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Fig. 1: Examples of generating visualization using LLMs. Llama (CodeLlama-7B) produces code that cannot be executed. Gemini
(Gemini-Pro) incorrectly maps the “sum of Tonnage” to the y-axis instead of “count” and lacks a legend for the “Cargo ship” color.
GPT-3.5 fails to sort as specified and positions the legend outside the canvas. Although GPT-4 almost meets the requirement, it still
encounters overflow issues that impact readability.

Abstract— Translating natural language to visualization (NL2VIS) has shown great promise for visual data analysis, but it remains
a challenging task that requires multiple low-level implementations, such as natural language processing and visualization design.
Recent advancements in pre-trained large language models (LLMs) are opening new avenues for generating visualizations from
natural language. However, the lack of a comprehensive and reliable benchmark hinders our understanding of LLMs’ capabilities
in visualization generation. In this paper, we address this gap by proposing a new NL2VIS benchmark called VisEval. Firstly, we
introduce a high-quality and large-scale dataset. This dataset includes 2,524 representative queries covering 146 databases, paired
with accurately labeled ground truths. Secondly, we advocate for a comprehensive automated evaluation methodology covering multiple
dimensions, including validity, legality, and readability. By systematically scanning for potential issues with a number of heterogeneous
checkers, VisEval provides reliable and trustworthy evaluation outcomes. We run VisEval on a series of state-of-the-art LLMs. Our
evaluation reveals prevalent challenges and delivers essential insights for future advancements.

Index Terms—Visualization evaluation, automatic visualization, large language models, benchmark

1 INTRODUCTION

NL2VIS, the task of translating natural language (NL) queries based
on provided data tables into visualizations (VIS), has been a longstand-
ing goal in the field of data visualization [19, 46, 56, 70]. It bridges
the gap between human understanding and complex data, enabling
users to handle intricate data analysis or visualization requirements in
a user-friendly manner. The challenges of NL2VIS were multifaceted,
with difficulties ranging from accurately interpreting NL queries to
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effectively transforming data and selecting meaningful visual map-
pings [46, 56]. For instance, query interpretation involves grappling
with the intricacies of natural language, while data transformation ne-
cessitates handling diverse data sources and formats. Additionally,
visual mapping needs to satisfy the diverse demands of visualization.

Recently, pre-trained large language models (LLMs) [2, 63] have
demonstrated outstanding performance across various natural language-
related tasks, such as data science [72], code generation [6], and web
design [30]. This success brings hope for addressing the challenges
mentioned above. LLMs-based methods have rapidly emerged as the
predominant approach for addressing NL2VIS tasks. For instance,
Chat2vis [42] and LIDA [11] have demonstrated proficiency in generat-
ing data visualizations through prompt tuning or engineering. More-
over, ChartLlama [18] and ChartGPT [62] leverage the training or
fine-tuning of LLMs to develop specialized models for visualization,
thereby further enhancing their capabilities in solving NL2VIS tasks.

Without loss of generality, the typical workflow of visualization
generation using LLMs entails assembling an NL query and serialized
data tables into a prompt, then soliciting LLMs to generate code based
on an established visualization library (e.g., Matplotlib [24], Vega-



Lite [55]). The code is then executed in a sandboxed environment to
obtain the final chart. Regrettably, this process occasionally encounters
errors, leading to flawed outcomes. As illustrated in Fig. 1, when
we visualize the ship dataset with a stacked bar chart, state-of-the-art
LLMs all suffer from various issues. These issues range from code
execution failures to incorrect data transformations, illegal sorting, and
text extending beyond the canvas. Visualizations may appear correct at
first glance, but they contain easily overlooked issues that can mislead
users [17, 21, 38]. Such shortcomings highlight the urgent need for
systematic evaluation and benchmarking that points out potential issues
in the generated results and reporting reliable evaluation outcomes.

However, current practices of NL2VIS evaluations fall short of ade-
quately addressing this need, due to limitations in the quality and scala-
bility of datasets, the comprehensiveness of metrics, and the reliability
of methodologies. Mainstream NL2VIS datasets either focus on narrow
domains and lack scalability [16,31,59], or contain incorrect labels and
ambiguous queries [39]. The comprehensiveness of evaluation is also
a long-existing issue. For example, some evaluations [34, 41] solely
look at the correctness of presented data, neglecting other dimensions
such as readability. Some other studies [11, 18] take various metrics
into consideration and leverage LLMs to assess the code generated by
themselves, but LLMs-powered evaluations remain inadequately scru-
tinized in terms of proficiency, leading to doubts about the reliability.
To the best of our knowledge, no existing benchmarks contain both
high-quality and large-scale datasets along with reliable automated
evaluation methodologies that cover diverse metrics.

To fill this gap, we introduce VisEval, a novel NL2VIS benchmark
that thoroughly and reliably evaluates generated visualizations. We
start by constructing a dataset, comprising 2,524 representative natural
language queries covering 146 databases. Aiming to create a dataset
with large-scale coverage, high-quality queries, accurate ground truth,
and valuable selected queries, we implement a data filtering procedure
that combines the intelligence of state-of-the-art LLMs and experiences
from visualization experts. We also introduce a novel labeling proce-
dure that annotates meta-information that defines the feasible region
for multiple acceptable charts, rather than the exact match of a single
one [41]. Finally, we rebalance the dataset to a moderate difficulty.

Next, an automated evaluation framework is designed to compre-
hensively scan for issues related to validity, legality, and readability.
As shown in Fig. 5, the validity checker executes the code and verifies
its capability to generate visualizations, thereby ensuring the validity.
Following that, the legality checker impartially examines the legality of
chart type, data, and sorting with the aid of annotated meta-information
from the dataset. Finally, the assessment of readability is the most chal-
lenging and complex part, requiring consideration of various factors
such as layout, scale, and color, which makes it hard to achieve through
predefined rules. We leverage the power of GPT-4V(ISION) [47] and
implement an automated workflow to evaluate readability. Our quanti-
tative experiments show that the readability evaluator is well-aligned
with human preferences.

