
FPCS: Feature Preserving Compensated Sampling of Streaming
Time Series Data

Hongyan Li , Bo Yang , and Yansong Chua

Fig. 1: Each row corresponds to one of the five typical datasets: ball, cinecg, noise, power, and sine. Columns 1 through 4 represent
the visualization fitting effect of the first 100,000 data points in these datasets using the newly proposed FPCS algorithm (column 1),
the LTTB algorithm (column 2), the MinMaxLTTB algorithm (column 3), and the Reservoir Sampling algorithm (column 4), based on a
100 : 1 sampling ratio. The red line represents the visualization result of the original data points, and the green line represents the
visualization result of the sampled data points. Column 5 uses SSIM to compare the visual differences in the line charts of the sampled
data points and the original data points.

Abstract—Data visualization aids in making data analysis more intuitive and in-depth, with widespread applications in fields such as
biology, finance, and medicine. For massive and continuously growing streaming time series data, these data are typically visualized in
the form of line charts, but the data transmission puts significant pressure on the network, leading to visualization lag or even failure to
render completely. This paper proposes a universal sampling algorithm FPCS, which retains feature points from continuously received
streaming time series data, compensates for the frequent fluctuating feature points, and aims to achieve efficient visualization. This
algorithm bridges the gap in sampling for streaming time series data. The algorithm has several advantages: (1) It optimizes the
sampling results by compensating for fewer feature points, retaining the visualization features of the original data very well, ensuring
high-quality sampled data; (2) The execution time is the shortest compared to similar existing algorithms; (3) It has an almost negligible
space overhead; (4) The data sampling process does not depend on the overall data; (5) This algorithm can be applied to infinite
streaming data and finite static data.

Index Terms—Data visualization, Massive, Streaming, Time series, Line charts, Sampling, Feature, Compensating

1 INTRODUCTION

Data visualization assists in exploring and understanding data through
intuitive charts and graphical representations, uncovering hidden trends,
and providing a more comprehensive understanding of the overall

• Hongyan Li, Bo Yang, and Yansong Chua are with China Nanhu Academy of
Electronics and Information Technology. E-mail:
{3271961659@qq.com | ustcboy@outlook.com | caiyansong@cnaeit.com} .

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

situation, serving as an efficient method of information dissemina-
tion [15, 20, 38]. With the development of the internet, the domain of
streaming data, which arrives in a sequential, large volume, quickly,
continuously, and expands indefinitely over time, has become in-
creasingly widespread [17, 28, 42]. The analysis of time series data
that changes over time holds significant importance in fields such
as economics and business [10, 11, 18]. However, visualizing mas-
sive data is extremely resource-intensive and can even cause program
crashes [2, 6, 45].

To address such issues, Vitter proposed the Reservoir Sampling
algorithm [40] in 1985, which enables sampling of large volumes of
streaming data when the total data volume is unknown. This algorithm
has applications in many data processing and machine learning tools,

https://orcid.org/0009-0001-7948-1411
https://orcid.org/0009-0002-7833-5954
https://orcid.org/0000-0002-3133-843X

such as Apache Spark [43] and TensorFlow [1], but it retains each data
point with the same probability, failing to achieve the goal of retaining
feature points. Steinarsson introduced the LTTB (Largest-Triangle-
Three-Buckets) [33] sampling algorithm in 2013, which significantly
improves the fitting effect of visualization line charts for large volumes
of time series data. It is applied in Apache ECharts [26] for sampling
when rendering millions of data points, but LTTB requires calculating
the triangular surface for each data point and depends on the overall
data for bucketing, with the retention of data points being related to
adjacent buckets. To enhance the efficiency of the LTTB algorithm,
Van Der Donckt and others proposed the MinMaxLTTB [14] sampling
algorithm in 2023, which is applied to the time series data visualization
tool plotly-resampler [39]. However, issues such as the complexity
of calculations and the existence of relationships between data points
still exist, and both the LTTB and MinMaxLTTB algorithms are only
suitable for processing finite static data.

To address the challenge of sampling streaming time series data, un-
like all existing solutions, this paper introduces a brand-new algorithm
called FPCS: For data points received in sequence, it continuously
updates the maximum and minimum value points based on the value
of the data points. According to the user-input sampling ratio, during
each sampling operation, it retains the earlier received maximum or
minimum value point. The other extreme value point not retained will
be considered for compensation in the next sampling operation based
on whether it conforms to the trend of data growth or decline between
two sampling operations. Compared to the Reservoir Sampling, LTTB,
and MinMaxLTTB algorithms, the FPCS algorithm achieves the best
feature retention results for line charts, the best visualization effects,
the shortest algorithm execution time, and requires almost negligible
space, the sampling process also does not depend on the overall data,
marking the first algorithm to achieve sampling of streaming time series
data.

2 RELATED WORK
With the arrival of the era of big data, visualizing massive data is full
of challenges [9, 23]. Storage requires sufficient resources, network
transmission consumes a large amount of bandwidth, and visualization
rendering requires strong hardware support. However, data visualiza-
tion only needs to retain feature data that can be perceived by the human
eye, and for a large amount of repetitive or unperceivable data, it can
be discarded. Reasonable sampling [25,27,36] can significantly reduce
the total amount of visualization data [24], solving the problem of data
visualization in the background of big data. This paper mainly studies
the sampling of streaming time series data, but there is currently no
similar algorithm. Below, we will discuss the related work on streaming
data sampling and time series data sampling separately.

2.1 Stream Sampling
Streaming data is an infinite collection of dynamic data that grows over
time [34]. Streaming data has the following characteristics: data arrives
in real-time; the scale of data is vast and unpredictable; once processed,
unless specifically saved, the data cannot be reused. Sampling of
streaming data is popular, with algorithms such as Reservoir Sampling
[40], algorithms using sliding windows [7, 8, 35], and algorithms for
processing graph streams [3, 19, 44].

The implementation of the Reservoir Sampling algorithm is as fol-
lows: set the total sampling quantity as k, when the nth data point
arrives, if n <= k, then directly retain the received data point; other-
wise, generate a random integer r in the range of 1 to n, if r <= k, then
modify the rth item of the retained data with the newly received data.
The space complexity of the Reservoir Sampling algorithm is O(k),
which is very efficient in handling large volumes of streaming data, but
this algorithm is a type of random sampling, where each data point
is retained with the same probability, of failing to achieve the goal of
retaining feature points.

