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Fig. 1: In Case Study, the biologist’s analysis comprises: 1 Select the Thyroid Cancer in the Disease search box. 2 Observe the
similar pattern between KRAS and CDK1 by zooming in on the Radar in the Embedding View. 3 Select CDK1 in the Primary Gene
search box. 4 Select MYC, a correctly predicted partner gene of CDK1, in Partner Gene Table. 5 MYC tagged in Partner Gene
search box. 6 The Entity Flow Bar indicates that gene-gene connections are no longer predominant. 7 The Path Bar displays a
smaller ratio of SL_GsG. 8 Narrow the investigation scope to CDK1→Gene→BP by color encoding in the Knowledge Graph. 9
Select the irrational path in the Knowledge Graph. 10 Observe the histogram of sensory_perception_of_smell, indicating that this
entity often ends such metapaths. 11 Select L-H-L strategy by clicking on All edge. 12 Observe that the proportional relationship
of L-H-L is not statistically significant within its parent set H-H-L . 13 Select H-H-L strategy by clicking on Gene. 14 Observe
the proportional relationships of L-H-L and H-L-L , sub-strategies to H-H-L . 15 Add the formulated strategy to Operation List
and enter memos. 16 Click to retrain the model. 17 Select the retrained model to initiate an iterative exploration. 18 Identify
the cluster of three similarly ranked genes, EGFR, MYC, and RPL13, using the Rank Indicator. 19 Lasso the three clustered genes.

Abstract—Synthetic Lethal (SL) relationships, though rare among the vast array of gene combinations, hold substantial promise
for targeted cancer therapy. Despite advancements in AI model accuracy, there is still a significant need among domain experts for
interpretive paths and mechanism explorations that align better with domain-specific knowledge, particularly due to the high costs of
experimentation. To address this gap, we propose an iterative Human-AI collaborative framework with two key components: 1) Human-
Engaged Knowledge Graph Refinement based on Metapath Strategies, which leverages insights from interpretive paths and domain
expertise to refine the knowledge graph through metapath strategies with appropriate granularity. 2) Cross-Granularity SL Interpretation
Enhancement and Mechanism Analysis, which aids experts in organizing and comparing predictions and interpretive paths across
different granularities, uncovering new SL relationships, enhancing result interpretation, and elucidating potential mechanisms inferred
by Graph Neural Network (GNN) models. These components cyclically optimize model predictions and mechanism explorations,
enhancing expert involvement and intervention to build trust. Facilitated by SLInterpreter, this framework ensures that newly generated
interpretive paths increasingly align with domain knowledge and adhere more closely to real-world biological principles through iterative
Human-AI collaboration. We evaluate the framework’s efficacy through a case study and expert interviews.

Index Terms—Synthetic Lethality, Model Interpretability, Visual Analytics, Iterative Human-AI Collaboration.

1 INTRODUCTION

H. Jiang, S. Shi, S. Zhang, J. Zheng and Q. Li (corresponding author) are
with School of Information Science and Technology, ShanghaiTech
University, and Shanghai Engineering Research Center of Intelligent Vision
and Imaging, China. E-mail: {jianghr2023, shishh2023, zhangshh, zhengjie,

liquan}@shanghaitech.edu.cn.

Manuscript received 1 April 2024; accepted 15 July 2024. Date of Publication
21 October 2024; date of current version 18 July 2024. Digital Object
Identifier: xx.xxxx/TVCG.201x.xxxxxxx

https://orcid.org/0009-0009-5717-4208
https://orcid.org/0009-0004-3384-8304
https://orcid.org/0009-0008-1933-1869
https://orcid.org/0000-0001-6774-9786
https://orcid.org/0000-0003-2249-0728


Synthetic Lethal (SL) relationships among genes denote a specific
type of gene interaction characterized by co-expression [21]. In this
context, inhibiting one lethal gene alone does not affect cell survival,
but simultaneous inhibition of both genes results in cell death [12], as
depicted in Fig. 2. This concept is crucial for targeted cancer therapy,
as targeting the SL partner gene of a known cancer-related gene allows
for precise cancer cell elimination while sparing normal cells. Thus, it
offers a viable strategy for inducing the demise of cancer cells when
directly targeting certain genes is challenging.

Given the substantial medical relevance of SL pairs, screening
them is crucial for clinical applications. Several experimental biology-
based methods, such as RNA interference and genome editing with
CRISPR/Cas9 [41], have been introduced for comprehensive SL screen-
ing [59]. However, these traditional wet lab methods are resource and
labor-intensive, time-consuming, and prone to off-target effects [17].
Additionally, validated SL pairs constitute less than 0.1% of all po-
tential pairs due to the vast number of human gene combinations [4].
To overcome these challenges, computational methods [49], based on
biological insights, have been suggested to speed up and enhance the
precision of SL gene pair predictions. These methods span statistical ap-
proaches [9], network-based strategies [15], and classic machine learn-
ing (ML) [56], along with artificial intelligence (AI) techniques [36].
Notably, AI methods have demonstrated superior predictive accuracy.
However, aside from achieving accurate predictions, biologists increas-
ingly prioritize understanding the interpretation of SL relationship
mechanisms implicit in these AI models. Nevertheless, grasping the
biological mechanisms underlying the predicted results remains chal-
lenging [46]. Moreover, the current AI model tools generally lack suf-
ficient interpretability, resulting in a skeptical stance among researchers
toward the predictive outcomes in this field.

Fig. 2: SL gene pairs refer to a pair of genes where inhibiting one does
not impact cancer cell survival, but inhibiting both leads to cell death.

Prior research [13, 50, 52, 64] has aimed to aid biologists in compre-
hending the behavior of prediction models, facilitating the exploration
of mechanisms behind successful predictions. These approaches are of-
ten rooted in biological knowledge. For instance, KG4SL [52] enhanced
SL prediction accuracy by directly incorporating various relevant bio-
logical factors into the Knowledge Graph (KG) and integrating them
with Graph Neural Networks (GNN). Going a step further, KR4SL [64]
developed an interpretable AI model for SL prediction. Expanding
the scope, efforts have been made to support both domain experts and
non-AI-experts in exploring and explaining model behaviors [13, 50].

Despite aiding target users in understanding parts of model behav-
iors to enhance interpretability, the methods mentioned above bring
new challenges to Human-AI collaboration, which stem from two
intertwined dimensions: the symbiotic interplay between biologists’
involvement and the application of AI. On one hand, earlier research
has mainly aimed at improving prediction accuracy by incorporating
vast amounts of information into the model input [29]. However, in
efforts to understand SL relationship mechanisms, the complex data
used for model input significantly increases the complexity of process-
ing and analysis. Given the intricacies of biological data, some gene
or protein interactions might have subtle relevance to SL mechanisms.
This subtlety potentially introduces new noise, influencing both predic-
tion outcomes [67] and interpretive subgraphs [24]. Hence, a method
synergizing with domain expertise becomes crucial to effectively de-
vise reasonable strategies for screening biological knowledge used
to train AI models. On the other hand, biologists seek to understand
AI models and expect clear insights into predictions. This compre-
hension is vital for decision-making and selecting wet lab directions,
allowing experts to trust or work with these models [16]. Within this
collaborative process, biologists must carefully consider the division
of responsibilities between themselves and the AI models while si-
multaneously evaluating their reliability. In the end, biologists bear

the accountability for prediction outcomes. Current approaches mainly
provide AI-generated suggestions for biologists to make final deci-
sions [64], with little focus on the iterative synergy between AI and
biologists, such as effective means to rectify the misleading knowledge
acquired by the model. Nevertheless, an iterative interaction [57] has
the potential to significantly impact the quality and efficiency of the
analytical process, which highlights the need for a more integrated and
dynamic collaboration between biologists and AI systems.

