GNN-
Surrogate [36], and VDL-Surrogate [35], leveraging deep neural net-
works to boost the efficiency of this exploration. These models employ
deep learning to establish a mapping from initial simulation parameters
to the ultimate outcomes, enabling direct result prediction and circum-
venting the need for time-consuming numerical simulations. However,
these methods have yet to address a critical issue: intuitively interact-
ing with predicted outcomes and retrieving the input simulation
parameters corresponding to the outcomes. Existing surrogate mod-
els primarily aim to predict outcomes based on parameter adjustments.
If the predicted results fall short of expectations, experts must infer
the direction of parameter adjustments by drawing on their expertise.
This situation leaves the parameter adjustment process needing a more
precise and controllable method, thereby suggesting that the efficiency
of exploring the parameter space needs enhancement.

To support the intuitive simulation parameter exploration, we pro-
pose ParamsDrag, a model that facilitates parameter space exploration
through direct interaction with visualizations. Our work has two main
goals: (1) to enable scientists to drag a feature of interest to the desired
location on the visualization image and generate the corresponding im-
age; (2) to retrieve the corresponding simulation parameter conditions
of the generated images. Inspired by DragGAN [29], a technique to sup-
port interactive manipulation on classic image generation applications,
we propose an approach that aims to properly edit the latent vector
of our deep-learning-based surrogate model to support scientists drag-
ging a feature on the visualization and then generate the corresponding
image. However, a fundamental difference between applications of
classic image generation and scientific data visualization generation
leads to a few technical challenges. The difference is that the scien-
tific visualization generation focuses on the accuracy of the generated
visualization corresponding to the provided simulation parameter con-
dition. Conversely, classic image generation applications focus on
producing natural and sharp images, making it challenging to abstract
comprehensive and quantifiable labels. Our study shows that the valid
latent vectors of a well-trained scientific visualization generation model
are distributed more discretely than classic image generation models.
This phenomenon prohibits directly editing latent vectors as the classic
image generation model in the latent space. In our work, we develop
a deep-learning-based surrogate model that takes simulation parame-
ters as input and generates the corresponding scientific visualization.
Furthermore, we propose a gradient descent-based parameter search
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algorithm for editing the latent vector, enabling stepwise movement
only on valid points in the discrete latent space. This algorithm en-
sures that only valid images are generated and also guarantees smooth
transitions between images as scientists manipulate features on the
image. Lastly, a function is provided to retrieve the corresponding
simulation parameters of any generated image as scientists adjust fea-
tures on the visualization. Overall, this work makes the following four
contributions:

• We elucidate the differences in latent vector distributions and
the variations in editing methodologies between classic image
generation and scientific visualization image generation.

• We design a deep-learning-based surrogate model that inputs
simulation parameters to generate corresponding scientific data
visualizations efficiently.

• We define the structure-based patch and implement direct interac-
tion with visualization through feature supervision and tracking.

• We implement a gradient descent-based parameter search method
to support the generation of dynamic images and the inversion of
corresponding parameters for visualization images.

2 RELATED WORK

This section reviews the relevant work on applying deep learning in
scientific visualization and analyzing the parameter space in numerical
simulations.

2.1 Deep Learning for Scientific Visualization
Deep learning techniques are increasingly demonstrating their sig-
nificant potential in scientific visualization. Much research has uti-
lized deep learning to address challenges within scientific visualization,
achieving good results. The tasks related to our study primarily fall
into prediction and visualization generation [43].

Prediction primarily involves using deep learning models to learn
from existing data distributions and forecast new data instances. For in-
stance, in data prediction, CECAV-DNN [12] employed a DNN model
to predict ensemble similarity, facilitating the analysis of ensemble
data. Tkachev et al. [41] utilized neural networks to predict voxel
values and identify anomalous data. Both Hong et al. [16] and Han et
al. [9] applied deep learning models for predicting particle-related data.
Regarding visualization prediction, the works of Yang et al. [50] and
Shi et al. [34] leveraged neural networks to predict visualization images
under new parameters, supporting the evaluation of viewpoint parame-
ters. Engel and Ropinski [4] introduced a deep-learning approach for
predicting per-voxel ambient occlusion in volumetric datasets within
direct volume rendering.

The task of visualization generation involves using neural networks
to learn the mapping from input parameters to visualization outputs,
thereby enabling the generation of visualization results under new pa-
rameters. Its objective is to replace traditional, potentially cumbersome
processes, thus enhancing the efficiency of exploration and analysis.
This process encompasses different types of input parameters, such
as simulation parameters, viewpoint parameters, and visual mapping
parameters. For example, InSituNet [13], GNN-Surrogate [36], and
VDL-Surrogate [35] have all replaced simulation programs with deep
learning models to improve the efficiency of parameter space explo-
ration, focusing primarily on simulation parameters. In viewpoint
parameters, DNN-VolVis [15] achieved rapid rendering under new
viewpoint parameters, while Berger et al. [3] utilized GANs to acquire
visualization images from new viewpoints quickly. Regarding visual
mapping parameters, DeepDVR [46] generated similar direct volume
rendering results from examples in image space, eliminating the need
for explicit feature design and manual transfer function specification.
Additionally, Weiss et al. [47] employed FRVSR-Net to transform
low-resolution isosurface rendering images into high-resolution ones,
and in [48], they explored the relationship between data and image
generation using an end-to-end neural rendering framework.

The first goal of our work is to utilize deep neural networks to predict
the visualization results from parameters. These related studies provide

a solid theoretical foundation for our work, offering valuable insights
for model design and loss function construction.