Based on the constructed dataset and the well-designed evaluation
framework, we conducted a comprehensive evaluation of state-of-the-
art LLMs, including GPT-4 [2], GPT-3.5 [48], Gemini-Pro [61], and
CodeLlama-7B [53]. The results of evaluations reveal the common
challenges and limitations and provide useful insights for future ad-
vancements. To summarize, our contributions are as follows:
• We construct a high-quality and large-scale dataset with accurate

ground truth, supplemented by meta-information for evaluation.
• We introduce a novel and reliable evaluation framework for a compre-

hensive assessment of the generated visualizations, covering various
dimensions including validity, legality, and readability.

• We conduct comprehensive evaluations of state-of-the-art LLMs
from various perspectives, shedding light on their capability and
unveiling avenues for advancement.

2 RELATED WORK

2.1 Natural Language to Visualization Generation
Over the years, natural language has proven to be an efficient way
of specifying visualization [27, 70]. Traditional methods [16, 46, 68]

utilized semantic or lexical parsing techniques to infer user intent and
then return appropriate visualizations. Recently, deep learning-based
methods have further advanced the development of methods [40, 58]
for translating natural language into visualizations. Despite notable
enhancements achieved in NL2VIS task, limitations persist in general-
ization, primarily due to constraints in predefined rules or datasets.

The emergence of LLMs introduces a new direction for data visu-
alization generation, exhibiting excellent generalization capabilities.
In most studies [11, 20, 35, 42], LLMs are used to directly generate
visualization through prompt tuning and engineering. For example,
Chat2vis [42] utilizes prompts containing natural language queries and
a textual description of tabular data, incorporating column names and
values, for generating Python visualization code using LLMs. Similarly,
LIDA [11] defines visualization generation as a four-stage problem and
generates visualization based on established Python visualization li-
braries. Another branch of research involves training or fine-tuning
LLMs to develop models specialized for visualization. For example,
Han et al. trained ChartLlama [18], which demonstrates superior per-
formance across various visualization tasks including NL2VIS, based
on LLaVA [36]. Tian et al. [62] broke down the process of visualization
generation into step-by-step tasks and fine-tuned FLAN-t5 model [10]
to align with the intended task. Although the above-mentioned methods
demonstrate tremendous potential in generating various charts. We
observe that their generated results still exhibit issues, ranging from
code execution failures to incorrect data transformations, and missing
legends. Such shortcomings highlight the urgent need for systematic
evaluation to understand the capability of LLMs and the performance
of LLMs-based methods and gain insights for future advancements.

2.2 Evaluation for Generated Visualization

As LLMs demonstrate tremendous potential, researchers are increas-
ingly engaged in assessing the quality of visualizations generated by
LLMs [8, 9, 29, 50, 64]. A series of human evaluations were conducted
from different aspects, including visualization code generation [9, 64],
visualization design [8, 29], and visual data exploration [8]. Given the
labor-intensive nature of human evaluation, automated evaluation meth-
ods [11,18,34,41,50] show their importance in facilitating the iteration
and improvement of methods, along with providing an objective assess-
ment. EvaLLM [50] automates the evaluation of generated Vega-Lite
visualizations in JSON format. It verifies the JSON structure, assesses
code and JSON structure similarity, and compares data mapping, marks,
and axes with the ground truth. However, only charts written in high-
level representation languages (e.g., Vega-Lite) are applicable to this
method, and doubts remain about whether code similarity is a good
measure. Rule-based methods [34, 41] focus on the presented chart
and automatically check whether the data along the x-axis and y-axis
matches the ground truth data. However, they often overlook errors in
channels other than the axes, such as using the same color to represent
distinct categories, and they are sometimes too strict as the appropriate
visual mapping can vary. Other automated methods [11, 18] employ
self-evaluation strategies, wherein LLMs are utilized to assess the qual-
ity of code generated by themselves. However, it remains unexplored
whether LLMs possess the capability to determine the quality of gener-
ated visualizations solely based on code.

Most of the aforementioned methods only focus on ensuring that the
visualization is “correct”, yet a “good” chart should possess many other
properties, such as readability [4], effectiveness [4], memorability [54],
and learnability [13]. Efforts within the visualization community have
been made to automate the assessment of visualizations from these
perspectives. For example, McNutt and Kindlmann [44] introduced a
readability linter to assess visualizations created in Matplotlib against a
set of rules. To effectively scale up the coverage of evaluated aspects,
recent machine learning-based approaches [15, 67] train models to
asses the aesthetics, memorability, or layout quality of visualization
images. However, all these methods solely look at the visualization
itself, ignoring the original natural language query. By introducing
an end-to-end evaluation framework, we propose assessing the quality
of generated visualizations alongside queries, thereby enhancing the
comprehensiveness of the evaluation.



2.3 Dataset for Visualization
Datasets serve as a fundamental pillar in the benchmark. However,
previous NL2VIS datasets focused on narrow domains [16, 31, 59],
which is not sufficient for comprehensive evaluation. For instance,
NLV Corpus [59] collected human annotator-written utterances for
each visualization but was limited to three data tables. Recently, several
works have begun to collect large databases for visualization. However,
they are primarily focused on real-world dataset gathering [23] or de-
signed for specific visualization tasks such as visualization question
answering [28, 43, 45], chart summarization [25, 52], and visualization
recommendation [12, 22]. These datasets lack pairs of queries and
visualizations, posing challenges for NL2VIS evaluation. The Quda
dataset [14], which aims to advance the development of NL2VIS, com-
prises 14,035 user queries but lacks ground truth visualizations, further
limiting its utility as a benchmark. Another notable work, nvBench [39],
synthesized a dataset from an NL2SQL benchmark enabling NL2VIS
model training and testing. This benchmark comprises 25,750 pairs
of natural language queries and visualization, covering 105 domains
across 153 datasets. Despite its extensive coverage, the dataset con-
tains erroneous labels, along with the ambiguity of queries resulting in
non-unique ground truth visualizations, which could potentially lead
to inaccuracies in evaluation results [34, 41]. We are still short of a
large-scale dataset with accurately labeled ground truth to effectively
benchmark LLMs. In this paper, we conducted a preliminary study
to identify the key requirements for a benchmark dataset. Then we
constructed a high-quality dataset with ground truth that includes chart
types, plotted data, and meta-information to meet these requirements.