To tackle these challenges, we initiated a substantial partnership
with six biologists and SL researchers, immersing ourselves in their
daily research routines. Through a formative study involving these
professionals, we conducted insightful interviews to discern their needs
and expectations. These discussions not only provided an understand-
ing of their requirements, but also yielded six design requirements.
These requirements are structured into two tiers: 1) Human-Engaged
Knowledge Graph Refinement Based on Metapath1 Strategies and 2)
Cross-Granularity SL Interpretation Enhancement and Mechanism
Analysis. We propose an iterative framework of human-AI collabora-
tion aligned with these design requirements. Initially, domain experts
explore new SL pairs using predictions and interpretive paths2 gen-
erated by a model trained on the entire data. During this process,
irrelevant or incorrect paths that may introduce noise to the predictions
are eliminated from the KG using appropriate metapath strategies. Sub-
sequently, the model retrains, allowing domain experts to iteratively
scrutinize predictions and interpretive paths, refining the KG. This
iterative process continuously optimizes predictions and mechanism
exploration, enhancing expert participation and intervention, ultimately
leading to increased trust. Furthermore, mechanism exploration can
identify more persuasive SL pairs for validation through wet lab experi-
ments. To support this cycle, SLInterpreter is developed to help domain
experts organize and compare interpretive paths across granularities,
uncovering potential SL mechanisms and more persuasive SL pairs. We
conducted a case study involving our collaborative experts, followed by
interviews to gather their feedback. The findings notably underscored
the approach’s superiority in delivering informative domain insights,
facilitating decision-making, and presenting an intuitive interface. In
summary, the contributions of this study can be outlined as follows:

• We collaborated closely with biologists and SL researchers, con-
ducting insightful interviews to uncover six essential design re-
quirements for addressing SL mechanisms.

• We introduced the iterative framework SLInterpreter, tailored to
meet these design prerequisites, empowering experts to explore
SL pairs and mechanisms, refine the KG, and foster trust.

• We validated the effectiveness of SLInterpreter through a com-
prehensive case study and interviews, demonstrating its superior
performance and value.

2 RELATED WORK

2.1 Computational Methods for Synthetic Lethal Prediction

Constrained by the limitations posed by wet lab experiments in screen-
ing SL pairs, numerous computational approaches have been introduced
to predict SL pairs [49, 58]. These approaches fall into three main cate-
gories: statistical-based, network-based, and ML-based methods.

Statistical-based [6, 7, 9, 53] and network-based methods [23, 33]
model existing SL data under specific assumptions. The interpretability
of these methods mainly stems from their ability to reveal statistical or
topological patterns associated with validated SL pairs. For instance,
DAISY [18] employed three statistical methods for different cancer sets
to infer SL interactions from genomic data. Kranthi et al. [22] used a
graph-based approach with centrality measures, assuming that highly
connected proteins are crucial and their knockout leads to lethality.
However, these methods may not cover all data aspects, resulting in
high prediction accuracy only for the aspects they cover, while accuracy
may be low for other data [49]. Additionally, this can introduce biases

1A sequence of node types that guide a walk from the origin to the destination node,
commonly applied in biomedical network analysis.

2Interpretive paths are explanatory links and nodes connecting the primary gene with
the predicted gene through biological relationships.



and challenges in discovering new SL mechanisms. ML-based methods
are designed to identify intricate patterns in large datasets that defy
straightforward analysis, with fewer and more relaxed assumptions
about the data [14], thus improving prediction accuracy for unobserved
data. For instance, Wu et al. [56] developed a k-NN model, suggesting
that gene pairs similar to validated SL pairs have higher SL potential.
Lundberg S.M. [35] enhanced tree-based models’ interpretability by
measuring local feature interactions and using these insights to under-
stand the model’s global structure. However, most of these classic ML
methods still depend on the manual extraction of gene features based
on past knowledge, which can introduce human biases [49]. While
deep learning methods reduce the need for manual feature engineering,
they often lack transparency and function as opaque black boxes.

Given the limitations of the aforementioned methods, the KG-based
GNN model leverages the extensive validated facts within the KG to
learn gene representations and predict SL relationships with minimal
or no explicit feature engineering [48]. The KG-based GNN model has
demonstrated state-of-the-art predictive accuracy and provides inter-
pretive paths with their weights through attentive aggregation. Conse-
quently, we built our backend based on the KR4SL framework [64].

2.2 Graph Neural Network Interpretability

Interpreting GNN models is crucial, prompting many efforts to enhance
their interpretability [36, 43, 45, 60, 61]. These efforts are primarily
categorized into three levels of granularity [63]: 1) Instance-Level
Explanation: This aims to elucidate the prediction for each instance
by identifying significant substructures or subgraphs. 2) Model-Level
Explanation: This focuses on comprehending the global decision rules
captured by the GNN. 3) Group-Level Explanation: This provides
explanations for a group of predicted instances.

Most GNN interpretability methods focus on Model-Level Expla-
nation [2, 36, 45], aimed at helping data or AI experts understand the
structures and behaviors of models or assist in debugging. Nevertheless,
these methods often overlook the challenges faced by non-AI domain
experts. To address this, some studies have sought to create more
intuitive explanations for non-AI experts using Instance-Level Expla-
nation [43, 62]. For instance, GNNExplainer [60] identifies critical
subgraphs to elucidate GNN model predictions.

While Instance-Level Explanation methods enhance domain experts’
understanding of a model’s decisions for specific instances, they fall
short for those concerned with potential mechanisms indicated by the
model. To address this limitation, DrugExplorer [50] introduces Group-
Level Explanation, which allows users to categorize drugs based on
similar action mechanisms. Inspired by their approach, our study assists
domain users in exploring potential mechanisms at the Group-Level
by analyzing relationships between instances within interpretive paths
throughout iterative interactions with AI. Notably, our target users are
biologists researching SL. Unlike DrugExplorer, which focuses on
drug-to-disease relationships, we emphasize gene-to-gene relationships.
Furthermore, we enable users to iteratively refine AI predictions and
discover new SL mechanisms through cross-granularity exploration.

Additionally, in GNN research, CorGIE [34] explores graph topol-
ogy, node features, and embeddings interplay to decipher GNN opera-
tions. Building on this, GNNLens [20] provides a visual tool assisting
ML experts in identifying potential error patterns, offering insights for
optimizing model structures. However, these tools are unsuitable for
non-AI domain experts to explore predictions and underlying mecha-
nisms. Our work differs by focusing on assisting domain experts in a
deeper exploration of the underlying mechanisms suggested by GNN
models. Through iterative and cross-granularity visualization, we en-
able domain experts to rectify knowledge erroneously acquired by GNN
models, facilitating a more profound understanding of predictions.

2.3 Human-AI Collaboration

Human-AI collaboration refers to the interactive cooperation between
humans and AI to jointly address specific tasks, with responsibilities
divided based on the strengths of each party [38, 44]. As AI perfor-
mance continuously improves, the ways humans and AI collaborate are
constantly evolving, with three main patterns proposed [44]. The first

pattern is AI-assisted decision-making, where AI provides necessary in-
formation and support for humans to make final decisions. Many studies
have seamlessly integrated AI assistance into the workflow of domain
experts [40, 54, 66]. The second pattern, Human-in-the-loop, involves
incorporating expert intervention into the process of training AI models.
This approach aims to train accurate models at minimal cost by inte-
grating human knowledge and experience [8, 37, 38, 57, 68]. The third
pattern, joint action, involves humans and AI working together towards
a common objective, functioning as a single entity [1, 25–27, 38, 70].

Building upon existing research, our approach seamlessly integrates
the expertise of biologists with the supportive role of AI. Biologists first
explore new potential SL pairs through the predictions and interpretive
paths generated by the model trained on entire data. Subsequently, we
facilitate biologists’ active involvement in a human-in-the-loop process,
assisting them in refining the knowledge acquired by the model through
appropriate metapath strategies, which results in interpretive paths that
progressively reflect biologists’ expertise and biological principles.