2.2 Parameter Space Analysis
Visualization techniques are increasingly playing a pivotal role in the
analysis of Parameter Spaces [44]. Existing related work can be tech-
nically categorized into two types: the first is traditional parameter
analysis methods, and the second is surrogate model approaches [35].

In traditional analysis methods, the process typically starts with
running simulation programs multiple times and then collecting the
simulation data for subsequent visual analysis. In this paradigm, visual-
ization focuses on exploring better design or data processing algorithms
to support uncertainty visualization. For instance, employing curve-
related visual forms to analyze spatiotemporal uncertainty in ensemble
data [6, 7, 24, 49], modeling data uncertainty using probability density
functions for further visual analysis [2, 10, 22, 28, 30, 32, 40], and some
studies explore visualizing high-dimensional data to support uncer-
tainty analysis, such as scatter plots [23, 27, 38], parallel coordinate
plots [26, 45], and matrix charts [17, 31, 33]. However, a significant
drawback of traditional methods was their substantial computational
resource requirements to support the running of simulation programs,
leading to inefficient parameter analysis and optimization.

Machine learning methods provided new approaches to exploring
parameter spaces, with the use of machine learning models to re-
place simulation programs significantly enhancing the efficiency of
parameter exploration. For instance, NNVA [11] utilized a neural
network-based surrogate model to facilitate the interactive exploration
of high-dimensional input parameter spaces in yeast cell polarization
simulations. Alden et al. [1] employed surrogate models to efficiently
analyze biological systems simulations, enabling advanced statistical
analyses and optimizations that were previously infeasible due to com-
putational limitations. Similarly, Erdal et al. [5] applied Gaussian
Process Emulators to enhance the efficiency of sampling in ensemble-
based sensitivity analysis of environmental models, demonstrating a
substantial improvement in identifying behavioral samples and local
sensitivities. Furthermore, research closely aligned with our work in-
cludes InSituNet [13], GNN-Surrogate [36], and VDL-Surrogate [35],
all of which utilize neural networks to substitute for numerical simula-
tion programs. These related studies focused on adjusting parameters
to modify the final outcomes, yet they often required multiple mod-
ifications and iterative analyses when the predicted results failed to
meet expectations. This process still largely depended on expert intu-
ition for parameter adjustments, indicating that there is still room for
improvement in the efficiency of exploring the parameter space.

3 BACKGROUND

Generative models constitute a distinct class within the area of deep
learning, fundamentally focused on learning data distributions. These
models are capable of generating new data instances by learning the
data distribution. Image generation is one of the tasks for generative
models, which aims to create high-quality and lifelike images. Among
the models frequently used for this purpose are Autoencoders (AE) [14],
Variational Autoencoders (VAE) [21], and Generative Adversarial Net-
works (GANs) [8]. The task of generating scientific visualization
images differs from classic generative tasks.

In computer vision, classic generative tasks primarily aim to produce
images from the real world. However, it is difficult to assign descrip-
tions with precise labels to these images, leading to the reliance on
ambiguous labels or introducing noise as input. For instance, within
GANs, random noise is employed as the initial input to the genera-
tor. This noise undergoes several transformations across the network’s
layers to yield samples that mimic the appearance of images from the
actual dataset. Furthermore, in the case of StyleGAN [19] and Style-
GAN2 [20], noise is not merely an input for the generator but also plays
a crucial role in refining the latent space vectors. This application of
noise serves to inject random details into the images, thus enhancing
the model’s ability to generate diverse data. Although incorporating
noise in the latent space can enrich the model’s generative, an input
label can potentially map and generate multiple distinct images.



Fig. 1: The high-level pipeline of ParamsDrag.

In the field of scientific visualization, the generation of images under
the constraints of simulation parameters presents unique challenges.
The visualization image of scientific data is tied to parameters with
distinct meanings, such as physical or visualization parameters. This
connection means that every visualization is associated with a unique
and explicit label, such as simulation parameter values. As a result,
generative models designed within these parameter constraints strive
to remove ambiguity from the input to the output process, typically
preventing from introduction of noise into the model. This scheme
has been applied to existing deep-learning scientific visualization gen-
erators like InSituNet, GNN-Surrogate, and VDL-Surrogate. These
models learn the mapping between simulation parameters and visual-
ization outcomes to support parameter space exploration.

Generative models exhibit significant differences when employing
explicit labels (such as simulation parameters) versus ambiguous labels
(such as category labels mixed noise). This distinction affects not
only the models’ structures but also the distributions within their latent
spaces. Consequently, this variation often makes traditional latent
space editing techniques unsuitable for use in scenarios with explicit
labeling. This study aims to develop generative models constrained
by parameters, utilizing these models to enhance user interaction and
analyze predictive outcomes. In the following sections, we introduce
the proposed generative models under simulation parameter constraints
and the methods for editing the corresponding latent vectors.

4 OVERVIEW

Our objective is to enable experts to interact with predicted images
and get the corresponding simulation parameters, thus improving the
efficiency of optimizing simulation parameters. Therefore, a generator
is required to predict visualization outcomes by input simulation param-
eters. Based on the generator, we also propose an algorithm that enables
users to intuitively drag the feature of interest on the image to generate
the corresponding visualization and derive simulation parameters.