3 PRELIMINARIES

3.1 NL2VIS Task Formulation
In the era of large language models, a typical workflow of NL2VIS
tasks involves assembling queries along with tabular data as input.
Subsequently, LLMs are utilized to generate code based on established
visualization libraries, resulting in intermediary output. The generated
code is executed in a sandboxed environment to obtain the final chart
image. Hence, for the evaluation of visualizations produced by LLMs
in NL2VIS tasks, it is imperative to assess the output of each stage,
including the generated code and the resulting chart image. We frame
the evaluation scope within static charts, using widely adopted Python
visualization libraries such as Matplotlib [24] and Seaborn [65]. These
libraries are widely adopted within the community and are renowned
for their versatility in producing a wide range of visualizations.

3.2 Preliminary Study
To gain insights into the reliable evaluation of LLMs-generated visu-
alizations, we conducted a preliminary study involving four human
experts with more than five years of experience in the field of visual-
ization. Three hundred queries were randomly sampled from a widely
used dataset nvBench [39]. These queries were used to generate visual-
izations using four distinct LLMs: GPT-4, GPT-3.5, Gemini-Pro, and
CodeLlama-7B. Following this, four experts independently reviewed
the codes and chart images generated by each of the four models, taking
the ground truth provided in nvBench as a reference. Subsequently, a
roundtable meeting was convened to discuss the findings of all evalua-
tors. We made three observations throughout this process, regarding
factors that are influencing the quality of generated visualizations and
issues within the evaluation process.

Observation 1: Low-quality queries lead to nonsense results. The
selected three hundred queries have more deficiencies than anticipated.
This is primarily manifested when a query describes an unreasonable
visualization, leading to visualizations that are either meaningless or
confusing. For instance, identified data fields such as an ID were in-
correctly treated as continuous numbers and mapped to the x-axis of
a scatter plot. Furthermore, some queries are ambiguous, making it
difficult to ascertain if they meet the expected standards, and in some
cases, the ground truth of certain queries is incorrectly labeled. Upon
discovering that the current generated results still exhibit numerous
basic errors, we decided to focus our efforts on evaluating the generated

Query: For those records from the products 
and each product's manufacturer, a scatter 
chart shows the correlation between price and 
revenue , and colored by manufacturer's name.

Query: How many faculty members do 
we have for each rank and gender? Plot 
them as bar chart, I want to sort y axis in 
asc order.

(b)(a)

Fig. 2: Example cases where previous methods fail short: (a) the ab-
sence of consideration for color channels, leading to the oversight of
identical colors being used for different categories; and (b) misjudg-
ment due to exact matching, where the ground truth maps the “rank” data
field to the x-axis and the “sex” data field to the color channel. Since
the query did not explicitly specify which data field should be mapped to
which channel, this case should also be considered appropriate.

visualization where queries explicitly define selected columns, aggre-
gations, chart types, and order. This clear type of query represents the
most fundamental aspect of NL2VIS tasks.

Observation 2: Inherent defects in the generated results. We
categorized the inherent defects that hinder comprehension into three
dimensions based on expert discussions and previous literature related
to visualization linting [7, 44] and code generation benchmark [32, 72].
I1. Invalid codes lead to rendering failure. The generated code may be
invalid for rendering visualizations, for example, crashing due to incor-
rect API usage or printing data instead of plotting.
I2. Illegal charts do not meet requirements. The charts may be illegal
due to conflicts with queries, such as selecting incorrect data columns
and plotting inaccurate legends (e.g., Fig. 2(a)).
I3. Low readability charts hinder comprehension. The charts face chal-
lenges that hinder comprehension due to various factors such as text
overflow or overlap, low-contrast colors, and typographical errors.

Observation 3: Low-effort and reliable evaluation is challenging.
While the authors and the employed experts identify numerous issues
through human evaluation, this methodology proves unsustainable
for future benchmarking due to its labor-intensive nature and lack
of objectivity. Our preliminary attempts to reduce human effort and
automate the evaluations are as follows. Firstly, we adopted some
rule-based automated methods [34, 41], and found them unsatisfactory.
For example, they often compared data along the x and y axes directly
with the ground truth, but sometimes the suitable visual mapping can be
non-unique. Fig. 2 illustrates two cases where these methods fall short.
Secondly, we explored alternative methods [11, 18] that utilize LLMs
to score the code they generate, without considering the discrepancies
between the resulting charts and the code. These preliminary efforts,
utilizing prompts specified in prior studies and leveraging LLMs to
identify issues, yielded limited success.

3.3 Benchmark Requirements
Therefore, we summarize three benchmark requirements as follows.
R1. Incorporate a high-quality and large-scale dataset. The dataset
should demonstrate high quality, with accurately annotated ground
truth and non-ambiguous, rational queries. Additionally, the benchmark
dataset should be large in scale and cover a broad domain to ensure
comprehensive evaluation results rather than one-sided assessments.
R2. Support multi-dimension evaluation. Given the potential for er-
rors in both code and chart image, it is imperative that we systematically
evaluate the visualizations for validity (I1), legality (I2), and readability
(I3). In this paper, we define validity as the ability of the code to render
a visualization, legality as the compliance of the visualization with the
query requirements, and readability as the effectiveness of the visualiza-
tion in clearly presenting information. This multi-dimension evaluation
ensures that we not only detect errors stemming from incorrect API
usage or data mishandling but also identify issues related to readability.



R3. Automate reliable evaluation. Automating evaluation not only
facilitates rapid iteration and refinement of NL2VIS methods during the
rapid development of large language models but also ensures objectivity
in assessing quality. Consequently, reliable evaluation results emerge
as crucial, playing a pivotal role in effectively guiding improvement
directions and informing advancement.