3 FORMATIVE STUDY

The formative study aimed to thoroughly understand and evaluate the
challenges faced by SL researchers, their preferences and expectations
regarding collaboration with AI, and their system design requirements.
To achieve this, we conducted semi-structured interviews with four
researchers (E1-E4) specializing in SL mechanisms and two clinical
physicians (E5-E6) from a local university and a hospital (Mean Age =
47.5, SD = 46.6, four males and two females). Within this group, E1-
E2 specialize in screening SL pairs using the CRISPR/Cas9 technique,
focusing on thyroid cancer and glioma, respectively. E3-E4 are engaged
in anticancer drug research, collaborating with E5-E6. Each participant
has extensive research experience in SL and possesses knowledge or
experience in AI-assisted prediction of SL pairs. Through thematic
analysis [5], we extracted valuable insights regarding the challenges
faced by domain experts and summarized the design requirements for
our approach. Each interview session lasted approximately 45 minutes.

3.1 Experts’ Conventional Practices
Our experts emphasized their reliance on wet-lab experiments or sta-
tistical methods in the past for discovering and validating new SL
pairs. Specifically, wet lab experiments require skilled researchers to
culture relevant cells. Moreover, specific gene inhibitors are utilized,
necessitating manual observation and recording of experimental data.
For instance, in tumor experiments, it is crucial to observe and record
proliferation-related experimental data. Some tumors require the assess-
ment of their migration properties through methods like cell scratching,
followed by cell washing or drug addition observation. If the experi-
ment progresses smoothly, it typically involves about five researchers
and takes approximately half a year. Considering potential issues such
as unexpected cell death or microbial contamination during cell culture,
the duration may extend further. Therefore, given the considerations
of experimental costs, manpower, and equipment needs, most labs are
limited to conducting one to two wet lab experiments at a time.

Given the high cost and limitations of wet lab experiments, our
experts emphasized their need for a method that can predict SL pairs at
a lower cost and with higher accuracy, while also providing reasonable
explanations. To this end, they have attempted to use AI-assisted
methods for experimental pair screening. However, in their attempts,
they found that current AI methods lack sufficient interpretability and
tools for mechanism exploration. Moreover, since the models can
only provide one-way prediction results, applying their expertise to
intervene in the AI prediction process proved to be difficult. The sole
form of interaction experts have with the model is to accept or reject its
predictions, which leads to a lack of trust in these models’ predictions.

3.2 Experts’ Concerns and Barriers
Domain experts initially voiced concerns over biological data accuracy.
Several interviewees highlighted the importance of reliable and perti-
nent data in training AI models. They underscored that “...this basically
decides how accurate the AI predictions are and how sensible the expla-
nations it gives make sense.” For instance, E1 stated, “Picking the right
data to train the model is really important, and where that data comes



from is definitely something to seriously think about.” E2 mentioned,
“A worry we all share is that if the model is learning, the info we feed it
better is true... When we’re looking into things, if we spot any issues
with the data or conclusions, I hope there’s a way to quickly filter them
out.” This reveals the first challenge: C1. Reliability of biological
data in AI training. As experts analyze the model’s interpretive paths,
having effective methods and interactive tools for screening data and
addressing potential errors or misleading conclusions is vital.

In terms of collaboration with AI, several interviewees expressed
concerns about the current pattern. The prevalent human-AI collab-
oration approach in SL involves domain experts passively accepting
prediction results. Subsequently, experts simply choose a few gene
pairs for initial experimental validation, typically those not yet investi-
gated or related to their current research direction. This collaboration
mode entirely overlooks the active involvement of domain experts in
the prediction task, leading to researchers distrusting the conclusions.
As mentioned by E4, “I simply get the results the model spits out,
and when I see some obvious mistakes, there’s no way for me to fix
[them]. It just keeps eroding my trust in AI.” This highlights the second
challenge: C2. Lack of intervention in AI prediction process.

Interviewees also expressed concerns in decision-making, poten-
tial SL mechanism exploration, and continuous collaboration with AI.
Specifically, determining whether to accept and validate AI’s prediction
results through experiments poses a significant challenge. As high-
lighted by E3, “We’re talking about over 20,000 human genes here,
and doing experiments for all those gene pairs? That’s just not econom-
ically achievable.” Similarly, E2 pointed out, “...So, AI may predict
a bunch of gene pairs, but it takes us at least half a year to check out
a few pairs at the same time. So, we really hope the predictions are
highly accurate and AI can give us a good explanation of how they
came up [with the predictions].” This reveals the third challenge: C3.
High trial-and-error costs. Wet lab experiments are time-consuming
and resource-intensive. Researchers cannot experimentally validate all
predictions, and careful consideration is needed in selecting the next
research targets. For AI predictions, there is a need for more abundant
and reasonable evidence to demonstrate their experimental value.

Furthermore, even if the model provides a plausible explanation for
individual gene pairs, domain experts express greater concern about
extracting underlying mechanisms and identifying commonalities from
multiple prediction results. For example, E2 pointed out, “The pre-
diction results contain too many possible interpretive paths. Although
these paths are sorted by scores, we still need to focus on at least 10 or
so paths, and once too many entities are set up, it puts a very heavy bur-
den on us to explore possible mechanisms”, highlighting the challenge:
C4. Limitations in SL mechanism exploring. While domain experts
find the commonalities among these explanations intriguing, current
methods remain cumbersome and insufficient in assisting experts to
effectively compare and analyze these commonalities.

While some SL experts acknowledge the accuracy and efficiency
of AI predictions, researchers still harbor widespread concerns regard-
ing sustaining ongoing collaboration with AI. E5 noted, “We’ve got
some AI-related projects going on, but they’re mostly just starting out...
Honestly, AI models are still kind of new to us compared to the usual
methods, so we stick to what we know best - traditional research meth-
ods using stats or genomics.” Similarly, E6 commented, “Yeah, I totally
agree that we need [tools] to fix AI when it learns wrong stuff. In the
past, we didn’t have such support, and we’re not used to working with
interactive models like that... So, if those tools come along, we’ve
gotta make sure they actually work by checking how they affect the
model’s performance,” highlighting the final challenge: C5. Lack of
experience in iterative collaboration with AI.

3.3 Experts’ Needs and Expectations

After conducting interviews with experts, we’ve compiled a set of re-
quirements aimed at effectively addressing the discussed challenges.
Our approach is tailored to seamlessly integrate with conventional
practices, allowing experts to grasp prediction model behaviors and
delve into the mechanisms behind successful SL predictions. To
delve deeper, we systematically tackle these requirements in two

parts: [KG Refinement]Human-Engaged Knowledge Graph Refine-
ment Based on Metapath Strategies and [SL Interpretation]Cross-
Granularity SL Interpretation Enhancement and Mechanism Analysis.
These parts operate in an [Iterative Cycle], continuously refining
model predictions and exploring mechanisms, thereby enhancing expert
involvement and intervention, and bolstering trust.
[KG Refinement]Initially, researchers underscored the urgency of

conducting a rapid and comprehensive exploration of training data and
interpretive paths, which is essential for gaining understanding and
familiarity with both the model’s input data and its performance. To
tackle challenges concerning the reliability of biological data [C1],
providing a concise summary of training data and interpretive paths is
essential. This forms the basis for our first design requirement: DR1.
Offer a clear summary of training data, prediction results, and
interpretive paths. Furthermore, addressing the urgent need expressed
by several researchers to quickly identify erroneous or noisy data in the
training set through the error-prone interpretive paths indicated by the
model, our second design requirement emerges: DR2. Detect relevant
training data corresponding to erroneous or noisy paths.
[KG Refinement]Addressing the second challenge [C2], which