Many algorithms are using sliding windows, such as the algorithm
proposed by Arasu et al. [7] in 2004 for maintaining approximate
counts and quantiles of time-varying streaming data, which uses limited
memory space but lacks generality and cannot be applied in other

scenarios. Babcock et al. [8] proposed two algorithms for sampling
data streams using sliding windows in 2002, one of which extends the
Reservoir Sampling algorithm but requires maintaining a linked list for
each data, which may occupy more space; the other algorithm’s space
consumption cannot be guaranteed, and both sampling algorithms are
random sampling, resulting in poor preservation of feature points.

In the research on related works on streaming data sampling algo-
rithms, this paper aims to propose an algorithm that only caches a
limited amount of data and as few as possible, even if the total amount
of data cannot be predicted, still controlling the space complexity within
a relatively low range [30], and an algorithm that does not allow any
relationship between the data as a whole.

2.2 Time Series Data Sampling
Time series data is a collection of data recorded in chronological order.
It is typically visualized as simple two-dimensional line charts [4, 5],
which are among the most widely used chart types [32, 37]. There has
been considerable research on sampling time series line charts, such as
MinMax, M4 [22], LTTB [33], and MinMaxLTTB [14].

The MinMax algorithm buckets all data according to a sampling
ratio, retaining the maximum and minimum value points in each bucket.
The maximum and minimum value points from all buckets form the
result of the sampling. Although the MinMax algorithm has a very
small time complexity, it requires caching all data points, resulting in a
large space complexity, and the effectiveness of data sampling varies.

The M4 algorithm’s bucketing method is similar to the MinMax
algorithm, but in addition to retaining the maximum and minimum
value points, it also retains the first and last points in each bucket. The
points retained in all buckets form the result of the sampling. The M4
algorithm’s performance is similar to the MinMax algorithm, but in
the same dataset and sampling ratio, the sampling effect of the M4
algorithm is generally not as good as the MinMax algorithm.

The LTTB algorithm determines the size of the buckets based on
the sampling ratio, divides the data points evenly into buckets, with
the first and last points each occupying a bucket; retains the point in
the first bucket; starting from the second bucket, iterates through all
points in the bucket, calculates the area of the triangle formed by each
point, the selected point of the previous bucket, and the average point
of the next bucket, and selects the point with the largest area as the
selected point of the current bucket; retains the point in the last bucket.
The points retained in all buckets form the result of the sampling. The
LTTB algorithm has a very significant sampling effect, maintaining the
visual characteristics of the original graph; however, it almost requires
complex calculations for all data points, the algorithm execution time
is long, and during the selection of data points, points from adjacent
buckets need to participate in the operation, indicating a correlation
among the data.

To improve the performance of the LTTB algorithm, the Min-
MaxLTTB algorithm first uses the MinMax algorithm to preselect
data, then applies the LTTB algorithm to the preselected points. This
reduces the total amount of data that needs to be subjected to complex
calculations, but the time complexity is still not as small as the MinMax
algorithm or the M4 algorithm, the initial loading of all data points re-
sults in a large space complexity, and there is still a correlation between
the data as a whole, requiring adjacent buckets’ points to participate in
the selection of data points.

In researching related works on time series data sampling algorithms,
this paper aims to propose a novel algorithm that can maintain the
excellent time complexity of the MinMax and M4 algorithms while
achieving the visualization effect after sampling as the LTTB and
MinMaxLTTB algorithms.

In summary, this paper is dedicated to proposing a completely new
algorithm for sampling streaming time series data. In terms of visual-
ization effect, it achieves the feature preservation results of the LTTB
and MinMaxLTTB algorithms; in terms of time complexity, similar to
the MinMax and M4 algorithms, it reduces a large number of complex
calculations; in terms of space complexity, it leverages the advantages
of streaming data, only caching a limited amount, controllable, and
finite data in memory, reducing memory usage; especially, because it

is processing streaming data, whether a data point is retained cannot
depend on the overall data.

3 DESIGN PHILOSOPHY: WHICH, WHEN, AND HOW
Based on the analysis of Sec. 2, to achieve efficient sampling of stream-
ing time series data, this section will describe the algorithm’s design
philosophy from three perspectives: Which, When, and How. This
includes Retention Criteria for Data Points, Schedule of Sampling
Operation, and Design of the Sampling Algorithm.

3.1 Which: Retention Criteria for Data Points
During the visualization process of time series data, extreme points
form the key features of line charts, and over a continuous period,
time series data typically exhibit fluctuating growth or decline trends.
Therefore, in most cases, only the current maximum value point and
minimum value point need to be considered during each sampling
operation. This paper uses MaxPoint to represent the maximum value
point and MinPoint to represent the minimum value point.

As shown in Fig. 2b, during the previous sampling interval, the
purple point is the MinPoint, and the green point is the MaxPoint.
During the current sampling interval, the orange point is the MaxPoint,
and the blue point is the MinPoint. Observably, the green point aligns
the growth trend from the purple point to the orange point and can be
not retained without causing significant differences in visualization.
Similarly, the green point in Fig. 2d can also be not retained. So,
sometimes it is sufficient to retain only one point between MaxPoint
and MinPoint.

As shown in Fig. 2a, during the previous sampling interval, the
purple point is the MinPoint, and the green point is the MaxPoint.
During the current sampling interval, the blue point is the MinPoint,
and the orange point is the MaxPoint. Observably, the green point does
not align with the growth trend from the purple point to the blue point,
it is a feature point that should not be overlooked during visualization
and needs to be retained. Similarly, the green point in Fig. 2c also needs
to be retained. Therefore, sometimes it is necessary to retain both the
MaxPoint and MinPoint.

In summary, to better fit the trend of the original data starting
to change, each sampling operation retains only the earlier received
MaxPoint or MinPoint within the current interval. For the MinPoint or
MaxPoint received later, the decision to retain or discard is made in the
next sampling operation. If this point aligns with the data change trend
of the points retained in the adjacent two sampling operations, it does
not need to be retained; otherwise, it must be retained. This paper uses
PotentialPoint to represent the MinPoint or MaxPoint not retained in
the previous sampling.

3.2 When: Schedule of Sampling Operation
For streaming data whose total quantity cannot be predicted and contin-
ues to arrive endlessly, based on the user-input sampling ratio R : 1, a
sampling operation is performed every time R data points are received.

Because there are situations where PotentialPoint needs to be com-
pensated, sometimes a single sampling operation requires retaining two
data points. Ultimately, the total number of sampled data points will
be greater than or equal to the expected amount, but the compensa-
tion operation significantly improves the fitting effect of the visualized
sampled data points to the original data points.