Figure 1 illustrates the workflow of ParamsDrag, which integrates
three main components: the construction of the dataset, the training of
the generator, and interaction with the visualization image. During the
phase of constructing the dataset, we visualize simulation data and store
both the simulation parameters and visualization parameters associated
with each image to build the dataset. In the subsequent phase, we refine
the generator’s architecture through a state-of-the-art image generation
model to fit our scientific visualization purpose. The generator is trained
to learn the mapping between the simulation parameters and visualiza-
tion images using the above dataset. The trained generator can predict
the image of given simulation parameters as input. The final phase is in-
teractive image prediction and simulation parameter derivation through
user interactions. We define the concept of the structure-based patch,

Fig. 2: The model structure of the generator, with inputs being the
simulation parameters and visualization parameters, and the output
being the visualization image.

which enables users to select features of interest within the visualiza-
tions. Upon interaction, feature supervision and feature tracking guide
the generator in producing an image sequence, which illustrates the
transition before and after user interactions. A gradient-based search
technique is also proposed to derive the parameters associated with each
image. By integrating these features, ParamsDrag model implements
a novel approach to parameter space exploration that enables direct
interaction with the predicted visualization images.

Additionally, we also demonstrate the differences in the generative
models’ latent vector distributions under applications of classic image
generation and scientific visualization generation. We show how these
differences impact the strategies for editing latent space vectors. This
exploration reveals the rationale behind our model’s structural design,
showcasing how distinct approaches to handling latent space can impact
model performance and editing capabilities, particularly in scenarios
with scientific simulation parameter space exploration.

5 ParamsDrag MODEL

This section introduces the technical details of ParamsDrag model.

5.1 Dataset Construction

The process of constructing the training set commences with the identi-
fication of simulation parameters based on expert analysis objectives.
After this, these parameters are sampled, followed by the execution
of numerical simulations for each parameter set, with the data being
recorded. The final step involves employing visualization algorithms
on the simulation data to convert this data into images. The data to be
stored throughout this procedure includes:

Simulation parameters, formatted as one-dimensional vectors, en-
compassing physical parameters, time, and other variables pertinent to
the simulation program.

Visualization parameters, also in one-dimensional vectors, include
aspects such as viewpoint, threshold, and other parameters relevant to
the visualization algorithm.

Visualization images, formatted as portable network graphics
(PNG), which are generated from the simulation data through visu-
alization algorithms and correspond to the simulation and visualization
parameters.

5.2 Generator

In this subsection, we introduce our generator’s architecture and loss
function, which is designed to support latent vector editing and accurate
visualization image prediction based on parameters.



5.2.1 Generator Architecture
Figure 2 displays the architecture of the generator, where the input
consists of simulation parameters and visualization parameters, and
the output is a visualization image. It comprises three sub-networks:
Param Subnet, Mapping Subnet, and Synthesis Subnet. We reference
multiple state-of-the-art models, such as StyleGAN2 and InSituNet, to
guide our network design in the model’s design process.

The Param Subnet primarily focuses on extracting features from
the input parameters and transforming them into a format usable for
the generation process. It comprises two branches: one for handling
simulation parameters and the other for dealing with visualization
parameters. Each branch features two fully connected layers (FC),
designated as FC(m,512) and FC(n,512), where m and n represent
the dimensions of different types of parameters. We use ReLU [25]
as the activation function in all FC layers. The outputs of these two
branches are then merged into a single vector through a concatenation
operation, which is further processed by another fully connected layer,
FC(1024,512). The output of this subnet is subsequently provided to
the Mapping Subnet.

The Mapping Subnet serves to transform the output of the Param
Subnet into a latent space w, which often possesses better attributes
than the original parameter space, such as being easier for subsequent
networks to learn and disentangle. The Mapping Subnet typically
consists of multiple fully connected layers, with each layer in our
model being FC(512,512), and multiple such layers can be stacked
together. The purpose of each layer is to transform the input features,
enhancing their distribution characteristics gradually. This sequence of
FC and ReLU layers enables the network to learn complex nonlinear
mappings, ultimately producing the latent vector w.

The Synthesis Subnet generates the final image from the latent vector
w, which is output by the Mapping Subnet. In developing the Synthe-
sis Subnet, we drew inspiration from the architectural framework of
StyleGAN2 and made custom modifications, notably omitting noise in-
jection components. This design change is necessary to ensure that one
given parameter input does not produce two distinct visualizations. The
details are discussed in Section 6. The Synthesis Subnet commences
with a constant tensor, Const(4x4), as the initial feature map, which then
undergoes progressive transformations via multiple Synthesis blocks
to incrementally enhance the image resolution. Within each Synthesis
block, an upsampling procedure doubles the feature map’s dimensions,
followed by convolutional operations refining the features. Moreover,
the Synthesis blocks incorporate Modulation (Mod) and Demodulation
(Demod) operations. Modulation dynamically adjusts the convolu-
tional kernels using the latent vector w, enabling the network to control
the representation of image features at various levels. Demodulation
normalizes the modulated weights by computing a standardization coef-
ficient, thus mitigating the risk of excessive activation values resulting
from the modulation process. The definitions and implementations of
Mod and Demod align with those delineated in StyleGAN2 [20]. These
collaborative operations harness the information within w to direct the
image synthesis process, culminating in the generating of images with
high-quality details.

5.2.2 Loss Function
The objective of the loss function constraints is to quantify the differ-
ences between the images produced by the generator and the target
images, thereby guiding the generator’s training. In this work, we em-
ploy three loss functions: content loss (Lcontent ), perceptual loss [18]
(L f eature), and edge loss (Ledge), as is shown in Equation 1.

L = αLcontent +βL f eature + γLedge (1)

where α , β , and γ are the coefficients.
The content loss measures the pixel-wise difference between the

generated and target images. We employ the L1 loss function to fulfill
this purpose, as depicted in Equation 2.