concerns researchers’ skepticism towards AI predictions due to inad-
equate intervention, we introduce DR3. Provide appropriate inter-
ventions to filter data corresponding to interpretive paths. This
requirement was consistently emphasized during semi-structured inter-
views, highlighting researchers’ worries about the negative impact of
insufficient intervention on AI predictions. To alleviate these concerns,
our approach offers a comprehensive visual analysis of potentially erro-
neous or noisy data, along with interactive features allowing users to
correct any identified issues promptly.
[SL Interpretation]To address the third challenge [C3], it is

proposed that the system should not only enhance the accuracy of pre-
dicting gene pairs through proper data input but also offer a clear and
sufficient representation of interpretive paths, considering the high cost
of trial and error. This entails the ability to vividly present information
about both the genes and selected entities, along with the attributes of
edge relationships. The emphasis lies on minimizing visual clutter and
ensuring the smooth presentation of both topological and textual infor-
mation. During semi-structured interviews, E1 stressed that “only when
the interpretive paths are presented clearly and intuitively, and align
well with our domain expertise, will the predicted results be convinc-
ingly justified for wet lab experiments validation.” This underscores the
importance of our fourth design requirement: DR4. Provide detailed
displays of paths and entities for interpretive paths.
[SL Interpretation]Regarding the fourth challenge, identified

by researchers in identifying common potential mechanisms from AI
predictions [C4], the system must clearly present and analyze sim-
ilarities across various interpretive paths, which is crucial as it can
significantly aid researchers in comprehending existing mechanisms
and uncovering new ones. Acknowledging the complexity researchers
face in exploring common potential mechanisms from numerous paths,
the design must balance cognitive load with information presentation.
According to E1, “Exploring potential mechanisms in SL is highly
complex, and current AI struggles to directly accomplish theoretical
derivations.” Additionally, as noted by E2, “However, identifying com-
monalities in AI predictions can suggest fruitful directions, provided
these commonalities are easily extracted and summarized. Comparing
them individually in common AI-assisted systems with limited attention
is impractical and can narrow our focus.” This leads us to our fifth
design requirement: DR5. Comparative analysis and mechanism
exploration of different prediction results and interpretive paths.
[Iterative Cycle]In response to [C5], we introduce the last de-

sign requirement: DR6. Facilitating iterative Human-AI interaction
with feedback and recordings. This requirement is crafted to support
domain experts in overcoming unfamiliarity and uncertainty during
their collaboration with AI systems. By ensuring a seamless exchange
of feedback and recording interactions, we empower domain experts
to grasp the repercussions of their interventions on both datasets and
model performance through ongoing engagement. The essence of
this requirement lies in capturing users’ actions comprehensively, thus



enabling them to retrace their steps when faced with unsatisfactory
intervention outcomes or when model metrics fall short of expectations.
This iterative process fosters domain experts’ familiarity with AI col-
laboration, allowing them to refine model performance progressively.
Echoing the sentiments of E5, “During the early stages of AI interac-
tion, keeping up with iterative exploration is key. You know, being able
to jot down all those steps you’re taking? It’s like having a handy tool
that lets you go back and forth, compare stuff, and double-check what
you’ve done. This way, you can make sure your interventions are on
point and your analysis is as sharp as it can be.”

4 SLINTERPRETER

Fig. 3: SLInterpreter comprises A data processing module, B backend
engine, and C frontend interface, facilitating an iterative workflow.

Our analysis approach, implemented through SLInterpreter, consists
of three main components: A data processing module, B backend
engine, and C frontend interface (Fig. 3). The data processing module
prepares data for the KG and extracts gene features. The backend
engine trains the GNN model with the KG and gene features, predicting
SL pairs and interpretive paths. The frontend then provides multiple
interconnected views for iterative and cross-granularity SL analysis.

4.1 Data Description and Processing

We provide detailed information regarding the data utilized in the
backend engine, including both Gene Feature and Knowledge Graph.

Gene Feature. The gene feature data includes both gene sequence S
and gene description D sourced from the National Center for Biotech-
nology Information (NCBI) database [10], recognized as an authorita-
tive gene database in the biological domain, ensuring data reliability and
professionalism. Each gene sequence consists of approximately 19,000
base pairs (ACGT). However, directly converting these sequences into
numerical form and performing operations like dimensionality reduc-
tion would entail significant computational costs due to the extensive
number of genes and the relatively lengthy gene sequences for each. To
address this challenge, we utilize the k-mer method [11] , a common
method of DNA feature extraction in the biological field, to identify lo-
cal patterns in gene sequences S. Meanwhile, we utilize BioBERT [28]
to process functional and descriptive gene information D.

Knowledge Graph. The biological data used to build the Knowl-
edge Graph (KG) is sourced from two main repositories (Tab. 1): the
SL knowledge graph SynLethDB [52] and the biomedical knowledge
dataset ProteinKG25 [65]. These datasets include validated gene SL

interactions and external knowledge about gene functions, such as path-
ways and biological processes. The resulting KG comprises five types
of entities: Gene, Pathway (PW), and three types of Gene Ontology
(GO): Biological Process (BP), Molecular Function (MF), and Cellular
Component (CC). Additionally, it incorporates multiple relationship
types, primarily indicating gene associations with specific paths or
annotations by GO. Entities are connected by these relationships to
form triplets, which are the fundamental components of KG structures,
expressing how two entities are linked (e.g., RPS8—Part of —Cytosol).
Collectively, these triplets constitute the final KG.

Table 1: Data Description.

#Entities #Relations #Triples

SL Graph 9746 1 35374
ProteinKG25 42547 32 361245

Knowledge Graph 42547 33 396619

4.2 Backend Engine

Predicting SL gene pairs can be seen as akin to link prediction. Follow-
ing the methodology described in KR4SL [64], we employ a GNN-based
model. This model predicts potential SL relationships among gene pairs
lacking direct connections by utilizing established relationships to gen-
erate prediction paths and allocate weights to these paths, reflecting the
strength of the predicted SL relationship.

Training Data Construction. According to KR4SL [64], we be-
gin by constructing a directed heterogeneous KG by integrating the
well-established SL graph SynLethDB [52] with the comprehensive
biological dataset ProteinKG25 [65]. Notably, merging these datasets
does not increase the number of entities since all human genes in Syn-
LethDB are already included in ProteinKG25. This augmented graph
serves as the input for the GNN model, enabling it to capture a rich set
of relational patterns and interactions among genes. For transparency,
we have cited the public databases used in this study within our open-
source project3. Additionally, in the context of SLInterpreter, paths
that are irrelevant or less related to SL are iteratively pruned from the
KG, refining the input for the model.

Predicting SL Pairs. Following the encoder-decoder architecture in
KR4SL, we utilize the heterogeneous KG structure to identify potential
SL pairs by tracing relational paths. This approach integrates structural
semantics from the graph with textual semantics extracted from gene
descriptions. Additionally, it employs attentive aggregation among
triples with the same target, enhancing semantic flow through GRU
modules at each layer and accounting for the paths’ weights. In the
final encoder layer, candidate SL partners are pinpointed and evaluated
by a score decoder. The decoder ranks candidates by their potential to
form an SL relationship with the target gene, selecting the top-50 as
predicted SL partners, a commonly used metric in such link prediction
tasks [64]. Simultaneously, the model outputs the 3-hop path containing
the predicted link as an interpretive path along with its score.

The triplets in the dataset are divided into 80% training, 10% valida-
tion, and 10% test sets. Performance evaluation focused on precision
for the top-50 candidates in the test set. The experiments, detailed in
Table 1 in the Appendix, highlighted the model’s efficacy, achieving a
precision rate of 53% for the top-50 candidates. In comparison, using
the same data, the average precision of other similar models [51,52,69]
was 16.29%, with the second-best model, NSF4SL [51], achieving
34.7%, which demonstrates the effectiveness of this model in detecting
key gene interactions, providing valuable insights for cancer research.