3.3 How: Design of the Sampling Algorithm

In Fig. 2f, the current sampling interval corresponds to the previous
sampling interval in Fig. 2g. As shown in Fig. 2f, all points within the
current sampling interval align with the growth trend from the blue
point to the orange point in Fig. 2g, and this interval lacks any promi-
nent feature points that need to be retained for visualization purposes.
Therefore, there exists a situation where no data points are retained
within a single sampling interval. To maximize the retention of signif-
icant feature points during each sampling operation, considering the
characteristics of streaming time series data, MaxPoint and MinPoint
are continuously updated based on the values of received data points,
rather than finding the maximum and minimum value points within

each interval. This design allows intervals lacking obvious feature
points during visualization to delegate the opportunity to retain data
points to nearby intervals, and it meets the near real-time requirement
for data point retention operations.

Whenever R data points are received and a sampling operation is
needed, the earlier received MaxPoint or MinPoint is retained. If the
retained point is MaxPoint, then MaxPoint and PotentialPoint are up-
dated to MinPoint; otherwise, MinPoint and PotentialPoint are up-
dated to MaxPoint. The design of updating data points ensures that the
MinPoint or MaxPoint not retained in each sampling operation partici-
pates in the next sampling operation, preventing the loss of prominent
feature points during visualization.

For most cases, only one data point needs to be retained within a
single sampling operation. As shown in Fig. 2b, PotentialPoint aligns
with the growth trend from the purple point to the orange point, so
the sampling operation only needs to retain the MaxPoint received
earlier within the current sampling interval. As seen in Fig. 2e, Fig. 2f,
and Fig. 2h, if PotentialPoint and MaxPoint, or PotentialPoint and
MinPoint are the same point, then that point is the earlier received
point among MaxPoint and MinPoint, which is the point to be retained
in the current sampling operation. Therefore, in such cases, there
is no need to consider compensating for PotentialPoint, as the sam-
pling operation only needs to retain the earlier received MaxPoint or
MinPoint. There are only two special situations where compensation
for PotentialPoint is needed: when both of the adjacent sampling op-
erations retain MinPoint, and PotentialPoint and MinPoint are not the
same point (Fig. 2a), or when both of the adjacent sampling operations
retain MaxPoint, and PotentialPoint and MaxPoint are not the same
point (Fig. 2c). In these two situations, PotentialPoint is likely to be a
feature point that cannot be ignored during visualization, as it does not
conform to the growth or decline trend from the retained data point to
the current point to be retained. If not retained, significant oscillation
changes would be lost during visualization.

In summary, the design of the sampling process of this algorithm
is shown in Fig. 2a through Fig. 2h. Between adjacent images, "the
current sampling" of the preceding image is "the previous sampling"
of the following image. Dashed arrows show the updating process of
variables. "retained data point" refers to data points that have already
been retained. In the sampling operation of Fig. 2a, PotentialPoint
meets the compensation condition and needs to be retained. Retain
the earlier MinPoint received. Update MinPoint and PotentialPoint to
MaxPoint. In the sampling operation of Fig. 2b, update MaxPoint and
MinPoint. PotentialPoint does not meet the compensation condition
and does not need to be retained. Retain the earlier MaxPoint received.
Update MaxPoint and PotentialPoint to MinPoint. In the sampling
operation of Fig. 2c, update MaxPoint and MinPoint. PotentialPoint
meets the compensation condition and needs to be retained. Retain
the earlier MaxPoint received. Update MaxPoint and PotentialPoint to
MinPoint. In the sampling operation of Fig. 2d, update MaxPoint and
MinPoint. PotentialPoint does not meet the compensation condition
and does not need to be retained. Retain the earlier MinPoint received.
Update MinPoint and PotentialPoint to MaxPoint. In the sampling
operation of Fig. 2e, update MinPoint. Retain the earlier MaxPoint
received. Update MaxPoint and PotentialPoint to MinPoint. In the
sampling operation of Fig. 2f, update MaxPoint. Retain the earlier
MinPoint received. Update MinPoint and PotentialPoint to MaxPoint.
In the sampling operation of Fig. 2g, update MaxPoint and MinPoint.
PotentialPoint does not meet the compensation condition and does not
need to be retained. Retain the earlier MaxPoint received. Update
MaxPoint and PotentialPoint to MinPoint. In the sampling operation
of Fig. 2h, update MaxPoint. Retain the earlier MinPoint received.
Update MinPoint and PotentialPoint to MaxPoint. Connecting Fig. 2a

through Fig. 2h as shown in Fig. 2i, sample 270 data points and retain
a total of 11 data points highlighted in blue, successfully preserving the
features for data visualization.

Therefore, the design of this algorithm is as follows: User input a
sampling ratio R : 1. Continuously update MaxPoint and MinPoint
based on the values of received data points. Perform a sampling
operation once every R data points received. Compensate for the

Fig. 2: Figures a through h illustrate the sampling process of 270 data points at a sampling ratio of 30 : 1. In each image, the data points to be retained
in the current sampling are framed with a black dashed rectangle. Between adjacent images, "the current sampling" of the preceding image is "the
previous sampling" of the following image. Dashed arrows show the updating process of variables. Figure i is the image formed by connecting
Figures a through h, showing the final sampling effect of 270 data points, with a total of 11 data points highlighted in blue that were retained.

PotentialPoints under two special conditions, retaining the earlier re-
ceived MaxPoint or MinPoint. This algorithm’s variable update method
meets the requirements for near real-time sampling of streaming time
series data; it achieves the effect of preserving as many original data
visualization features as possible under a limited sampling ratio.

4 FPCS
Based on the analysis of Sec. 3, to achieve efficient sampling of con-
tinuously arriving streaming time series data while maintaining high
visualization fidelity and low time and space complexity, unlike all
existing algorithms, this paper proposes the innovative FPCS algorithm
for the first time. The algorithm is primarily divided into the following
steps: (i) Determine the sampling ratio; (ii) Initialize variables; (iii)
Decide to update the maximum or minimum value point based on the
newly received data points; (iv) When sampling is required accord-
ing to the sampling ratio, determine whether to compensate for the
minimum or maximum value point not retained in the previous sam-
pling and retain the maximum or minimum value point received earlier.
Supplemental Materials include a digital video dynamically showing
the FPCS algorithm sampling process and the code implementation of
the FPCS algorithm.