4 VISEVAL: A BENCHMARK FOR DATA VISUALIZATION

Following the requirements outlined in Section 3.3, we construct a
high-quality and large-scale dataset (R1). Building upon this dataset,
we propose a novel NL2VIS evaluation framework that covers mul-
tiple dimensions (R2), including validity, legality, and readability, as
illustrated in Fig. 5. To ensure the reliability (R3) of our automated
methodology, we conducted quantitative experiments.

4.1 Dataset Construction
The NL2VIS benchmark dataset typically includes pairs of natural
language queries (NL) and corresponding visualizations (VIS). The
queries and their associated data tables serve as input for the NL2VIS
task, while the visualizations represent the ground truth.

Based on our preliminary study and related benchmark works [32,
60, 72], we identified four requirements that the benchmark dataset
should meet: 1) Large-Scale coverage: The dataset needs to include a
substantial number of queries and databases from diverse domains to
mitigate bias. Moreover, it is crucial to ensure balanced data distribu-
tion to prevent bias from specific databases. 2) High-quality queries:
The queries in the dataset must be unambiguous and rational, explicitly
specifying selected columns, aggregations, and chart types while de-
scribing rational visualizations. 3) Accurate ground truth: The ground
truth data in the dataset should be accurately labeled and capable of
precisely describing acceptable visualizations. 4) Valuable query selec-
tion: Exclude overly simplistic queries [60], which are queries that the
model can almost always answer correctly, as they offer limited value
but increase evaluation cost.

Previous NL2VIS datasets either concentrate solely on narrow do-
mains [16, 31, 59] or lack ground truth [14], which differs from our
requirement. nvBench [39] is the closest match to our needs, compris-
ing 7,247 visualizations (VIS) and 25,750 (NL, VIS) pairs from 153
databases. However, some of its queries are ambiguous, irrational,
duplicated, and have incorrect ground truth. Therefore, we construct
our dataset based on nvBench to meet the aforementioned requirements.
The primary objective is to curate high-quality and unique queries,
rectify ground truth inaccuracies, and augment meta-information while
ensuring large coverage of databases. The dataset construction process
is delineated as follows (refer to Appendix A for more details).

High-quality queries selection. To select high-quality and non-
duplicate queries from nvBench, we implement a rigorous selection
procedure that integrates the insight of state-of-the-art LLMs and exper-
tise from visualization experts. This procedure involves three distinct
steps: rule-based, LLMs-based, and human-based selection. Firstly,
we devised and implemented eight rules for filtering and correcting
queries. For instance, we filtered out visualizations (VIS) that erro-
neously treated unique data such as IDs or codes as numerical values.
Secondly, we leveraged LLMs to alleviate the workload of human
experts. Due to concerns about potential biases when relying solely
on a single LLM, we chose three state-of-the-art LLMs (i.e., GPT-4,
GPT-3.5, Gemini-Pro) to vote on whether the queries were ambiguous
or irrational. We adopted a majority rule strategy to select queries
deemed high-quality by two or more LLMs. Finally, human experts
reviewed queries to ensure their clarity, rationality, and non-duplication.
When experts encountered queries that did not meet the requirements,
if the database and chart type associated with the query had multiple
other instances, it was deleted directly. Otherwise, it was manually
modified or rewritten to create a new query.

Accurate ground truth labeling. The ground truth in our dataset
includes chart type, plotted data, and meta-information. This meta-
information, which details implicit and explicit query specifics, serves
as constraints during evaluation to determine the most appropriate
charts. Human experts corrected the chart types and data, and added

NL 1: How many faculty members do we have for each rank and gender? 
Plot them as bar chart, I want to sort y axis in asc order.

NL 2: Stacked bar chart of the total number for faculties with each Sex in 
each rank, could you rank in asc by the Y-axis?

sort: {"channel": "y", "order": "ascending", sort_by: "axis"}

strict_stacked_bar: true

channel_specified: [] meta information

chart type: stacked bar

x_name: "Rank"   y_name: "count(*)"

data: [{x: "AssocProf", y: 1, classify: "F"}, {x: "AssocProf", y: 7, classify: "M"}, 
{x: "AsstProf", y: 3, classify: "F"}}, {x: "AsstProf", y: 12, classify: "M"}, ...]

VIS

Fig. 3: Example of (NL, VIS) pairs. Two NL queries correspond to the
same VIS. Note that the ground truth VIS represents a feasible region for
multiple acceptable visualization instances.

Fig. 4: Statistical analysis of the dataset: (a) A histogram of the number
of visualizations per database, and (b) the distribution of visualizations
across different chart types and hardness.

meta-information such as specified channels, sorting requirements, and
whether grouped bar charts could be used instead of stacked bar charts.
Fig. 3 presents an example of the ground truth.

Dataset rebalancing. Motivated by previous research [60], we
implemented a filter to exclude overly simple queries, which are pre-
dictable and universally solvable by most models, thereby limiting their
evaluative utility. Simple queries are those for which GPT-4, GPT-3.5,
Gemini-Pro, and CodeLlama-7B can generate correct answers in a
zero-shot setting (as elaborated in Section 5.1).

We end up with 1,150 distinct visualizations (VIS) and 2,524 (NL,
VIS) pairs, covering 146 databases. Considering the inherent flexibility
of language, we preserved multiple (~2.19) NL queries describing the
same VIS, treating them as a cohesive entity during evaluation. We ad-
hered to the hardness definition established in nvBench, which pertains
to the complexity associated with chart generation. More precisely,
visualizations are classified into four distinct levels of hardness: easy,
medium, hard, and extra hard. Fig. 4 presents the statistics of our
dataset, providing insights into coverage and diversity.

4.2 Evaluation Framework Overview
To address the requirements outlined in R2 and R3, we design and
illustrate the pipeline of our evaluation framework in Fig. 5. The
code generated by LLMs undergoes automated assessment for validity,
legality, and readability to identify any potential issues within the
visualization. We describe the construction of each checker as follows.