4.3 Frontend Interface

In collaboration with domain experts, we developed a frontend inter-
face for exploring biological and genetic data for SL analysis, fea-
turing: 1) Session View ([KG Refinement]): Includes disease and
gene search boxes, a log of modifier operations, and model perfor-
mance overview. 2) Embedding View ([SL Analysis]): Provides
an overview of prediction results on feature reduction. 3) Interpreta-
tion View ([SL Analysis]): Displays cross-granularity interpretation

3https://github.com/jianghr-shanghaitech/SLInterpreter-Demo

https://github.com/jianghr-shanghaitech/SLInterpreter-Demo


paths, and 4) Modifier View ([KG Refinement]): Shows KG repre-
sentations for gene and modifier selection in metapath strategies. After
setting the metapath strategies, users can start a new exploration cycle
based on a retrained model ([Iterative Cycle]).

4.3.1 Session View

The Session View (Fig. 3- C1 & C5 & C6 ) offers a platform to interact
with the model’s prediction outcomes and to review previous logs and
model performance. This view comprises three subviews: the Panel,
the Operation List, and the Model Log.

Panel. Within the Panel (Fig. 3- C1 ), three search boxes are designed
for selecting prediction results at varying levels. The Disease search
box (Fig. 1- 1 ) showcases genes linked to a specific disease, while the
Primary Gene search box (Fig. 1- 3 ) enables direct identification of
genes of interest through auto-complete. Upon selecting a Primary
Gene, Partner Gene Table (Fig. 1- 4 ) below the search boxes displays
the top-50 Partner Genes from the prediction results in ascending order,
detailing Name, Score, and Rank. Correctly predicted Partner Genes are
highlighted in brown font. We verify the accuracy of predicted Partner
Genes using ground truth data from SynLethDB, sourced from previous
wet lab experiments or relevant literature [52]. Moreover, users can
engage with the table by selecting gene rows, which generates tags in
the Partner Gene search box (Fig. 1- 5 ). Concurrently, the Embedding
View and Interpretation View update all prediction results related to the
selected Partner Gene. Operation List. The Operation List (Fig. 3- C5 )
records user interactions with the KG in chronological order, featuring
collapsible text boxes beneath each action for users to elaborate on
their operations and corresponding notes (DR6). Users can select
metapaths using checkboxes. Undesired metapaths can be removed
by clicking . Once the selection of metapaths is finalized and

is clicked, The backend automatically deletes the corresponding
paths, retrains the model, and displays its performance in the Model Log.
Model Log. The Model Log (Fig. 3- C6 ) displays grouped bars detailing
model performance indicators, including Recall, NDCG, and Precision.
Indicators are color-coded with bar length representing values. The
vertical arrangement allows intuitive performance comparison across
models. Users can access models by clicking the corresponding bars.

4.3.2 Embedding View

The Embedding View (Fig. 3- C2 ) offers users an overview of cluster-
ing based on gene features, along with model prediction results and
validated SL partners (DR1), enabling exploration of SL pairing pat-
terns within comparable gene groups (DR5). To fully leverage gene
attributes, including sequences S and descriptions D, we use concate-
nation fusion methods to merge the processed data. We then apply
UMAP [39] to generate the embedding result due to its efficiency in
compressing high-dimensional data into a lower-dimensional represen-
tation. Our experiments (Appendix Fig. 1&2&3) showed that UMAP
outperformed PCA [55] and t-SNE [47] in preserving global data struc-
ture and execution speed. PCA often overlooks crucial biological
variations [19], while t-SNE primarily reveals local structures without
effectively showing similarities between clusters [31]. Both PCA and
t-SNE also perform slowly with large datasets. Although UMAP is
non-linear, meaning distances in the Embedding View are not linear, it
effectively preserves local distances over global distances, enhancing
clustering within local regions, which makes it suitable for our focus on
the correspondence between local clusters. Consequently, the dashed
lines connecting nodes illustrate pairing relationships between genes
rather than distance comparisons, helping users identify patterns where
genes from one cluster frequently link to genes from another cluster.

Visual Design. The Embedding View enhances disease exploration
through intuitive visual cues. Upon selecting a disease from the Dis-
ease search box, the Embedding View highlights associated genes with
distinct • points. The surrounding Radars directly project the relative
locations of Partner Genes onto concentric circles centered on the Pri-
mary Gene. The top-50 predicted Partner Genes are highlighted in
• and correctly predicted Partner Genes are shown in • (Fig. 4- A ).
Users can employ semantic zooming to manage overlapping points or
observe radar patterns more clearly. Hovering over a highlighted point

reveals an enlarged Radar (Fig. 4- B ), facilitating the identification of
tightly clustered Partner Genes with common pairing patterns.

Fig. 4: Glyph Designs for Embedding View. A is the overview of Radar
in disease searching. B is the enlarged Radar. C is the Rank Indicator.

Once a Primary Gene is identified, users can select it in the Primary
Gene search box for further investigation. Upon selecting, the corre-
sponding Primary Gene remains highlighted, while other genes revert
to the default color. Simultaneously, the Embedding View highlights
top-50 predicted Partner Genes • with dashed lines connecting to the
Primary Gene, validated Partner Genes of the Primary Gene •, and
correctly predicted Partner Genes •. Each top-50 predicted Partner
Gene is encircled by Rank Indicator (Fig. 4- C ), an arc indicating its
rank of the Partner Gene. The arc starts at the top and lengthens clock-
wise as the rank increases, with a bar representing the end of the arc,
helping to discover clusters of similar ranked genes at a glance. When
tags are created in the Partner search box, corresponding points are
highlighted •, and the dashed line turns solid.

Interaction. When no Disease or Primary Gene is selected, users
can lasso all genes to explore patterns among genes with similar fea-
tures, with the selected genes highlighted •. Once a Disease is chosen,
lassoing among disease-related genes helps explore patterns within
genes linked to the same disease. Similarly, when a Primary Gene is
selected, lassoing among the top-50 Partner Genes enables the explo-
ration among Partner Genes belonging to the same Primary Gene.

4.3.3 Interpretation View

The Interpretation View (Fig. 3- C3 ) offers users an across-granularity
analysis of paths: spanning from comprehensive cross-gene analyses
(DR5) to intricate single-path analyses (DR4). To enhance the clarity of
metapath content and flow, we break them down based on path hierarchy
into three primary elements: 1) the name, type, and proportion of the
current hierarchical node; 2) the flow from the current hierarchical node
type to the category of the subsequent hierarchical node, and 3) the
names of the paths linking to the next hierarchical node.

Visual Design. To effectively illustrate the name, type, and propor-
tion of entities on each layer while mitigating excessive overlapping
of connecting lines, we employ Voronoi Treemaps [3]. This method
uses the weight of different entities within interpretive paths as their
value, dividing space into irregular polygons, optimizing display space
utilization, and offering clear differentiation between various entities.
Clicking on an entity’s polygon will highlight other entities connected
to it. Consequently, entities belonging to the same category, such as
genes or biological processes (BP), are assigned the same color and
grouped together within the same area. There are a total of five cate-
gories of entities: Gene, Cellular Component (CC), Biological Process
(BP), Molecular Function (MF), and Pathway, as well as 33 types of
path relationships, which are represented using consistent colors.