The first step involves determining the sampling ratio R : 1 based
on user input, meaning that sampling occurs once after receiving R
data points. Therefore, R must be a positive integer greater than 1;
Otherwise, the input data will be incorrect, and sampling will not be
needed.

The second step initializes the maximum value point MaxPoint and
the minimum value point MinPoint to the first received data point. It
also initializes the maximum or minimum value point not retained
in the previous sampling PotentialPoint to Null, the flag indicating
whether the minimum value point was retained in the previous sampling
PreviousMinFlag to −1, and the Counter to 0.

The third step increments Counter by 1 each time a data point P(x,y)
is received. If the value P.y of the newly received data point P is

greater than or equal to the value MaxPoint.y of MaxPoint, MaxPoint
is updated to P. If the value P.y of the newly received data point P
is less than the value MinPoint.y of MinPoint, MinPoint is updated to
P. As shown in Fig. 2a, when the previous sampling ends, MaxPoint,
MinPoint, and PotentialPoint are all updated to the green point in the
diagram. After the current sampling begins, because values larger and
smaller data points have been received, MaxPoint is updated to the
orange point in the diagram, and MinPoint is updated to the blue point
in the diagram.

The fourth step checks if Counter is greater than or equal to R, sig-
nifying that data points need to be retained at this time. If both the
previous sampling and the current sampling retain either the maximum
value point or the minimum value point, and PotentialPoint and the cur-
rently to-be-retained data point are not the same point, such situations
require compensation for PotentialPoint since it often represents obvi-
ous feature points. Retain the earlier received point between MaxPoint
and MinPoint. Update MaxPoint, MinPoint, and PotentialPoint to the
currently unretained MinPoint or MaxPoint. If the current sampling
retains MinPoint, update PreviousMinFlag to 1; otherwise, set it to
0. Finally, reset Counter to 0 and return to step three. As shown in
Fig. 2a, in both the previous sampling and the current sampling, the
earlier received minimum value point is retained, and PotentialPoint
and MinPoint are not the same point, so the PotentialPoint in the figure
meets the criteria for retaining feature points and requires compensa-
tion. If this point were not retained, it would lose the obvious upward
trend from the purple point to the green point, as well as the clear
downward trend from the green point to the blue point. However,
the PotentialPoint in Fig. 2d does not meet the criteria for retaining
feature points and does not require compensation. This point falls
within the range of decreasing fluctuations from the purple point to the
blue point and can be ignored during visualization. Since MinPoint
is received before MaxPoint (MinPoint.x <MaxPoint.x) in both Fig. 2a

and Fig. 2d, MinPoint needs to be retained. In the current sampling,
having retained MinPoint, update MinPoint and PotentialPoint to the

Fig. 3: Using the FPCS algorithm, sampling is performed on 9 discrete
theoretical cases. In each image, the data points to be retained in the
current sampling are framed with a black dashed rectangle.

unretained MaxPoint, and update PreviousMinFlag to 1. Finally, reset
the Counter to 0.

The FPCS algorithm repeats steps three and four for each received
data point until the data stream ends. Algorithm 1 shows the sampling
process of the FPCS algorithm. Fig. 3 displays nine discrete theoretical
cases and the sampling outcomes under different distributions of data
points.

The FPCS algorithm only maintains the maximum value point
MaxPoint, the minimum value point MinPoint, the maximum or mini-
mum value point PotentialPoint not retained in the previous sampling,
a Counter, and a flag PreviousMinFlag, so the space complexity of the
algorithm is O(1).

The FPCS algorithm performs very few comparison calculations
and assignment operations each time it receives a new data point, so
the algorithm execution time is very short. Assuming a total of n data
points are received, the time complexity of the algorithm is O(n).

5 EXPERIMENTAL RESULTS

In this section, through numerous different experiments, we analyze
the FPCS algorithm, including Visual Effects, Analysis of Visual Dif-
ferences, Performance, etc. Supplemental Materials provide datasets,
source codes, and experimental results for all experiments.

5.1 Experimental Setup

The following will describe the experimental environment and dataset
used for testing the FPCS algorithm’s results and performance.

Algorithm 1 Workflow of FPCS

Require: Sampling ratio R : 1
Ensure: Use MaxPoint to represent the point of the maximum value.

Use MinPoint to represent the point of the minimum value.
Use PotentialPoint to represent the point of the maximum or
minimum value not retained from the previous sampling. Use
PreviousMinFlag to represent whether the minimum value point
was retained from the previous sampling. Use Counter to count

1: Initialize PotentialPoint = NULL, PreviousMinFlag = −1,
Counter = 0 ▷ PreviousMinFlag : −1(no data points have
been retained), 0(the previous sampling retained MaxPoint), 1(the
previous sampling retained MinPoint)

2: FP = the first data point received
3: MaxPoint = FP
4: MinPoint = FP
5: Counter =Counter+1
6: while receive a data point P← (x,y) do
7: Counter =Counter+1
8: if P.y≥MaxPoint.y then
9: MaxPoint = P ▷ Update MaxPoint

10: else
11: if P.y < MinPoint.y then
12: MinPoint = P ▷ Update MinPoint
13: end if
14: end if
15: if Counter ≥ R then
16: if MinPoint.x < MaxPoint.x then
17: if (PreviousMinFlag == 1) and (MinPoint ̸=

PotentialPoint) then
18: Retain PotentialPoint ▷ Both adjacent samplings

retain MinPoint, and PotentialPoint and MinPoint are not the same
point, so PotentialPoint needs compensation, as shown in Fig. 2a

19: end if
20: Retain MinPoint ▷ Receiving MinPoint before

MaxPoint, retain MinPoint
21: PotentialPoint = MaxPoint ▷ Update PotentialPoint

to the unretained MaxPoint
22: MinPoint = MaxPoint ▷ Update MinPoint to the

unretained MaxPoint
23: PreviousMinFlag = 1 ▷ In the current sampling,

MinPoint is retained, so PreviousMinFlag is updated to 1
24: else
25: if (PreviousMinFlag == 0) and (MaxPoint ̸=

PotentialPoint) then
26: Retain PotentialPoint ▷ Both adjacent samplings

retain MaxPoint, and PotentialPoint and MaxPoint are not the
same point, so PotentialPoint needs compensation, as shown in
Fig. 2c

27: end if
28: Retain MaxPoint ▷ Receiving MaxPoint before

MinPoint, retain MaxPoint
29: PotentialPoint = MinPoint ▷ Update PotentialPoint

to the unretained MinPoint
30: MaxPoint = MinPoint ▷ Update MaxPoint to the

unretained MinPoint
31: PreviousMinFlag = 0 ▷ In the current sampling,

MaxPoint is retained, so PreviousMinFlag is updated to 0
32: end if
33: Counter = 0
34: end if
35: end while

5.1.1 Experimental Environment

The experiment was conducted on a hardware configuration with an
Intel(R) Core(TM) i9-12900K processor (4.2GHZ), 64GB DDR4 mem-
ory, and an NVIDIA GeForce RTX 3090 graphics card. The operating
system used was Ubuntu 20.04.6 LTS 64-bit version. The main soft-
ware packages used in the experiment included Python 3.11.8, NEST
3.6.0, rustic 1.78.0-nightly, argminmax 0.6.1, tsdownsample 0.1.2, and
plotly_resampler 0.9.2.