Lcontent =
1
N

N

∑
i=1

∣∣Ii − Îi
∣∣ (2)

Fig. 3: The workflow of interacting with visualization images. Users can
directly obtain target parameters and visualization images by selecting
feature structures and editing it.

where N represents the total number of pixels, Ii is the target value of
the ith pixel, and Îi is the predicted value for the ith pixel.

The simple difference between pixels does not adequately quantify
the differences in image structure features. To capture the distinctions
in feature structures within visualized images, we adopt perceptual
loss [18]. Perceptual loss measures the discrepancy in perceptual
quality between two images, thereby making the generated image
visually closer to the target image. It achieves this by comparing the
feature representations at different layers within a pre-trained VGG-19
model [37], which can capture information about the content and style
of the images, as illustrated in Equation 3.

Lfeature =
L

∑
j

λ j ·
∥∥φ j(I)−φ j(Î)

∥∥2
2 (3)

where φ j represents the activation maps produced by layer j, I denotes
the target images, Î denotes the predicted images, λ j a weighting factor
for layer j, and ∥·∥ is the L2 norm.

In scientific visualization images, the edge features reveal the con-
tours and shapes of the structures. We define an edge loss to ensure
the generated images accurately capture these details. The edge loss is
based on the Sobel operator for edge extraction, as shown in Equation 4.

Ledge =
∥∥ψ(I)−ψ(Î)

∥∥2
2 (4)

where ψ() involves applying the Sobel operator through two convolu-
tion operations to identify edge regions in an image. Edge loss reflects
the differences in feature edges within the image, placing special em-
phasis on the details of lines.

5.3 Interaction with Visualization Images
In the interaction part, we draw inspiration from DragGAN [29] to
implement the interactive functionality of ParamsDrag. Direct applica-
tion of DragGAN to our generative models for scientific visualization
images is impracticable due to the discrete distribution of the model’s
latent vectors in the latent space, a consequence of explicit label con-
straints. To address this issue, we improve the method of latent vector
editing in DragGAN, enabling our model to perform stepwise changes
in the latent space, thereby generating accurate visualization images.
The theoretical foundation of our approach is discussed in Section 6.

Figure 3 illustrates the workflow of our interaction process. Users ini-
tially select the interactive objects (i.e., the structure-based patches) and
the interaction targets (i.e., intended positions for movement) within
the visualization image as input conditions. Subsequently, the loss
before and after the structure’s movement is computed using a feature
supervision method. Following this, the image and parameters are up-
dated utilizing a parameter inversion method based on the loss. Finally,
feature tracking is employed to reposition the feature control points.
Therefore, a single iteration comprises three critical steps: Feature Su-
pervision, Parameter Inversion, and Feature Tracking. This process



repeats until the termination conditions are met. Our method includes
two termination conditions: the interactive object reaching the target
position and the structural disappearance of the interactive object.

5.3.1 Structure-based Patch

We introduce the concept of the structure-based patch, with the primary
goal of assisting users in identifying and selecting specific structures
within scientific visualization images. Scientific visualization involves
converting data attributes into different colors to represent attribute
ranges, where multiple pixels of similar colors form a small region.
Pixels in this region, having similar attribute values, can be defined
as a structure in many domains. For example, a dark halo can be
represented as a highlighted local area within the visualization image
in cosmological simulations. Therefore, we utilize the structure-based
patch to help users locate structures within visualization images and
support further editing of these structures.

The structure-based patch is implemented through a breadth-first
search algorithm based on the click location by calculating the pixel
similarity d within a radius r of the user’s click position. Our method
also supports simultaneous selection and editing of multiple feature
structures. For any given click position pi, the search algorithm is
used to construct the pixel set Patch(pi). Additionally, a moving target
position gi is set for each click position pi to guide the direction of
the structure’s movement. In our implementation, the calculation of
structural similarity is conducted under the HSV color model.

5.3.2 Feature Supervision

The objective of feature supervision is to help the movement of selected
structures within the visualization image. The essence of feature super-
vision is to minimize structural changes within the visualization image
after movement, ensuring continuous local feature changes in the image.
Therefore, if the feature’s corresponding set of pixels Patch(pi) is to be
moved to a target point gi, this can be achieved by supervising the patch
to move a small step rm towards gi each time, and then through multiple
iterations to accomplish the feature movement. During this process, we
employ the loss function for feature supervision from DragGAN, as
shown in Equation 5.

LMS =
n

∑
i=0

∑
qi∈Patch(pi)

||F(qi)−F(qi + vi)||1 (5)

vi =
gi − pi

||gi − pi||1
(6)

where n represents the number of selected structures. qi denotes the
pixels surrounding the selected structure Patch(pi), vi is the vector
pointing from the manipulation point to the target point gi, F is the
feature map from a specific layer chosen within the generator, and F(q)
is the feature vector at pixel position q.

5.3.3 Parameter Inversion

DragGAN utilizes the first six latent vectors of the W space from Style-
GAN2 for gradient search to achieve image editing. The distribution
of latent vectors in the latent space for ParamsDrag’s generator differs
from that of StyleGAN2’s generator, and using a latent vector search
approach would result in erroneous images. To address this issue, we
opt for modifications in the parameter space to ensure the validity of the
generated images. Specifically, we use Equation 5 as the loss function
to quantify the differences before and after the patch movement, and
then perform a gradient search on the input parameters to achieve edit-
ing of the latent vectors. The theoretical foundation for this approach is
discussed in detail in Section 6.