The Entity Flow Bar (Fig. 5- 7 ) and the Path Bar (Fig. 5- 4 ) are both
presented as horizontally arranged stacked bars. The Entity Flow Bar
is positioned beneath the Entity Treemap (Fig. 5- 6 ) and corresponds
to the categories of entities depicted in the Entity Treemap above. It
illustrates the proportion of the flow from a specific category of entity
to the succeeding layer’s entity category. The Entity Flow Bars for
distinct entity categories operate independently, yet entities of the same
category are color-coded identically to streamline user comprehension.
Flow lines traverse through the designated areas defined by the Entity
Flow Bar, effectively distinguishing the connections. On the other
hand, the Path Bar is a comprehensive stacked bar including every type
of relation observed, along with its relative proportion. By analyzing
these proportions, users can discern the frequency of each relation
type. Moreover, connections stemming from the Entity Flow Bar are
linked to the Path Bars representing different edges based on their



corresponding relation type, which illustrates the connection between
the source entities and the relations.

Design Alternatives. In the iterative design process, we explored
two alternatives. The first alternative (Fig. 5- A ) includes the Sankey
Flow (Fig. 5- 1 ) illustrating entity flow, and the Sankey Bar (Fig. 5-
2 ) showing entity proportion within the interpretation path. In the

Packchart diagram, Entity Nodes (Fig. 5- 3 ) display entity type and pro-
portion, while the Path bar (Fig. 5- 4 ) shows path type and proportion
with connecting lines. This design maintains consistent colors for entity
type and accurately represents entity percentage and weight, but con-
fuses hierarchical correspondence between the Sankey and Packchart
diagrams, requiring users to toggle between the two. Moreover, the
use of nodes in the Packchart is spatially inefficient. In the second
alternative (Fig. 5- B ), we integrate both diagrams by merging Entity
Nodes and Sankey Bar into the Entity Matrix (Fig. 5- 5 ), where each
matrix’s size indicates the entity’s weight. Retaining Sankey Flow and
Path Bar, this design results in considerable overlap in entities’ vertical
coordinates, leading to disorganized connections and compromised visi-
bility. Furthermore, the presentation of the hierarchy remains confusing.
In the final design (Fig. 5- C ), Entity Treemap (Fig. 5- 6 ) eliminates
coordinate overlap with irregular shapes, and Entity Flow Bar (Fig. 5-
7 ) represents the proportion of different entity types, replacing Sankey

Flow. This design displays hierarchical paths without overlap, ensuring
clear and uninterrupted layer connections within an integrated view.

Fig. 5: Design alternatives for Interpretation View. A is an alternative
based on Sankey and Packchart. B is an alternative based on Sankey
and node matrix. C is the final design based on Voronoi Treemap.

4.3.4 Modifier View

The Modifier View (Fig. 3- C4 ) incorporates both the Knowledge Graph
(Fig. 1- 8 ) and Metapath Modifier (Fig. 6) functionalities to aid users
in exploring the KG (DR1), pinpointing pertinent training data (DR2),
and devising human-engaged strategic refinement of metapaths to filter
out irrelevant or noisy data within the dataset(DR3).

Visual Design of the KG. Upon selecting a Primary Gene in the
Panel, the KG displays entities originating from this gene. Inspired by
the design of EgoComp [32], we used an ego-network layout to show
the KG structure. Entities of the same layer are placed on circular arcs
with equal radius, preferentially grouping similar entities. The colors
of entities in the KG correspond to those in the Interpretation View,
ensuring design consistency. To manage the exponential increase in
entities, we display up to 2-hop connections to balance path length and
entity count. When users hover over different entities, the paths leading
to that entity and all related entities along the path are highlighted,
with their names displayed. This interactive feature allows users to
leverage their expertise to evaluate if entities across various paths are
biologically related to SL or have plausible links to the Primary Gene.
Automating selection based on interactions with the Interpretation View
was also considered, but expert feedback showed it could lead users to
select many irrelevant paths or paths not present in the KG. Therefore,
manual selection was chosen for simplicity and to minimize errors.

Concept of the Granularity Level Flow. To assist users in formu-
lating detailed metapath strategies and deriving insights, we introduced
the Granularity Level Flow (Fig. 6- D ). This flow illustrates the transi-
tion of metapath granularity from high (H) to low (L), moving left to
right, and displays the hierarchy of metapath strategies across granular-
ity levels. In this flow, H-H-H represents the metapath with the highest
granularity, 1-Low Granularity represents the metapath with one low
granularity entity, and 2-Low Granularity represents the metapath with
two low granularity entity. L-L-L denotes specific triplets, with a count

of 1. Users begin formulating their metapath strategies by selecting a
specific entity from the KG, with the default granularity being L-L-L .
By converting a low-granularity entity to high-granularity, more paths
are included in the formulated metapath strategies, resulting in the
removal of more paths from the KG due to the expanded selection
range. Therefore, user selections progress from right to left, gradually
increasing in granularity. This linear progression helps users determine
the appropriate level of granularity, minimizing the risk of accidental
or erroneous deletions caused by sudden changes in granularity.

Visual Design of the Metapath Modifier. When a specific entity
is selected, the Metapath Modifier generates a horizontal metapath
display box on the right, linked with the entity. This display box,
shaped by usage habits from expert interviews, is intended to show
information in a table format. Initially, the display box showcases the
selected path (Fig. 6- B1 ), with each entity’s higher granularity elements
(Fig. 6- B2 ) displayed beneath it. Higher granularity elements denote
wider biological categories, each potentially encompassing several
entities of lower granularity. For example, beneath the entity A1BG,
the metapath element Gene is displayed. Users can modify metapath
strategies by clicking corresponding entity granularities (Fig. 6- B1 &
B2 ). A frequency histogram (Fig. 6- A ) is presented above the source
(Fig. 6- 1 ) and target entities (Fig. 6- 2 ), indicating the distribution
of path counts that begin or end with each type of entity. Given the
wide range and long-tail distribution of entity frequencies, we applied a
log transformation to the x-axis to enhance the comparison of the data,
resulting in varying bar widths. Below the histogram, a horizontal box
plot (Fig. 6- 3 ) shows the central tendency and dispersion of frequency
data. The position of the current entity is marked red, helping users
grasp its relative placement within the dataset. To provide detailed
information, hovering over a bar in the histogram reveals its interval
and corresponding value. To further illustrate the relative proportions
of metapath strategies with varying granularity, we have designed two
vertical bars (i.e., Primary Bar and Secondary Bar) (Fig. 6- 4 & 5 )
situated in the Path-Level Summary (Fig. 6- C ). These bars are designed
in a manner akin to the Granularity Level Flow (Fig. 6- D ).

Primary Bar. The left bar (Fig. 6- 4 ), designated as the Primary
Bar, of which the height corresponds to the number of metapaths with
the highest granularity, such as Gene—All_edge—Pathway ( H-H-H ).
Since each entity offers two granularities to choose from—low (Fig. 6-
B1 ) or high (Fig. 6- B5 ), the Primary Bar reflects this distinction. Within
the Primary Bar, three sub-segments (Fig. 6- 6 ) depict the relative
proportions of metapath strategies with exactly one low granularity
entity (i.e., L-H-H , H-L-H and H-H-L ) selected within the metapath
strategies of highest granularity (i.e., H-H-H ), with colors indicating
the type of low granularity entity.

Secondary Bar. The height of the right bar (Fig. 6- 5 ), termed
the Secondary Bar, corresponds to the number of metapaths involving
one low granularity selected entity (i.e., L-H-H , H-L-H or H-H-L
). Its sub-segment heights depict the relative proportions of metapath
strategies involving two selected low granularity entities within the
metapaths of one selected low granularity entity. There are two cases
regarding the display of the Secondary Bar: 1) If the selected metapath
strategy includes exactly one entity of low granularity, the Secondary
Bar is displayed as a complete bar. Its height represents the number
of paths included in the selected metapath strategy, while the sub-
segments’ height represents the proportion of the two sub-strategies
of the selected metapath strategy within it. 2) If the selected metapath
strategy includes exactly two entities of low granularity, the 2-Low
Granularity metapath strategies have two parents strategies, such as
L-L-H among H-L-H and L-H-H . In this case, the Secondary Bar is

divided into the top (Fig. 6- 9 ) and bottom (Fig. 6- 10 ) bars to represent
the two proportions, (e.g., L-L-H / H-L-H and L-L-H / L-H-H ).