5.1.2 Dataset

To demonstrate the effectiveness of the sampling algorithm in retaining
feature points, the dataset must have a large number of fluctuating
data points. To test the performance of the algorithm, it is important
to avoid the impact of special cases, so the total amount of data in
the dataset should be sufficient. The main focus of this paper is on
sampling streaming time series data, and the data in the dataset must
be time series data.

Given these characteristics, the experiment selected the NEST sim-
ulator [13, 16] from the Neural Simulation Technology Initiative to
generate the experimental dataset. NEST is a simulator for spiking
neural network models, providing over 50 neuron models. The exper-
iment chose the Cortical microcircuit model [31], and by recording
the Membrane Potential data generated by the model, a dataset that
meets the conditions can be obtained. The simulation total time was
set to 1,000,000ms, with a simulation step of 0.01ms, meaning that
a data point is collected every 0.01ms. After the simulation ends, a
Membrane Potential dataset of size 100,000,000(100M) and meeting
the conditions can be obtained.

To prove the universality of the FPCS algorithm, the experiment will
also use four algorithms to sample datasets from various sources in the
DEBS Grand Challenge [21, 29] and UCR Time Series Classification
Archive [12], comparing the sampling effects of the four algorithms
under different datasets and sampling ratios.

5.2 Results
The following will discuss the sampling results of the FPCS, Reservoir
Sampling, LTTB, and MinMaxLTTB algorithms from the perspectives
of visual effects and visual differences, and will analyze the sampling
effects of the four algorithms based on multiple typical datasets.

5.2.1 Visual Effect

To ensure the objectivity of the experimental results, a data point was
randomly selected from the Membrane Potential dataset as the starting
point. Given the limited visualization graph display range, the experi-
ment sampled the continuous 50,000(50K) data points starting from
the starting point using the FPCS, Reservoir Sampling, LTTB, and
MinMaxLTTB algorithms, comparing the results of retaining feature
points.

To facilitate observation, the experiment set the sampling ratio to
100 : 1, meaning 100 data points are retained for 1. Because the FPCS
algorithm compensates for some data points in special cases, the FPCS
algorithm was first used to sample the data points, and then the remain-
ing three algorithms were used for sampling based on the number of
data points sampled by the FPCS algorithm.

Fig. 4 is a comparison chart of the fitting effect of visualizing the
sampled data points with the original data points using the FPCS algo-
rithm, sampling 50K data points with an initial sampling ratio of 100 : 1,
retaining 576 data points. Fig. 5 uses the Reservoir Sampling algorithm,
Fig. 6 uses the LTTB algorithm, and Fig. 7 uses the MinMaxLTTB
algorithm, to sample 50K data points, retaining 576 data points, and
comparing the fitting effect of visualizing the sampled data points with
the original data points.

Comparing the experimental results of the four algorithms on the
same dataset and the same sampling ratio. The Reservoir Sampling
algorithm performs very poorly in retaining feature points. The LTTB
and MinMaxLTTB algorithms are not ideal in handling a large number
of extrema. The FPCS algorithm’s visual fitting line chart after sam-
pling is almost identical to the original data points, with the highest

Fig. 4: Using the FPCS algorithm, 576 data points are retained from
50K data points, with a comparison chart of visual fitting effects with the
original data points.

Fig. 5: Using the Reservoir Sampling algorithm, 576 data points are
retained from 50K data points, with a comparison chart of visual fitting
effects with the original data points. A black dashed rectangle is used in
the figure to highlight differences.

fitting degree among the images, the complete retention of effective
feature points, and the best visualization effect.

5.2.2 Analysis of Visual Differences

Considering the quantitative analysis of the visual effect after sampling,
the experiment was conducted on a Membrane Potential dataset with a
total capacity of 1,000,000(1M), using sampling ratios of 100 : 1, 200 :
1, 500 : 1, and 1000 : 1. Four algorithms, FPCS, Reservoir Sampling,
LTTB, and MinMaxLTTB, were used for sampling, and the sampled
data points were drawn into corresponding visualization line charts. To
use data to reflect the difference between the visualization line charts
of the sampled data points and the original data points, the experiment
chose SSIM [41] to measure the similarity between pictures. The closer
the SSIM value is to 1, the smaller the visual difference between the
two pictures. To ensure that the SSIM measurement value reflects the

Fig. 6: Using the LTTB algorithm, 576 data points are retained from 50K
data points, with a comparison chart of visual fitting effects with the
original data points. A black dashed rectangle is used in the figure to
highlight differences.

Fig. 7: Using the MinMaxLTTB algorithm, 576 data points are retained
from 50K data points, with a comparison chart of visual fitting effects with
the original data points. A black dashed rectangle is used in the figure to
highlight differences.

Fig. 8: Using the FPCS, Reservoir Sampling, LTTB, and MinMaxLTTB
algorithms, sampling is performed on a dataset with a total capacity of
1M based on sampling ratios of 100 : 1, 200 : 1, 500 : 1, and 1000 : 1. A
comparison is made between the visualization of the sampled data points
and the original data points in line charts.

superiority or inferiority of the sampling effect as much as possible,
all generated visualization line charts in the experiment maintained
consistent image sizes, image brightness, etc. Fig. 8 shows the trend
of SSIM values under the same dataset, four different sampling ratios,
and four different algorithms.

Analyzing Fig. 8, comparing the other three algorithms, the FPCS
algorithm has the highest and most stable SSIM value at all sampling
ratios, supporting from a data perspective that the visualization effect
of this algorithm is the best, with the smallest visual difference from
the original data points visualization line chart.