4.2.1 Validity Checker
The validity checker verifies whether the code can render visualiza-
tions through two steps. First, it executes the code in a sandboxed
environment to ensure that no crashes occur during execution. Then,
it performs a surface-form check to verify if the code contains the
necessary code snippets to render visualizations (e.g., plt.show()).

4.2.2 Legality Checker
The legality checker verifies whether the generated visualization meets
the query. It begins by deconstructing the visualization to extract infor-
mation (e.g., chart type, data). Then a series of impartial checks exam-
ine the chart type, data, and order with the aid of meta-information.

After successfully rendering a visualization, the resulting image is
saved in Scalable Vector Graphics (SVG) format. SVG, as a vector
format, is well-suited for parsing the information contained within



Readability Evaluator

Layout Check Scale & Ticks Check

Legality Checker

Deconstruction

Chart Type Check

Data Check Order Check

Validity Checker

Code Execution

Surface-form Check
VIS Code

Fig. 5: The pipeline of VisEval includes three key modules: the validity checker, the legality checker, and the readability evaluator.

the visualization. While some methods exist for extracting data or
analyzing chart types from raster images [18, 49, 75], they are not
robust. Therefore, we adopt SVG-based deconstruction [66, 71]. The
logical structure inherent in images created by visualization libraries
like Matplotlib allows us to precisely extract plotted data and parse
additional information such as chart type, axes, and legends through the
“id” attribute. Here, “id” refers to the unique identifiers utilized in SVG.
Specifically, our deconstruction process cannot handle unconventional
charts, such as those with dual axes or irrational data mappings that
result in missing ticks (e.g., Fig. 11 (7)). Due to our practical findings
indicating that these charts are illegal, we categorize them as such
by default. However, they are labeled as “unparseable”, allowing for
human verification as needed for thoroughness.

With accurately labeled ground truth and meta-information, we can
reliably evaluate whether the chart type, presented data, and the order
in the generated visualization meet the requirements. We evaluate the
sorting order separately from the data for two main reasons. Firstly,
identical values in the data can lead to multiple valid sorting outcomes,
resulting in potential errors if data is directly compared. Secondly,
visual sorting refers to actions applied to the resulting charts, not the
underlying data itself [62]. For instance, in a stacked bar chart, the
order is determined not directly by the y-axis values but by the sum of
the stacked bars. Details about how our method verifies whether the
generated visualization meets the query are provided in Appendix B.1.

4.2.3 Readability Evaluator

To evaluate the readability of generated visualizations in the context
of their queries, we propose an innovative assessment methodology
integrating a multimodal model named GPT-4V(ISION) [47]. GPT-4V
exhibits remarkable capabilities in processing both textual and image
inputs and generating textual outputs [1, 57]. We conducted a pilot ex-
periment to further understand the capabilities of GPT-4V. We presented
GPT-4V with the visualization and posed multiple questions such as
“Whether any graphic elements out of the canvas?” and “Any readabil-
ity issues within this visualization?”. The model showed impressive
proficiency in text recognition and comprehension of visualizations.
However, it occasionally made simple errors, such as failing to identify
overflow issues where text or legends extend beyond the canvas or
detecting only partial problems.

Therefore, we decided to decompose the complex readability assess-
ment problem into smaller and more controllable sub-problems, which
is a common strategy to mitigate errors in LLMs [74]. We identified
two significant readability-related issues and prioritized them as sub-
problems to address. As depicted in Fig. 6, the readability assessment
will be conducted with the help of layout check and scale & ticks check.
The details of each module are as follows:

Layout Check. The layout check entails assessing overflow and
text overlap within visualizations. We conducted experiments using
various prompt strategies and observed that GPT-4V’s accuracy in this
task was not sufficiently high to be incorporated into the evaluation
framework. At times, words partially extended beyond the canvas, with
segments of the letters fully displayed, posing a challenge to the model.
Moreover, there were instances where the model could infer complete
words from partial text, potentially influencing its ability to accurately
judge whether words were fully displayed. Consequently, we opted for
a more reliable approach by simulating a browser environment. This
methodology allows us to precisely determine the size of the canvas
and the size and position of visualization elements in SVG format,
facilitating an accurate assessment of overflow and overlap.

Scale & Ticks Check. The scale & ticks check aims to determine

Fig. 6: An example of using the readability evaluator. The layout check
identified issues with the overflow of ticks and the title on the x-axis.
The scale & ticks check revealed that the y-axis ticks were displayed
using floating-point numbers, which is unconventional for representing
integer values like the count of wins. These evaluations were given to
the readability evaluator, resulting in a final overall score of 2 along with
a concise rationale.

if the chosen scale is suitable for interpreting values, avoiding un-
conventional scales such as an inverted y-axis scale. Additionally, it
assesses the appropriateness of the displayed ticks when evaluating
axes, avoiding unconventional choices such as representing years with
floating-point numbers. One notable observation is the phenomenon of
hallucination that occurs when GPT-4V interprets ticks; integer values
may be inaccurately perceived as floating-point values. To address
this, we incorporate deconstructed ticks from the x-axis and y-axis as
auxiliary information in the prompt provided to GPT-4V. This inclusion
aids the model in conducting more precise evaluations and reducing
the potential for hallucination.

Overall Readability Rating. The overall readability rating system-
atically evaluates the readability of visualizations, considering various
factors beyond layout and scale, such as title, labels, colors, etc., assign-
ing scores from 1 to 5 points. A score of 1 denotes that the visualization
is highly challenging to comprehend, while 5 indicates that it is very
easy to comprehend. As previously described, both the layout check
and the scale & ticks check provide assessments on potential issues
within their respective domains, accompanied by concise justifications
for their evaluations. These evaluations are then integrated into the
prompt for the overall readability rating. The prompt also includes the
query, enabling more precise judgments by aligning with the specific
demands of the visualization. For instance, it facilitates verification of
the relevance and clarity of information presented in the title and labels.
An important observation is that the model often exhibits skepticism
regarding the accuracy of data and sorting, frequently perceiving visual-
izations with correct sorting as not meeting the specified requirements.
Thus, we emphasize in the prompt, “Do not consider the correctness
of the data and order in the visualizations, as they have already been
verified.” For the detailed prompt, please refer to Appendix B.2.