Connecting Rules of Primary and Secondary Bars for Granular-
ity Selection. Based on the number of low granularity entities selected
in the strategy, the Primary Bar and the Secondary Bar utilize two
connecting rules to represent corresponding information: 1) In cases
where exactly one entity of lower granularity is selected, such as
Gene—All_edge—IL6-mediated_si... ( H-H-L ) (Fig. 6- C1 ), the target



Fig. 6: Metapath Modifier design for Modifier View. A Design for the Entity-level Summary. B Design for the Metapath Strategy. C Design for the
Path-level Summary. D Granularity Level Flow for the Path-level Summary, H represents High Granularity and L represents Low Granularity.

entity (Fig. 6- 2 ) links to the corresponding sub-segment (Fig. 6- 6 )
on the Primary Bar (Fig. 6- 4 ). This linkage indicates the strategy’s
proportion within the highest granularity strategy ( H-H-H ). Two
lines (Fig. 6- 7 ) extend from the Primary Bar to the Secondary Bar,
delineating the relative proportions of two lower granularity strategies
based on the selected entity within the current metapath strategy (
H-H-L ). Since these two lower granularity strategies are not truly

selected, they are linked in dash lines. In this example, the L repre-
sents the shared low granularity entity, making the 2-Low Granularity
strategies on the Secondary Bar subsets of the current strategy. 2) In
cases where two entities of lower granularity are selected, such as
A1BG—enables—MF ( L-L-H ) depicted in Fig. 6- C2 , the strategies at
this granularity are subsets of two higher-level strategies ( H-L-H and
L-H-H ), each involving 1-Low Granularity entity. Consequently, the

proportions of these two parent strategies within the highest granularity
are simultaneously displayed in the Primary Bar and connected to the
target entity (Fig. 6- 8 ). In this scenario, the Secondary Bar (Fig. 6- 9
& 10 ) shows the proportion of the current metapath selection strategy (
L-L-H ) within two higher granularity strategies ( H-L-H & L-H-H ).

Design Takeaway. Through observation and interaction with the
metapath display box, users can thoroughly assess the proportions
and metapaths with specific granularity and derive insights from them.
For instance, A1BG—PARTICIPATES_GpPW—IL6-MEDIATED_...
(Fig. 6- B1 ), where its H-H-L (Fig. 6- C1 ) subset occupies a smaller pro-
portion within H-H-H , and the H-L-L subset occupies a larger pro-
portion within H-H-L , user can discern that despite the fewer H-H-L
paths, the majority of paths between Gene (H) and IL6-MEDIATED_...
(L) are connected by relation PARTICIPATES_GpPW (L). However,
some paths are connected by other relations, like involved_in (L). Gain-
ing this insight, if user determines that Gene should not be connected to
IL6-MEDIATED_... through PARTICIPATES_GpPW, he can opt for the
H-L-L metapath instead of H-H-L , thereby ensuring the exclusion of

any undesired paths from deletion.

5 EVALUATION

To evaluate the SLInterpreter’s effectiveness, we conducted a case study
with E1-E3, who had participated in our formative study. Following
the Co-discovery Learning Protocol [30], one author briefly guided
the system’s operation while E1 operated the system and E2 and E3
engaged in discussions. We then conducted expert interviews to gather
insights and feedback on their user experience. The entire process
lasted about 2 hours: 30 minutes for familiarizing participants with the
system, followed by two 50-minute rounds of iterative exploration.

5.1 Case Study

Investigating CDK1 and Identifying Problem. E1, a thyroid cancer
specialist, initiated by selecting thyroid cancer in the Disease search box
(Fig. 1- 1 ). Within the Embedding View, he identified a region (Fig. 1-
2 ) where accurately predicted Partner Genes are closely clustered.
Employing semantic zoom, E1 noticed a cluster of KRAS predictions
in the upper right area. Given the extensive study of KRAS in SL and its
role in the RAS/MAPK signaling pathway regulating cells, the experts
held a solid understanding of KRAS. Observing that correctly predicted
Partner Genes of CDK1 also cluster in the upper right, similar to KRAS,
E1 selected CDK1 in the Primary Gene search box (Fig. 1- 3 ). How-
ever, he found the interpretive paths for CDK1 predominantly linked

by gene, making these paths less convincing. Therefore, E1 shifted
focus to different path types. By clicking on the non-gene entities
(Fig. 7- 1 ), E1 discovered that these paths primarily lead to MYC and
RPL13. Among the non-gene entities, sensory_perception_of_smell
has the highest weight in BP, which E2 deemed irrelevant to SL.

Fig. 7: 1 E1 clicked
on the non-gene enti-
ties during investigat-
ing CDK1.

Analysing the Interpretive Path of
CDK1→MYC. Delving deeper into the embed-
ding of CDK1, E1 noted three correctly pre-
dicted genes: KRAS, ranked 13th, MYC at 27th,
and RPL13 at 33rd . After excluding higher-
ranked results that were predicted solely based
on SL relationships and had lower biological
significance, E1 found the remaining ranks
sufficiently high to merit further exploration.
Notably, CDK1 and KRAS are close in the em-
bedding, as are MYC and RPL13. This prox-
imity suggests a similarity in their features.
Given their relevance to thyroid cancer, the
clustering of CDK1 and KRAS is intriguing
to E1. He emphasized that targeted therapy
for RAS gene mutations is a key focus in can-
cer treatment, with extensive research ongoing.
Consequently, E1 was interested in how the
model explains the predictions for the other
two genes. Drawing from his previous ob-
servations, E1 proceeded by selecting the higher-ranked MYC in the
Partner Gene Table (Fig. 1- 4 ), and the corresponding tag is generated
(Fig. 1- 5 ). MYC is a critical oncogene encoding the transcription
factor MYC protein, pivotal in cell growth, division, and metabolism
processes. Analyzing the CDK1→MYC interpretive path, E1 observed
that the Entity Treemap’s middle layers primarily consist of Genes, BP,
and CC. Contrary to common patterns observed in CDK1’s pairing
with Partner Genes, the Entity Flow Bar (Fig. 1- 6 ) indicates that gene-
gene connections are not predominant here. Additionally, the Path Bar
(Fig. 1- 7 ) displays a smaller ratio of SL_GsG, which indicates vali-
dated SL partner relationship, compared to those belonging to BP and
CC. The linkage between CDK1 and MYC mainly involves Gene→BP
paths, such as CDK1—involved_in—DNA_replication—has_part—
DNA_biosynthetic_process—involved_in_inv—MYC. E1 found this
path consistent with his domain knowledge, particularly as MYC over-
expression, a transcription factor driving cell growth, may enhance the
reliance on CDK1 for DNA biosynthesis.

Refining the KG. From the initial exploration, E2 identi-
fied an implausible path CDK1—SL_GsG—FARSA—involved_in—
sensory_perception_of_smell—involved_in_inv—MYC and similar
paths inconsistent with his expertise. To investigate potential data-level
issues causing these irrational predictions, he employed the Modifier
View. E1 first narrowed the investigation scope to CDK1→Gene→BP
in the Knowledge Graph. Since CDK1 belongs to the gene category, he
began exploring from the dashed green areas (Fig. 1- 8 ). He noticed
that the path of Gene→sensory_perception_of_smell indeed appears
in the Knowledge Graph, despite its irrelevance to SL. Selecting this
path in the Knowledge Graph (Fig. 1- 9 ), E1 then refined metapath
strategies in the Metapath Modifier. He first noticed the histogram of
sensory_perception_of_smell (Fig. 1- 10 ), which indicates that among
all entities in its high granularity category of Biological Processes (BP),



this entity frequently appears as the endpoint of such metapaths (Gene—
All_edge—BP). Based on his expertise, E1 determined that any path
involving sensory_perception_of_smell is irrelevant to SL. Therefore,
E1 selected the L-H-L strategy by clicking on All edge (Fig. 1- 11 ).