We implement image editing through gradient search on input pa-
rameters, allowing the corresponding parameters of newly generated
images to be acquired in real time. Furthermore, based on the diverse
requirements of experts, we can conduct gradient searches on multiple
input parameters or a single parameter to explore the parameter space
under various analytical objectives.

5.3.4 Feature Tracking
The objective of feature tracking is to address the issue of inaccurately
tracking control points after the target has moved while also determin-
ing whether the feature structure has disappeared. Feature tracking is
accomplished through the nearest neighbor search of feature maps, as
illustrated in Equation 7.

pi = min
qi∈Square(pi,rm)

||F′(qi)−F0(p0
i )||1 (7)

where F0() represents the initial feature map, p0
i denotes the initial

position selected by the user, and F′() is the current feature map. There-
fore, the position pi is updated to the point within the square region
with side length rm around pi in the current feature map that is most
similar to the initial point p0

i . After getting the new control points pi,
we calculate the feature disappearance using Equation 8.

D = ||Ii(pi)− I0(p0
i )||22 (8)

where I0() represents the initial image, Ii() represents current image.
We terminate the iteration when the D exceeds the threshold.

6 THEORETICAL FOUNDATION

Our work references the image editing method employed by DragGAN,
but directly applying this approach to our generator encountered issues.
DragGAN generates images by manipulating the generator’s latent
space vector W . The generator used in DragGAN is derived from
StyleGAN2, which not only utilizes noise as input but also introduces
noise into the latent space for diversity. Applying DragGAN’s latent
space editing technique to our generator resulting in generated images
collapsing after only a few iterative modifications to the latent vectors,
as demonstrated in Figure 4. In this section, we discuss and provide
evidence for the differences in the latent vector distributions and latent
vector editing between two models on the same dataset.

Fig. 4: Continuous changes to the latent vectors of ParamsDrag genera-
tor can lead to the collapse of the generated images.

6.1 Differences in Latent Vector Distributions
ParamsDrag exhibits a distinct distribution of latent vectors compared
to StyleGAN2, necessitating different approaches for latent space ma-
nipulation. ParamsDrag employs explicit input parameters to generate
visualization images, establishing a one-to-one correspondence be-
tween input and output. Consequently, each individual training data
point is associated with a unique vector in the latent space. In con-
trast, StyleGAN2 employs noise augmentation within the latent vectors,
resulting in multiple latent vectors corresponding to a single input
parameter, thereby complicating the mapping from input to latent rep-
resentation. Figure 5 provides a schematic representation of the latent
vector distributions for both models, where each dot within the figure
represents a sample from the training data. Dots of the same color
correspond to the same data sample, with a total of three samples de-
picted. It is evident from the figure that each of the three samples
from ParamsDrag correlates to a unique latent vector within the la-
tent space. Conversely, StyleGAN2’s approach results in each of the
three samples correlating to clusters of latent vectors within the latent
space. Moreover, methodologies such as InSituNet, GNN-Surrogate,
and VDL-Surrogate similarly adopt explicit labeling strategies to gener-
ate images, aligning their latent space vector distributions closely with
that of our model.



The latent vector distributions corresponding to the test sets also
differs under the two types of models, as shown in Figure 5. In
ParamsDrag, each test data point corresponds uniquely to a single
latent vector. Conversely, in StyleGAN2, a single test data point is
associated with multiple latent vectors. ParamsDrag demonstrates a
discrete distribution of latent vectors in the latent space for both train-
ing and test data. In contrast, due to the influence of noise, the latent
vectors for the training and test data in StyleGAN2 are clustered and
these vectors have similar values. The blank areas in the figure also
contain numerous latent vectors, which correspond to invalid images.
Therefore, as the training dataset increases, the latent space of Style-
GAN2 will encompass a large number of valid latent vectors and tend
to become continuous, while the latent space of ParamsDrag remains
relatively discrete.

It is important to note that although the latent vector distribution of
the test set in our model, as seen in Figure 5, is near the training set,
this does not mean that all points near the training set are meaningful.
This is because, despite the latent vectors being close in the figure,
their distance in high-dimensional space is remote. Moreover, there are
many vectors situated between them, the majority of which are invalid.

Fig. 5: Schematic representation of the distribution of latent vectors for
the same amount of training and test data under two different models.

6.2 Distinctions in Editing Latent Vectors
The DragGAN approach operates by modifying the latent space vector
W to generate new images, utilizing the generator from StyleGAN2.
As illustrated in Figure 5, the latent vectors of StyleGAN2 exhibit a
tendency toward continuity within the latent space, whereas the latent
vectors from ParamsDrag are discrete. The original DragGAN method
proposes a continuous transition from a starting latent vector to a target
point; however, such a process under ParamsDrag’s discrete latent
space may lead to transitions to invalid points. Figure 6 demonstrates
the differences in pass-through of the valid points for continuous editing
of latent vectors between the two models. It reveals that continuous
modifications in a model characterized by a discrete distribution of
latent vectors result in transitions to invalid points, producing erroneous
images. Conversely, StyleGAN2 features a continuous distribution of
latent vectors, enabling seamless and coherent changes within the latent
space.

Fig. 6: Schematic representation of the differences in continuous
changes of latent vectors under two models, with arrows indicating the
direction of latent vector editing. It shows that the continuous changes of
latent vectors in discrete space lead to vectors becoming invalid points
in blank areas, resulting in image collapse.