4.2.4 Implementation
Following the framework described above, we develop a Python pack-
age, VisEval1, which embeds a function evaluate() to evaluate
generated visualization with all available checkers. Our evaluation
framework is designed with modularity, making it easy to configure
according to user requirements. In cases where a vision model isn’t
configured, the framework checks aspects that don’t depend on a vision

1Source code and dataset are available at https://github.com/
microsoft/VisEval.

https://github.com/microsoft/VisEval
https://github.com/microsoft/VisEval


model. Users also have the flexibility to independently check specific
aspects according to their interests; for instance, using the function
readability_evaluate() will solely evaluate readability.

4.3 Quality Assurance
To ensure the quality of our benchmark, each query, ground truth, and
module within the evaluation framework underwent scrutiny by experts
experienced in data visualization. We meticulously designed test cases
to thoroughly assess the validity and legality checker. Furthermore, we
evaluated the performance of our readability evaluator by collecting
ratings from three human experts and quantitatively measuring the
quality as follows.

Data preparation. One hundred visualizations generated by GPT-4,
GPT-3.5, Gemini-Pro, and CodeLlama-7B were randomly sampled.
Detailed information about the generation is provided in Section 5.1.
Three experts, each having more than five years of experience in the
field of visualization, independently rated the readability of each visu-
alization using a scale ranging from 1 to 5. Subsequently, the average
score for each visualization was calculated based on their independent
ratings. Furthermore, the experts convened to collectively analyze
whether the visualizations presented specific layout issues such as over-
flow or overlap, in addition to scale and ticks issues. These identified
issues were then marked using boolean values to indicate their presence.

Metrics. We naturally treat layout check and scale & ticks check
as a classification problem, evaluating them based on accuracy rate.
We quantify the consistency between automated ratings and human
ratings using Spearman’s rank correlation coefficient (SRCC), a widely
acknowledged metric utilized in previous assessment studies [5, 15].
SRCC measures how well the order of predicted ratings matches the
order of ground truth ratings, within the [-1, +1] range where 1 indicates
the predicted ratings are perfectly ordered the same as the ground truth
and -1 means they are ordered in exactly the opposite way.

Result analysis. In summary, the layout check attains a perfect accu-
racy rate of 100%. The scale and ticks check achieves a 99% accuracy
rate. However, without including deconstructed ticks as auxiliary infor-
mation, the accuracy decreases to 92%. Our readability rating method
obtains an impressive SRCC score of 0.843, indicating a significant
correlation with human experts. Additionally, we observed an aver-
age SRCC of 0.782 among pairs of experts, further highlighting the
reliability of our method for readability assessment and comparative
analysis. The correlation between readability evaluator ratings and
average human ratings is illustrated in Fig. 7. After analysis of the
evaluators’ rationales and expert interviews, variability was observed
in perceptions regarding the impact of different visualization issues on
readability. Further discussions will be detailed in the Appendix B.2.1.

Furthermore, we conducted an ablation study to assess the influence
of including the layout check or scale & ticks check in the readability
evaluator, as detailed in Table 1. The analysis results indicate that
excluding checks leads to a decrease in token count, but also a reduction
in correlation. In order to ensure reliable evaluation outcomes, we retain
both checks in our readability evaluator.

Fig. 7: Correlation between hu-
man and readability evaluator rat-
ings. Points are slightly jittered to
prevent overlap.

Table 1: Comparison of SRCC
and consumed prompt tokens
among different readability eval-
uator prompts. We compare: de-
fault, without scale & ticks check,
without layout check, and without
both checks.

Prompt SRCC # Tokens

default 0.843 2073.38
w/o scale & ticks 0.732 1071.02

w/o layout 0.675 2063.72
w/o both 0.507 1057.86

CoML4VIS Prompt

User Message

Executed code: 
Variables: .

Request: 

[code]

[table1 description] [table2 description] ..

[query]

System Message

You're a helpful assistant proficient in writing Python code for data 
visualization. Upon receiving relevant context, such as available variables and 
any pre-executed code, your goal is to complete the Python code to generate a 
visualization that meets the user's request.

  

Instructions:

  

- Utilize the  library to create the visualization and ensure 
include `plt.show()` to display the chart.

- You must return the generated code wrapped by ``` before and after it, and 
do not add any explanation.

[Matplotlib/Seaborn]

Fig. 8: The prompt template for CoML4VIS.

5 EVALUATION

5.1 Setup
NL2VIS prompt. The prompt significantly influences the performance
of pre-trained language models [73], making its selection crucial. In
real-world scenarios, data is not always well-organized, leading to 461
out of 1150 visualizations in our dataset being generated based on
multiple tables. However, LLMs-based visualization generation meth-
ods, to our knowledge, do not support generation from multiple tables.
CoML2 [69], a data science code generation method, caught our atten-
tion for its remarkable capabilities [72] and capability to generate code
from multiple tables. We decided to revise its few-shot prompt [26] to
specifically focus on visualization generation.