5.2.3 Typical Dataset Sampling Results

FPCS is a universal algorithm for sampling streaming time series data.
Using the FPCS, Reservoir Sampling, LTTB, and MinMaxLTTB algo-
rithms, sampling was performed on five typical datasets from the DEBS
2012 Grand Challenge [21], DEBS 2013 Grand Challenge [29], and
UCR Time Series Classification Archive [12]. For ease of observation,
experiments were conducted on the first 100,000(100K) data points
of the ball, cinecg, noise, power, and sine datasets. Fig. 1 shows a
comparison of the fitting effect and SSIM values of the visualized line
chart of the sampled data points against the original data points for
the five typical datasets, using the four algorithms, based on a 100 : 1
sampling ratio. Fig. 9 displays the visual differences in the visualized
line charts of the sampled data points against the original data points
for the five typical datasets, using the four algorithms, under different
sampling ratios of 100 : 1, 200 : 1, 500 : 1, and 1000 : 1.

Observing Fig. 1, among the five typical datasets, the FPCS algo-
rithm shows the best-fitting effect of the visualized line chart between
sampled data points and original data points, with the highest SSIM
values, and the best preservation results for feature points, when com-
pared to the other three algorithms. Fig. 9 supports this from a data
perspective, showing that the FPCS algorithm’s sampling effect is the

best across different sampling ratios and various source datasets.

5.3 Performance

To test the performance of the FPCS algorithm, experiments were con-
ducted on the Membrane Potential dataset with a total capacity of 100M,
incrementing by 10M each time. The time and space complexity of
FPCS, Reservoir Sampling, LTTB, MinMaxLTTB, and MinMaxLTTB
(parallel) were calculated based on the same dataset, with a sampling
ratio of 100 : 1. To ensure the accuracy of the experimental results,
each experiment was repeated hundreds of times, and the average of all
results was taken as the final value.

5.3.1 Time Complexity

The FPCS algorithm performs only simple comparison calculations
and assignment operations on all received data points. Theoretically,
the time complexity of the algorithm is O(n).

To avoid interference from the network on performance testing, the
experiments aimed to reflect only the time required for the algorithm
execution, with time complexity experiments conducted on local static
datasets. The Reservoir Sampling algorithm is specifically designed for
stream data, making it irrelevant to compare with Reservoir Sampling
in this context.

Fig. 10 shows a comparison of execution time for the FPCS, LTTB,
MinMaxLTTB, and MinMaxLTTB (parallel) algorithms across dif-
ferent dataset sizes (10M, 20M, 30M, 40M, 50M, 60M, 70M, 80M,
90M, 100M). To ensure objectivity in the experiment, all four algo-
rithms were implemented in Rust, with LTTB, MinMaxLTTB, and
MinMaxLTTB (parallel) using the most efficient implementations avail-
able.

Observing Fig. 10, it is intuitively clear that under the Membrane
Potential dataset and a sampling ratio of 100 : 1 when sampling across
10 datasets of different sizes, the FPCS algorithm has the shortest
execution time; the MinMaxLTTB algorithm has the longest execution
time; the execution times of the LTTB and MinMaxLTTB (parallel)
algorithms are relatively good.

Theoretically, the time complexity of the FPCS algorithm is O(n),
and the computers perform only a small amount of binary operations
on each data point, so the execution time of the FPCS algorithm will
increase slowly as the number of data points increases, with a lower
slope on the curve, resulting in shorter algorithm execution times and
better time complexity performance.

5.3.2 Space Complexity

The FPCS algorithm processes streaming data, regardless of the size of
the dataset, only requiring 3 data points, 1 counter, and 1 flag bit to be
cached during the execution process. Each data point has 2 coordinates,
all of which are of the f loat64 type; the counter and flag bit are both
of the int64 type. Therefore, theoretically, it only occupies 64 bytes of
space, the space complexity of the algorithm is O(1).

During the execution of the LTTB, MinMaxLTTB, and Min-
MaxLTTB (parallel) algorithms, the space occupied will increase as
the size of the sampled dataset increases. Testing showed that the space
occupied by sampling a dataset of 10M using these three algorithms
was greater than 130MB, making a comparison of these algorithms in
this context meaningless.

Tab. 1 records the comparison results of the maximum space occu-
pied during the execution process of the FPCS and Reservoir Sampling
algorithms on different scale datasets (10M, 20M, 30M, 40M, 50M,
60M, 70M, 80M, 90M, 100M). To ensure the fairness of the experi-
mental results, both the FPCS and Reservoir Sampling algorithms were
implemented in Python, with Reservoir Sampling utilizing the official
library provided.

Observing Tab. 1, it is intuitively clear that under the Membrane
Potential dataset and a sampling ratio of 100 : 1 when sampling across
10 datasets of different sizes, the FPCS algorithm has the best space
complexity performance, with the maximum space occupied is less than
0.1MB regardless of the size of the dataset. The Reservoir Sampling
algorithm caches all the data points it intends to retain, so its space

Fig. 9: Based on sampling ratios of 100 : 1, 200 : 1, 500 : 1, and 1000 : 1, using the FPCS, Reservoir Sampling, LTTB, and MinMaxLTTB algorithms,
sampling is performed on the first 100K data points of the five typical datasets. Under different sampling ratios and from various source datasets, the
visual differences in the visualized line charts of the sampled data points against the original data points are displayed for the four algorithms.

Fig. 10: Time complexity performance comparison of FPCS, LTTB,
MinMaxLTTB, and MinMaxLTTB (parallel). The FPCS algorithm is im-
plemented in Rust, the LTTB algorithm is implemented in Rust using
plotly_resampler v0.9.2, and both the MinMaxLTTB algorithm and the
MinMaxLTTB (parallel) algorithm are implemented in Rust using tsdown-
sample v0.1.2.

usage will continue to increase as the number of data points to retain
increases.

Theoretically, the space complexity of the FPCS algorithm is O(1),
The space complexity of the algorithm is not affected by the original
dataset size or the number of data points to be retained, and the space
occupied by the algorithm during execution is very small and limited,
resulting in excellent space complexity performance.