Overall, generative models under explicit parameter constraints do
not continuously edit and move the vector in the latent space. The
latent space of ParamsDrag exhibits a discrete distribution of valid
points. Consequently, a straightforward approach is to develop stepwise
transitions between these discrete points within the latent space. Thus,

a straightforward strategy is to facilitate stepwise transitions between
these valid points, enabling the latent vectors to change in a leapfrog
manner. This approach ensures the validity of the generated images.
After training, the ParamsDrag can accurately predict visual images
based on parameters and provides precise predictions for any input
parameters within a reasonable range. This demonstrates that the
model can effectively learn the mapping relationship from parameters
to visual images, with each input corresponding to a point in the latent
space with generalization capabilities. Therefore, we can modify the
input parameters to induce leapfrog changes in the latent vectors. By
implementing a gradient descent search algorithm for input parameters
under the constraints of feature supervision and motion supervision, we
can effectively solve the challenge of editing latent vectors in a discrete
latent space. The theory above guided us in designing the method for
editing latent vectors in ParamsDrag.

6.3 Validation on Real Datasets
To substantiate the validity of the aforementioned theory, we present
a visualization of the latent space distribution on a real dataset, as
depicted in Figure 7. This figure displays the distribution of hidden
vectors for 10 data samples under two different models. The scatter
points in the figure represent the latent vectors, and we employ the
Multidimensional Scaling (MDS) algorithm to reduce dimensionality
and visualize the distribution. In Figure 7, each point on the left graph
represents a latent vector corresponding to an input in ParamsDrag
model, whereas the right graph displays the latent vectors for the same
inputs within StyleGAN2 model. An observation from the figure is that
ParamsDrag model’s latent vectors are distributed discretely, in contrast
to StyleGAN2 model, where latent vectors are clustered. Moreover, as
the number of data increases, the latent vectors in StyleGAN2 model
tend to form a continuum.

Fig. 7: Distribution maps of latent vectors for 10 samples from the actual
dataset under two models.

We also visualize the distribution of latent vectors corresponding to
the same training data, test data, in-range input sampling data, and out-
of-range input sampling data for both ParamsDrag and InSituNet, as
shown in Figure 8. The algorithm used for visualizing latent vectors in
Figure 8 employs the MDS algorithm. In numerical simulations, physi-
cal parameters have specific meanings and ranges, and inputs within
these correct parameter ranges are defined as valid inputs. Through
experimentation, it is observed that images generated from valid inputs
are accurate. Sampling points that exceed the range are obtained by
sampling far beyond the reasonable parameter limits, and their outputs
are typically blurry or chaotic images. It is evident from the figure that
the latent vector distributions of both ParamsDrag and InSituNet mod-
els are discrete. The latent vectors corresponding to the test dataset are
distributed close to those of the training dataset, and similarly, the latent
vectors for the in-range input sampling points are also situated near the
training dataset’s latent vectors. The distribution of the out-of-range
input sampling points is more widespread.

In summary, the valid inputs are clustered around the latent vectors
of the training data, yet not all points near these latent vectors are
effective. Slight changes in the latent vectors can easily turn them into
invalid points. Moreover, if the range of parameters in the training set is
much smaller than the actual range of those parameters, this can cause
inputs within the normal range of the parameter to become invalid.
Therefore, ensuring that the training dataset covers the actual range of
the physical parameters is also necessary.



Fig. 8: Under parameter constraints, this figure displays the distribution
of latent vectors for our model and the InSituNet model. Here, red dots
represent the training set, blue denotes the testing set, orange indicates
the dataset within the normal parameter range, and green represents
the dataset outside the normal parameter range. The dense presence of
invalid points (green) among valid ones (orange) suggests easy shifts
from validity to invalidity. It also shows that our model has a similar
distribution of latent vectors with models like InSituNet, indicating a
commonality in generative models for scientific visualization.

7 EXPERIMENTS

In this section, we first introduce the experimental setup and then show
the effectiveness of our approach.

7.1 Experimental Setup

7.1.1 Simulation Datasets and Parameters

In the experiment, we utilized two datasets. The first dataset is the
Red Sea simulation, derived from the MIT Ocean general circulation
model [42]. The second dataset involves the simulation of cosmic large-
scale structures sourced from the Gadget-2 simulation program [39].
The parameter configurations are described below.

Red Sea Simulation: This simulation simulates the circulation dy-
namics of the Red Sea area. The spatial and temporal resolutions
are 500 × 500 × 50 and 60 time steps, respectively. We selected
three parameters to conduct the experiments: Viscosity ∈ [1.0,4.0],
Time ∈ [0,60], and Depth ∈ [0,50]. Furthermore, we applied the con-
tour line algorithm to visualize the temperature of each layer to produce
images with 256×256 resolution, where the visualization parameter is
fixed throughout the experiment. We uniformly sampled 4, 30, and 50
values from viscosity, time, and depth parameters to produce 6000 sim-
ulation parameter combinations and render the corresponding images.
For these data, we randomly selected 5000 as the training dataset and
1000 as the test dataset. During the interaction, the structural similarity
parameter d is set to 95%, the structural radius parameter r is set to 3
pixels, the structural displacement parameter rm is set to 2 pixels, and
the disappearance similarity parameter D is set to 95%.