As depicted in Fig. 8, the prompt begins with a task description
and instructions, followed by executed code, table descriptions, and a
natural language query. The executed code includes package imports
and operations for reading tables. By default, only the tables required
for generating visualizations are accessed. The table descriptions pro-
vide a summary of the information contained in the accessed tables,
detailing column names and samples of N rows (where N = 10 in our
evaluation), as shown in Fig. 12. In line with prior research [69], which
highlighted significant improvements with a single example compared
to a zero-shot setting, we chose a bar chart example that integrates
data from two tables as our one-shot example. To enhance the chart’s
readability, we rotated the ticks and adjusted the ticks to display inte-
gers. More detailed information about the prompt design is provided in
Appendix C. We refer to this revised visualization generation approach
as CoML4VIS in the following sections.
Visualization library. We compare two well-known Python visual-
ization libraries: Matplotlib [24] and Seaborn [65]. They differ in
their level of abstraction and ease of use for creating various types of
plots. Matplotlib provides an extensive range of plotting options and
customization capabilities. Seaborn is built on top of Matplotlib and
offers a higher-level interface for creating visualizations with fewer
lines of code, thus making it easier to generate aesthetically pleasing
and informative plots. We specify the names of the selected libraries in
the prompt, as shown in Fig. 8.
Models. We evaluate the performance of four state-of-the-art models:
GPT-4 [2], GPT-3.5 [48], Gemini-Pro [61] and CodeLlama-7B [53].
Specifically, We set the hyper-parameter temperature to 0.
Metrics. The “Quality Score” provides a holistic assessment of the
quality of generated results. If a result is determined to be invalid or
illegal, its quality score is assigned a value of 0. Otherwise, the quality
score is equal to the readability score assigned by the readability evalu-
ator. Since multiple queries may correspond to the same visualization
instance, the overall quality score for each visualization instance is
calculated as the sum of individual scores divided by the total number
of queries for that instance. Furthermore, we ascertain the “Pass Rate”
as the ratio of valid or legal results to the total number of queries, ex-
cluding the readability score from this calculation to accommodate less
stringent scenarios. For a more nuanced analysis, error rates can be

2https://github.com/microsoft/CoML

https://github.com/microsoft/CoML


Table 2: Performance of LLMs on VisEval benchmark. We compare
invalid rate, illegal rate, pass rate, readability score, and quality score.

Model Library
Invalid
Rate

Illegal
Rate

Pass
Rate

Readability
Score

Quality
Score

CodeLlama-7B

Matplotlib

42.95% 28.88% 28.17% 3.87 1.11
Gemini-Pro 14.35% 34.06% 51.59% 3.95 2.06

GPT-3.5 8.79% 29.42% 61.79% 3.52 2.21
GPT-4 3.29% 21.44% 75.27% 3.80 2.89

CodeLlama-7B

Seaborn

59.26% 24.25% 16.49% 3.64 0.61
Gemini-Pro 21.09% 26.82% 52.09% 3.88 2.06

GPT-3.5 9.21% 31.00% 59.79% 3.60 2.20
GPT-4 25.41% 15.89% 58.70% 3.87 2.31

Fig. 9: Quality score on different chart types and hardness across LLMs.
Llama refers to CodeLlama-7B and Gemini refers to Gemini-Pro.

separately computed for validity and legality, denoted as the “Invalid
Rate” and “Illegal Rate”, respectively. Additionally, the “Readability
Score” is calculated as the average readability score for visualizations
that have been assessed for readability, which are only those that are
valid and legal.

5.2 Main Results
Quality score: Table 2 displays the quality score across four LLMs. We
find that VisEval can differentiate models with different capabilities.
The top-performing model GPT-4 achieves a quality score of 2.89 in
the Matplotlib setting and 2.31 in the Seaborn setting, with the optimal
score being 5. These scores are non-trivial but fall short of perfection,
indicating that there is room for improvement. Other models have
lower quality scores, and the ranking of the models is approximately as
follows: CodeLlama-7B < Gemini-Pro < GPT-3.5 < GPT-4. Contrary
to our expectations, when using Seaborn, all models do not achieve
a higher quality score. We observed an increase in their invalid rate,
particularly GPT-4, which experienced the largest increase (22.12%).
This indicates that their pre-training corpus may have less content
related to Seaborn compared to Matplotlib, leading to greater challenges
in generating code that can render visualizations.
Different chart type: LLMs exhibit varying performance across differ-
ent chart types, as illustrated in Fig. 9. Charts requiring three visual
channels (i.e., stacked bar charts, grouping line charts, and grouping
scatter plots) tend to have lower quality scores compared to charts of
the same type that only require two visual channels (i.e., bar charts,
line charts, and scatter plots). This observation suggests that LLMs
encounter difficulties when handling complex visualizations.
Different hardness: The complexity of chart generation, as reflected in
hardness, also impacts the quality of the generated chart, as depicted
in Fig. 9. This trend is observed across all four models, with the quality
score decreasing as the complexity of chart generation increases.

Fig. 10: Comparison of the readability scores between GPT-4 and
CodeLlama-7B across different hardness using Matplotlib library. The
value represented by “#” in the boxplot indicates the number of visualiza-
tions evaluated for readability scores.

Readability score: Despite achieving a strong readability score of 3.87,
CodeLlama-7B exhibited the lowest pass rate at 28.17% in the Mat-
plotlib setting, as indicated in Table 2. To investigate this discrepancy,
we compared its readability score with that of GPT-4, which had the
highest pass rate in our evaluation. As depicted in Fig. 10, there is a
trend of decreasing readability scores with increasing query hardness.
Only visualizations passing the validity and legality checks are evalu-
ated for readability. Given that GPT-4 has a larger assessment size than
CodeLlama, its overall readability score tends to be lower. However,
when we focus on a subset of 415 visualizations that passed both valid-
ity and legality checks from GPT-4 and CodeLlama-7B, the readability
score of GPT-4 (4.04) was higher than that of CodeLlama-7B (3.92).
This underscores the significance of prioritizing the quality score for
a comprehensive assessment of the overall performance of generation
methods, even though the readability score is a useful indicator of the
generated visualization’s quality in terms of readability.

5.2.1 Typical Errors

To gain a better understanding of the errors encountered when gen-
erating visualizations using LLMs, we manually analyze the errors
identified by each sub-check module (see Appendix C.3 for more de-
tails). We then categorize these typical errors into five categories to
reveal prevalent challenges. Fig. 11 demonstrates examples of errors
from each category, elaborated upon in detail below.