6 CONCLUSION

This paper proposes a universal FPCS algorithm, which is the first to
implement sampling for streaming time series data. Compared to the
most widely used algorithms such as the Reservoir Sampling algorithm,
LTTB algorithm, and MinMaxLTTB algorithm, the FPCS algorithm
achieves the best visualization effect for retaining feature points, fitting
the visualized line chart of original data points best. In terms of time
complexity, the FPCS algorithm does not involve complex calculations,
resulting in the shortest algorithm execution time. Regarding space
complexity, regardless of the size of the dataset, it only occupies less
than 0.1MB of memory, making the algorithm execution space the
smallest. Based on typical datasets from various sources, extensive

Table 1: A comparison table of the maximum space occupied during the
execution process of the FPCS and Reservoir Sampling algorithms.

Dataset Size FPCS (MB) Reservoir Sampling (MB)

10M 0.086 7.926
20M 0.071 15.352
30M 0.079 26.844
40M 0.092 30.211
50M 0.089 33.637
60M 0.086 53.063
70M 0.087 56.551
80M 0.086 59.902
90M 0.093 63.344

100M 0.068 66.824

testing has been conducted at different sampling ratios, and the visual
difference between the sampled data points and the original data points
visualized in line charts is the smallest. Future work will focus on
optimizing the FPCS algorithm to dynamically adjust the sampling
ratio during the sampling process, adapting to the characteristics of
different datasets, and further improving the efficiency of sampling.
The FPCS algorithm is expected to be widely applied in fields such
as medicine, biology, and finance, where data needs to be retained for
features and efficient visualization.

SUPPLEMENTAL MATERIALS

All supplemental materials have been uploaded to the submission sys-
tem. In particular, they include (1) A digital video titled "Animation
demonstration of the FPCS algorithm.mp4". This video dynamically
demonstrates the sampling process of the FPCS algorithm and the distri-
bution of the top ten data points with the highest occurrence probability;
(2) Another digital video titled "Sampling process and effect of the
FPCS algorithm.mp4". This video dynamically displays a real sam-
pling process and the final sampling effect of the FPCS algorithm on the
Membrane Potential dataset; (3) An engineering file named "fpcs.zip".
This includes all source code and datasets. It contains implementations
of the FPCS algorithm based on both static and streaming data; and all
experiments and results mentioned in this paper.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their precious
comments and suggestions.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. {TensorFlow}: A system for {Large-
Scale} machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pp. 265–283. USENIX
Association, Savannah, 2016. 2

[2] R. Agrawal, A. Kadadi, X. Dai, and F. Andres. Challenges and opportuni-
ties with big data visualization. In Proceedings of the 7th International
Conference on Management of Computational and Collective IntElligence
in Digital EcoSystems, pp. 169–173. Association for Computing Machin-
ery, New York, 2015. doi: 10.1145/2857218.2857256 1

[3] N. K. Ahmed, J. Neville, and R. Kompella. Network sampling: From
static to streaming graphs. ACM Trans. Knowl. Discov. Data, 8(2):1–56,
2013. doi: 10.1145/2601438 2

[4] W. Aigner, A. Bertone, S. Miksch, C. Tominski, and H. Schumann. To-
wards a conceptual framework for visual analytics of time and time-
oriented data. In 2007 Winter Simulation Conference, pp. 721–729. IEEE,
New York, 2007. doi: 10.1109/WSC.2007.4419666 2

[5] W. Aigner, S. Miksch, W. MÃijller, H. Schumann, and C. Tominski.
Visualizing time-oriented dataâĂŤa systematic view. Comput. Graphics,
31(3):401–409, 2007. doi: 10.1016/j.cag.2007.01.030 2

[6] S. M. Ali, N. Gupta, G. K. Nayak, and R. K. Lenka. Big data visualization:
Tools and challenges. In 2016 2nd International Conference on Contem-
porary Computing and Informatics (IC3I), pp. 656–660. IEEE, New York,
2016. doi: 10.1109/IC3I.2016.7918044 1

[7] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding
windows. In Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 286–296.
Association for Computing Machinery, New York, 2004. doi: 10.1145/
1055558.1055598 2

[8] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window
over streaming data. In Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 633–634. Society for Industrial
and Applied Mathematics, USA, 2002. 2

[9] N. Bikakis. Big data visualization tools. arXiv preprint arXiv:1801.08336,
2018. doi: 10.48550/arXiv.1801.08336 2

[10] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time Series
Analysis: Forecasting and Control. John Wiley & Sons, Hoboken, 5nd ed.,
2015. 1

[11] K. Choi, J. Yi, C. Park, and S. Yoon. Deep learning for anomaly detec-
tion in time-series data: Review, analysis, and guidelines. IEEE Access,
9:120043–120065, 2021. doi: 10.1109/ACCESS.2021.3107975 1

[12] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh. The ucr time series archive.
IEEE/CAA J. Autom. Sin., 6(6):1293–1305, 2019. doi: 10.1109/JAS.2019.
1911747 6, 7

[13] M. Diesmann and M.-O. Gewaltig. Nest: An environment for neu-
ral systems simulations. Forschung und wisschenschaftliches Rechnen,
BeitrÃd’ge zum Heinz-Billing-Preis, 58:43–70, 2001. 6

[14] J. V. D. Donckt, J. V. D. Donckt, M. Rademaker, and S. V. Hoecke.
Minmaxlttb: Leveraging minmax-preselection to scale lttb. In 2023 IEEE
Visualization and Visual Analytics (VIS), pp. 21–25. IEEE, New York,
2023. doi: 10.1109/VIS54172.2023.00013 2

[15] O. Embarak. The Importance of Data Visualization in Business Intelli-
gence, pp. 85–124. Apress, Berkeley, 1nd ed., 2018. doi: 10.1007/978-1
-4842-4109-7_2 1

[16] M.-O. Gewaltig and M. Diesmann. Nest (neural simulation tool). Scholar-
pedia, 2(4):1430, 2007. doi: 10.4249/scholarpedia.1430 6

[17] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. a. Gama. Machine
learning for streaming data: state of the art, challenges, and opportuni-
ties. SIGKDD Explor. Newsl., 21(2):6–22, 2019. doi: 10.1145/3373464.
3373470 1

[18] J. D. Hamilton. Time Series Analysis. Princeton University Press, Prince-
ton, 2nd ed., 1994. doi: 10.1515/9780691218632 1

[19] C. Huan, S. L. Song, Y. Liu, H. Zhang, H. Liu, C. He, K. Chen, J. Jiang,
and Y. Wu. T-gcn: A sampling based streaming graph neural network
system with hybrid architecture. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, pp.
69–82. Association for Computing Machinery, New York, 2023. doi: 10.
1145/3559009.3569648 2