Cosmological Simulation: The cosmological simulation employs
particles to simulate the evolution of large-scale structures over
13.7 billion years in the universe. The parameters and correspond-
ing ranges are Omega ∈ [0.05,1.0], representing matter proportion;
OmegaLambda ∈ [0,0.95], denoting dark energy proportion; and
Sigma8 ∈ [0.6,1.0], indicating the power spectrum normalization. We
applied a visualization algorithm to convert the particle data into a grid
format and output volumetric data with a resolution of 500×500×500.
Then, we used volume rendering to generate global visualizations at
a resolution of 512× 512 and surface rendering to generate regional
visualizations with the same resolution. We uniformly sampled 475
simulation parameter combinations from the parameter space created
by the three physical parameters to produce corresponding images.
Subsequently, we randomly selected 380 for the training dataset and
95 for the test dataset. For the interaction parameters, the structural
similarity parameter d is set to 95%, the structural radius parameter r
is set to 5 pixels, the structural displacement parameter rm is set to 8
pixels, and the disappearance similarity parameter D is set to 95%.

7.1.2 Experimental Environment and Computational Perfor-
mance

In the experiments, we utilized a server equipped with two Intel(R)
Xeon(R) Gold 6248 processors, two NVIDIA V100 graphics cards, and
128GB of system memory as the environment for model training and
prediction. The neural network model implementation is based on the
PyTorch Library. Our experiments employ the Red Sea dataset and the
cosmological simulation dataset. For the Red Sea dataset, our model
requires 16 hours for training. For the cosmological simulation dataset,
our model training takes 7 hours. The interaction with visualization
images is an iterative process, where the speed of each iteration is
solely dependent on the image resolution. For images with a resolution
of 256× 256 from the Red Sea dataset, an iteration takes 185ms on
average, whereas for images with a resolution of 512×512 from the
cosmological simulation dataset, an iteration requires 390ms on average.
The number of iterations needed for one interaction is related to the
moving distance of the structure. In our cases, at least 10 iterations are
necessary, with a maximum of up to 130 iterations. During the iterative
process, the ability to display intermediate images in real-time ensures
that users do not perceive any visual delays.

7.2 Evaluation of Loss Functions
Our approach incorporates three distinct loss functions. Table 1 presents
the mean squared error (MSE) for different combinations of these loss
functions across two datasets. The data indicate that the integration
of all three loss functions achieves optimal performance on the Red
Sea dataset, whereas the combination of content loss and edge loss
is most effective for the cosmological simulation data. However, the
performance difference from using all three loss functions on the cos-
mological simulation data is minimal, with error margins very close
to the best result, making these subtle differences hard to detect in the
visual outputs. Therefore, the combination of the three loss functions is
suitable for most applications, and we employed this combination in
our experiment. Regarding the weights α , β , and γ for the combined
loss functions, experimental results reveal that the error is minimized
at α = 1, β = 1, and γ = 0.01.

Table 1: The comparison of loss functions. The values are the mean
squared error between the prediction results and and the raw images
from the test dataset.

Loss Functions Red Sea Cosmos

Lcontent 0.00153 0.00117
L f eature 0.00088 0.00146

Lcontent +0.01Ledge 0.00132 0.00114
L f eature +0.01Ledge 0.00088 0.00137

Lcontent +L f eature +0.01Ledge 0.00081 0.00115

7.3 Evaluation of Prediction Performance
In this section, we qualitatively and quantitatively compared the vi-
sualization generation ability of our model with InSituNet and VDL-
Surrogate. Figure 9 shows generated images from three models and the
ground truth for qualitative comparison. In the Red Sea simulation, the
detail generation of our model outperforms the other two approaches.
The close-up views reveal that the contour of the isotherms generated
by our model is more similar to the ground truth image. Although
InSituNet can also correctly generate these details, the image is blurry.
The VDL-Surrogate cannot generate the correct isotherms. In the cos-
mological simulation, the overall visual differences among the three
methods are not significant. Only local features present the difference.
For instance, the colors of the halos are in red circles. Our method is
closer to the ground truth, InSituNet still shows blurred local features,
and the VDL-Surrogate result is sharper but loses correct details.

Table 2 is the quantitative comparison of image generation quality
using PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity
Index Measure) and LPIPS (Learned Perceptual Image Patch Similar-
ity). It shows that the generation ability outperforms alternatives in



Fig. 9: A comparative illustration of our model against InSituNet and VDL-Surrogate models regarding the effectiveness of parameter prediction.

most of the metrics. Only VDL-Surrogate gets a slightly better SSIM
value than ours when generating the cosmological dataset image. The
SSIM is a metric predominantly concerned with the structural integrity
of images. Images generated by VDL-Surrogate typically exhibit a
reduction in detail and enhanced sharpness of structures, which con-
tributes to their superior performance in SSIM evaluations. In contrast,
our method, although less pronounced in the sharpness of structural
depiction, more accurately captures details that align closely with the
ground truth. As a result, our approach excels in terms of PSNR
and LPIPS. The core of our method lies in the ability to intuitively
manipulate features within visualization images and obtain correspond-
ing simulation parameters, rather than solely focusing on surpassing
the performance of existing surrogate models. The results in Table 2
demonstrate that our model is on par with the state-of-the-art models.

Table 2: Comparison of our model with InSituNet and VDL-Surrogate
models across three evaluation metrics on the test dataset.

Model PSNR SSIM LPIPS

Red Sea
Simulation

VDL-Surrogate 25.251 0.954 0.0546
InSituNet 38.782 0.988 0.0041

Ours 41.216 0.990 0.0035

Cosmological
Simulation

VDL-Surrogate 37.415 0.989 0.0040
InSituNet 37.002 0.975 0.0025

Ours 38.662 0.978 0.0021

7.4 Evaluation of Interactive Parameter Exploration
Figure 10 demonstrates the effects of direct interaction with images. For
each image, the corresponding physical parameters are displayed above
it, with ’Step’ indicating the number of iterations after the interaction,
starting from 1 until the stopping condition is met. The ’Start’ point
represents the user-selected position, surrounded by a mask indicating
the selected structural area. The ’Target’ point is the intended location,
moving the structure from the ’Start’ point to the ’Target’ point. We also
provided corresponding ground truth images for each set of interactions
to compare parameters and visualization results.