E3 noted the relatively low height of the primary bar, in-
dicating that the proportional relationship of FARSA—All edge—
sensory_perception_of_smell ( L-H-L ) within its parent set, Gene—All
edge—sensory_perception_of_smell ( H-H-L ) (Fig. 1- 12 ), was not
statistically significant. This indicates that many other Genes are also
connected to sensory_perception_of_smell, which are all irrelevant to
SL. Consequently, E1 selected the H-H-L metapath strategy by click-
ing on Gene (Fig. 1- 13 ). Upon doing so, E1 observed the proportional
relationships of the L-H-L and H-L-L sub-strategies to H-H-L
(Fig. 1- 14 ). Specifically, there is only one occurrence of L-H-L ,
while H-L-L dominates the entire bar. This suggests that almost
all Genes are associated with sensory_perception_of_smell through
the involved_in relationship. Simultaneously, FARSA represents only
a fraction of Gene connected to sensory_perception_of_smell, even
when considering all possible edge types. These findings aligned with
the experts’ expectations. Consequently, E1 added this strategy to the
Operation List and entered “sensory_perception_of_smell is irrelevant
to synthetic lethality” in the text box (Fig. 1- 15 ). Subsequently, E1
clicked (Fig. 1- 16 ) to retrain the model. Upon receiving the
retrained model and its performance metrics from the backend, E1
observed from the Model Log that the new model’s performance was
slightly improved compared to the original model. The accuracy in-
creased by 0.88%, an 1.66% improvement over the original rate, while
the deleted path data accounted for only 0.13% of the total data.

Fig. 8: 1 E1 high-
lighted EGFR’s inter-
pretive paths to re-
veal patterns similar
to MYC and RPL13.

Exploring New Potential SL Partner of
CDK1. E1 proceeded by selecting the re-
trained model(Fig. 1- 17 ) to initiate an itera-
tive exploration. This time, he directly targeted
CDK1 in the Primary Gene search box. Upon
examining the Interpretion View of CDK1,
E2 noticed that the newly generated paths no
longer include sensory_perception_of_smell.
Furthermore, MYC and RPL13 remained ac-
curately identified, maintaining their rankings
at 23rd and 29th. In the Embedding View,
E1 noted that RPL13 and EGFR are close
to MYC. Additionally, through the Rank In-
dicator (Fig. 1- 18 ), E3 noticed that these
three genes share similar rankings. Notably,
EGFR, ranked 31st , indicates a potential but
unidentified SL relationship with CDK1. To
investigate potential patterns among them,
E1 conducted a lasso operation (Fig. 1- 19 ).
Among these genes’ interpretive paths, E3
observed a high proportion for the pattern
Gene→BP→BP→Gene. By highlighting EGFR’s interpretive paths
(Fig. 8- 1 ), E3 observed striking similarities to the patterns of the other
two correctly predicted genes. At this point, E3 remarked, “If the model
could give us clear paths like this for every prediction, and we could
compare them with other known patterns, then I’d feel more confident
in trusting those predictions and putting resources into checking them.

5.2 Expert Interview
System Design and Feedback. Biologists confirmed the effectiveness
of SLInterpreter in a human-AI collaboration that enhances model inter-
pretability and explores SL mechanisms. E1 remarked, “The design of
the Session View fits well with my habits of using biological databases;
we can start exploring from a specific disease of interest.” E2 praised
the Embedding View for quickly indicating potential common patterns
and appreciated the Rank Indicator, which helps determine the ranks of
predicted genes. E3 was pleased with the system’s comprehensive and
intuitive features that aid in removing irrelevant or erroneous data, espe-
cially given the high number of data proven to be erroneous or biased.
He suggested the system could further improve by automatically col-

lecting and displaying suspicious data. Additionally, E1 and E3 noted
that traditional AI-assisted methods required sequential reviewing of a
large number of materials based on confidence ranking alone, typically
taking two to three days to filter 50 predicted results. This lengthy
duration was due to the extensive time spent retrieving potential asso-
ciations between predicted SL pairs, as the information was scattered
and lacked targeted retrieval, often resulting in unexpected delays. The
discontinuity of this review process also reduced their confidence in the
results. In contrast, using SLInterpreter made their exploration more
targeted, enabling them to review 50 predicted results within five to
eight hours, considering the varying time required for retraining the
model. SLInterpreter eliminated the need for further retrieval of obvi-
ously erroneous prediction paths, and the continuity and intervenability
of the process increased their confidence in the results.
Learning Curve. The experts noted that the system’s design matches
their usage habits and the interaction is intuitive. However, there
is a certain learning curve associated with the Metapath Modifier in
the Modifier View and the whole iterative cycle. The entire system
requires some time to understand and master (about 20 minutes), and
learning through specific cases can make the learning curve more
gradual. Nevertheless, the experts still believe that SLInterpreter can
help them gain more insights from their explorations and have greater
confidence in the potential SL pairs they discover.

6 DISCUSSION AND LIMITATION

Lessons Learned. Our collaboration with biologists has provided
valuable insights. First, SL-related biological data is often extensive
and high-dimensional, making rule-based filtering insufficient and ne-
cessitating biologists’ expertise. However, exhaustive evaluations by
biologists are unsustainable, highlighting the importance of leverag-
ing AI or visualization tools to focus their assessments. Second, we
recognized the need to refine metapath granularity levels. While bio-
logical knowledge categorization is intricate, adding granularity levels
for certain entity types can rapidly expand metapath strategies. Thus,
balancing granularity levels with user burden is crucial for effeteness.
Generalization and Scalability. The SLInterpreter enhances inter-
pretability and facilitates cross-granularity exploration for AI models
through interpretive paths. Validated by biologists, it is applicable to
various network predictive tasks and models across multiple domains,
including drug prediction, social network forecasting, and recommen-
dation systems. To ensure scalability, features like semantic zooming
and highlighting have been implemented to prevent visual clutter. Addi-
tionally, for larger entity sets in knowledge graphs, stacking or grouping
nodes can further enhance spatial information capacity.
Limitations. This study presents several limitations. First, the dataset
has limited biological relationships. Despite SL spans various domains
like biomolecular studies and genomics, resulting explanations remain
somewhat broad and constrained. Second, the model primarily predicts
new SL pairs via existing pairs, which may have limited value due to rel-
atively few connected paths via biological information. Third, experts
note that SL gene pairs are not exclusively limited to pairs [42]. Al-
though rare, confirmed instances of SL relationships involving multiple
genes exist, expanding prediction from two genes to more, compli-
cating their connections. This highlights the need for comprehensive
systems and visualizations for complex SL networks. Additionally,
due to extended cycles of wet lab experiments, adequate quantitative
experiments were not feasible within the available time.

7 CONCLUSION AND FUTURE WORK

This study introduces an iterative Human-AI collaboration framework
using SLInterpreter, aimed at 1) Human-Engaged Knowledge Graph
Refinement based on Metapath Strategies and 2) Cross-Granularity SL
Interpretation Enhancement and Mechanism Analysis for domain ex-
perts. A case study and expert interviews demonstrate SLInterpreter’s
ability to efficiently discover new SL pairs, provide substantial inter-
pretability, and offer effective methods for commonality exploration.
Future plans include extending the analysis from single paths to com-
plex networks involving multiple genes, further integrating additional
data sources, and expanding the system to other GNN prediction tasks.
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