[20] M. Islam and S. Jin. An overview of data visualization. In 2019 In-
ternational Conference on Information Science and Communications
Technologies (ICISCT), pp. 1–7. IEEE, New York, 2019. doi: 10.1109/
ICISCT47635.2019.9012031 1

[21] Z. Jerzak, T. Heinze, M. Fehr, D. Gröber, R. Hartung, and N. Stojanovic.
The debs 2012 grand challenge. In Proceedings of the 6th ACM Inter-
national Conference on Distributed Event-Based Systems, pp. 393–398.
Association for Computing Machinery, New York, 2012. doi: 10.1145/
2335484.2335536 6, 7

[22] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: a visualization-
oriented time series data aggregation. Proc. VLDB Endow., 7(10):797–808,
2014. doi: 10.14778/2732951.2732953 2

[23] M. S. Kahil, A. Bouramoul, and M. Derdour. Big data and interactive
visualization: Overview on challenges, techniques and tools. In Advanced
Intelligent Systems for Sustainable Development (AI2SD’2019), pp. 157–
167. Springer International Publishing, Cham, 2020. doi: 10.1007/978-3
-030-36674-2_17 2

[24] B. C. Kwon, J. Verma, P. J. Haas, and Ã. Demiralp. Sampling for scalable
visual analytics. IEEE Comput. Graphics Appl., 37(1):100–108, 2017. doi:
10.1109/MCG.2017.6 2

[25] P. S. Levy and S. Lemeshow. Sampling of Populations: Methods and
Applications. John Wiley & Sons, Hoboken, 4nd ed., 2013. 2

[26] D. Li, H. Mei, Y. Shen, S. Su, W. Zhang, J. Wang, M. Zu, and W. Chen.
Echarts: A declarative framework for rapid construction of web-based
visualization. Visual Informatics, 2(2):136–146, 2018. doi: 10.1016/j.
visinf.2018.04.011 2

[27] S. L. Lohr. Sampling: Design and Analysis. Chapman and Hall/CRC,
New York, 3nd ed., 2021. doi: 10.1201/9780429298899 2

[28] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani. Deep learning
for iot big data and streaming analytics: A survey. IEEE Communications
Surveys & Tutorials, 20(4):2923–2960, 2018. doi: 10.1109/COMST.2018.
2844341 1

[29] C. Mutschler, H. Ziekow, and Z. Jerzak. The debs 2013 grand challenge.
In Proceedings of the 7th ACM International Conference on Distributed
Event-Based Systems, pp. 289–294. Association for Computing Machinery,
New York, 2013. doi: 10.1145/2488222.2488283 6, 7

[30] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani.
Streaming-data algorithms for high-quality clustering. In Proceedings
18th International Conference on Data Engineering, pp. 685–694. IEEE,
New York, 2002. doi: 10.1109/ICDE.2002.994785 2

[31] T. C. Potjans and M. Diesmann. The cell-type specific cortical microcircuit:
Relating structure and activity in a full-scale spiking network model. Cereb.
Cortex, 24(3):785–806, 2012. doi: 10.1093/cercor/bhs358 6

[32] A. Spreafico and G. Carenini. Neural data-driven captioning of time-series
line charts. In Proceedings of the 2020 International Conference on Ad-
vanced Visual Interfaces, pp. 1–5. Association for Computing Machinery,
New York, 2020. doi: 10.1145/3399715.3399829 2

[33] S. Steinarsson. Downsampling time series for visual representation. PhD
thesis, University of Iceland, Iceland, 2013. 2

[34] W. Szewczyk. Streaming data. Wiley Interdiscip. Rev. Comput. Stat.,
3(1):22–29, 2011. doi: 10.1002/wics.130 2

[35] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu. General incre-
mental sliding-window aggregation. Proc. VLDB Endow., 8(7):702–713,
2015. doi: 10.14778/2752939.2752940 2

[36] S. K. Thompson. Sampling. John Wiley & Sons, Hoboken, 3nd ed., 2012.
2

[37] T. Trautner and S. Bruckner. Line weaver: Importance-driven order
enhanced rendering of dense line charts. Comput. Graphics Forum,
40(3):399–410, 2021. doi: 10.1111/cgf.14316 2

[38] A. Unwin. Why is data visualization important? what is important in
data visualization? Harvard Data Sci. Rev., 2(1):1–7, 2020. doi: 10.
1162/99608f92.8ae4d525 1

[39] J. Van Der Donckt, J. Van der Donckt, E. Deprost, and S. Van Hoecke.
Plotly-resampler: Effective visual analytics for large time series. In 2022
IEEE Visualization and Visual Analytics (VIS), pp. 21–25. IEEE, New
York, 2022. doi: 10.1109/VIS54862.2022.00013 2

[40] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,
11(1):37–57, 1985. doi: 10.1145/3147.3165 1, 2

[41] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Trans. Image
Process., 13(4):600–612, 2004. doi: 10.1109/TIP.2003.819861 6

[42] B. Yadranjiaghdam, S. Yasrobi, and N. Tabrizi. Developing a real-time data
analytics framework for twitter streaming data. In 2017 IEEE International

Congress on Big Data (BigData Congress), pp. 329–336. IEEE, New York,
2017. doi: 10.1109/BigDataCongress.2017.49 1

[43] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez,
S. Shenker, and I. Stoica. Apache spark: a unified engine for big data
processing. Commun. ACM, 59(11):56–65, 2016. doi: 10.1145/2934664 2

[44] A. Zakrzewska and D. A. Bader. Streaming graph sampling with size
restrictions. In Proceedings of the 2017 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining 2017, pp.
282–290. Association for Computing Machinery, New York, 2017. doi:
10.1145/3110025.3110058 2

[45] G. D. Zion and B. K. Tripathy. Comparative Analysis of Tools for Big Data
Visualization and Challenges, pp. 33–52. Springer Singapore, Singapore,
1nd ed., 2020. doi: 10.1007/978-981-15-2282-6_3 1

	Introduction
	RELATED WORK
	Stream Sampling
	Time Series Data Sampling

	DESIGN PHILOSOPHY: WHICH, WHEN, AND HOW
	Which: Retention Criteria for Data Points
	When: Schedule of Sampling Operation
	How: Design of the Sampling Algorithm

	FPCS
	Experimental Results
	Experimental Setup
	Experimental Environment
	Dataset

	Results
	Visual Effect
	Analysis of Visual Differences
	Typical Dataset Sampling Results

	Performance
	Time Complexity
	Space Complexity

	Conclusion