Figure 10 presents two cases from the Red Sea simulation. In
the first case (the first row in Figure 10), we moved the area of the
lowest temperature in the middle layer of the Gulf of Aden towards the
Mandab Strait to observe the changes in three physical parameters and
the corresponding visualization images. The generated image sequence
reveals that as the cold region expands, the ocean depth and simulation
time oscillate while viscosity gradually decreases. Eventually, when
the cold region extends to the target location, the ocean depth is lower
than its initial state, and the temperature throughout the Gulf of Aden

significantly drops under the current parameters. We also show the
visualization of the data produced from the simulation by giving the
simulation parameter derived by our approach after dragging at the
right-most column. The image from our model is nearly identical to
the ground truth image. In the second case (the second row of images
in Figure 10), we demonstrate that our approach allows users to fix
the viscosity and time parameters and only analyze the relationship
between the depth parameter and temperature data. We selected and
dragged the cold region at the temperature boundary on the upper
side of the Red Sea to examine how the depth changes as these cold
regions move downwards. The visualization results show that its depth
rapidly decreases as the cold area moves downward. When the selected
structure moves to the target position, the ocean depth has reached from
the sea surface to the middle layer of the ocean, and at this point, the
temperature across the entire Red Sea becomes consistent. The ground
truth and the image from our model also show no significant difference.
These cases show that our approach allows users to intuitively drag the
feature of interest to the desired location with transitions for users to
observe the evolution of parameters of interest and images.

In the demonstration of the cosmological simulation data (the third
row of images in Figure 10), we dragged the position of the largest halo
within the predicted visualization image to observe changes in that halo
and overall visualization. The visualization shows that as the position
of the halo moves, the global filament structure increases, and the halo
gradually dissipates. Ultimately, it is apparent from the visualization
that the selected structure did not move to the target position. This is
because our model can recognize that the selected structure would not
exist at the target location under the constraints of the simulation model.
By sending the derived simulation parameters to the computer simu-
lation to get the corresponding data and visualization (the right-most
image), an almost identical image is also shown under the parameters.
The second case of the cosmological simulation (the fourth row of
images in Figure 10) shows the zoom-in images from the surface ren-
dering visualization. In this case, the selected halo can exist at the target
location under the constraints of the simulation model. Therefore, the
halo can be moved to the target location. The visualization of the data
from the cosmological simulation by the derived simulation parameter
from our approach shows an almost identical image. It also verifies that
the structure can exist at the target location in the simulation model.

8 DISCUSSION

Parameter inversion is a critical component, where typically multiple
inputs can map to the same output, yet our approach yields a unique
input. This input results from considering the continuity in structural
variations. Our model begins with initial input parameters and modifies
them such that both parameter and image changes are minimized,
achieving a target parameter closest to the original set. This approach



Fig. 10: Interactions with the predicted image and the sequence of generated images after the interaction. The parameters used to produce ground
truth images are not always identical to the parameters derived from our model. This is because our model always derives floating-point parameters,
but simulations could only accept a fixed number of decimal places. Therefore, we round the number to get the ground truth.

aligns with expert needs in image manipulation, aiming for minimal
adjustments to produce the desired image. However, allowing for more
significant changes during parameter adjustment (e.g., higher learning
rates in feature supervision) can produce various target outcomes in the
generated sequence of dynamic visualizations. Adjusting the learning
rate thus accommodates diverse application requirements.

Our method can also support higher-resolution image prediction and
interaction by adjusting the generator’s architecture, specifically by
adding synthesis blocks in the Synthesis Subnet to handle increased
resolutions. Higher-resolution image processing requires more compu-
tational resources and longer training times. Additionally, managing
larger 3D simulations becomes challenging. This means dealing with
larger and more complex data features, which may result in longer
training times and less satisfactory prediction outcomes for our method.
Therefore, further research in core dataset selection and model genera-
tion is essential to improve our method’s effectiveness.

Our study has identified several limitations. First, constructing the
training dataset may require multiple iterations if the coverage of phys-
ical parameters or sampling frequency is insufficient, leading to poor
prediction outcomes and necessitating additional trials to enhance the
dataset. Second, the setup of structure-based patches heavily relies on
the application domain, requiring collaboration with domain experts for
iterative adjustments. Inappropriate parameter settings can render these
patches ineffective at capturing the intended structures. Furthermore,

in cases with numerous similar local structures, incorrect structure
selection and tracking errors can occur during the interactions. Lastly,
interacting with three-dimensional structures on a two-dimensional
plane introduces inaccuracies. The occlusion issues inherent in dis-
playing 3D structures in 2D images complicate interactive selections.
While adjusting the viewing angle can partially address this, further
research is needed to develop more effective interaction techniques.

9 CONCLUSION

In this work, we propose ParamsDrag, a surrogate model that enhances
parameter space exploration through direct interaction with visualiza-
tions. We explore differences in latent vector distributions and editing
methods between traditional image generation and scientific visual-
ization. We use a gradient descent-based algorithm for editing latent
vectors, allowing for precise adjustments in discrete space. Our ex-
periments with real-world simulations show our model’s effectiveness
compared to state-of-the-art solutions.
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