Invalid code. Here are common reasons for such errors to occur: in-
correct API calls or calling non-existent APIs, as illustrated in Fig. 11(1)
where barplot() is given two positional arguments despite accept-
ing zero to one argument; forgetting to import packages, as depicted
in Fig. 11(2) where “numpy” (np) is used without being imported;
hallucinations leading to the use of non-existent data columns.

Illegal data transformation. This type of error refers to instances
where the chart does not meet the query due to incorrect data transfor-
mations. The primary reason for such errors is incomprehension of
the data table. For instance, in Fig. 11(3), two duplicate rows in the
Faculty_Participates_in table should be cleaned to avoid double-
counting faculty members with the same FacID, which GPT-4 does
not handle. Another reason is generating code that does not meet its
intended purpose. For instance, in Fig. 11(5), the comment mentions
counting the number of students and faculties, while the code calculates
the record count within each actid group.

Illegal visualization transformation. The third category indicates
that the generated visualization does not undergo appropriate visual
transformation. Some instances fail to create the legal chart types. This
not only includes instances of mismatched chart types but also covers
situations like the one shown in Fig. 11(6), where bars were overlapped.
Additionally, there are instances involving improper visual mapping. In
severe cases, this can lead to uninterpretable charts such as Fig. 11(7).
Moreover, some instances involve forgetting to add a legend or creating
an incorrect legend. For example, as depicted in Fig. 11(8), where the
“name” variable was erroneously included in the legend.

Illegal order. Sorting issues resulting from a lack of sorting or
incorrect sorting criteria. For instance, in Fig. 11(9), the query specifies



Fig. 11: Typical errors: (A) pertains to invalid code error. (B1-3) denote illegal errors occurring during data transformation, visualization transformation,
and sorting processes. (C) relates to issues of low readability.

descending order based on the “Location”. However, the generated
code sorts based on values (the sum of total passengers) instead.

Low readability. Readability issues are common in the generated
visualizations. For example, in Fig. 11(10), representing years using
decimals may confuse readers. In Fig. 11(11), inverting the y-axis
places the origin at the top-left corner, which is not consistent with
common reading habits. Additionally, in Fig. 11(12), the x-axis title
overflows, leading to text truncation. Lastly, in Fig. 11(13), there is a
typographical error; it should be “Acceleration” instead of “Accelerate”.
These issues, to varying degrees, affect the understanding of the charts.

5.3 Evaluating Other Approaches

In this subsection, We demonstrate the performance of previous LLMs-
based approaches, including Chat2vis [42] and LIDA [11], as well
as CoML4VIS. Since both Chat2vis and LIDA are limited to generat-
ing visualizations from a single table, our comparison focuses on the
quality of 689 visualizations that require data from a single table. As
summarized in Table 3, CoML4VIS has the highest quality score, while
Chat2vis has the highest pass rate, which shows that different prompt
strategies can have varying effects on the model’s performance.

Additionally, we noticed that previous approaches introduced distinct
table formats, so we conducted an evaluation to understand how the pass

Table 3: A comparison of pass rate and readability scores across different
approaches for queries involving a single table. The evaluation results
are obtained using the GPT-3.5 model.

Model Library
Invalid
Rate

Illegal
Rate

Pass
Rate

Readability
Score

Quality
Score

CoML4VIS
Matplotlib

4.95% 27.50% 67.55% 3.54 2.43
LIDA 6.59% 25.64% 67.77% 2.79 1.90

Chat2vis 4.92% 25.15% 69.93% 3.10 2.17
CoML4VIS

Seaborn
6.95% 32.02% 61.03% 3.66 2.27

LIDA 12.69% 35.54% 51.77% 3.39 1.77
Chat2vis 3.65% 31.05% 65.30% 3.04 2.02

rate of the same model varies across these different formats. As depicted
in Fig. 12, CoML summarizes the column names and samples N rows
of data. LIDA describes the statistical information of each column
in JSON format and samples N values randomly for each column.
Chat2vis uses natural language to describe the type of each column
and provides N examples for categorical data. To ensure fairness,
we maintained all other settings of CoML4VIS unchanged except for
the table format, and we standardized the sample size N to 10 for all
formatting options. We found that when using the table format of



[{'column': 'sex', 'properties': {'dtype': 'category', 'samples': ['female', 'male'], 
'num_unique_values': 2}}, 

{'column': 'rank', 'properties': {'dtype': 'category', 'samples': ['professor', 'lecture', 
'assistant professor', 'associate professor'], 'num_unique_values': 4}}, 

{'column': 'salary', 'properties': {'dtype': 'number', 'std': 2902, 'min': 778, 'max': 9684, 
'samples': [2545, ..., 1299], 'num_unique_values': 13}}] LIDA

pandas.DataFrame(shape=(14, 3), 
columns=["sex", "rank", "salary"])

      sex             rank             salary

0    female      professor    1560

..    ...               ...                  ...

13   male         lecturer       778 CoML

The dataframe has columns 'sex', 'rank', 'salary'. 
The column 'sex' has category values 'female', 
'male'. The column 'rank' has category values 
'professor', 'lecture', 'assistant professor', 
'associate professor'. The column 'salary' is type 
int64 and contains numeric values. Chat2vis

Fig. 12: Illustration of table format in CoML, LIDA, and Chat2vis.

Fig. 13: Comparison of pass rate across different models and table
format using Matplotlib library.

Chat2vis in CoML4VIS, the pass rate for visualizations requiring a
single table can reach 70.43%, which is 0.5% higher than Chat2vis’
pass rate and 2.88% higher than the original CoML4VIS.

However, different data formats have different impacts on the per-
formance of different models. As depicted in Fig. 13, the pass rates of
different models vary when generating visualizations using Matplotlib
with different data formats. We observed that when generating with
GPT-3.5, using the table format of Chat2vis results in the highest pass
rate. In contrast, when generating with GPT-4, using the table format
of Chat2vis yields the lowest pass rate. These observations suggest that
different LLMs exhibit preferences for specific table formats, which
may stem from the use of distinct training data during pretraining. This
underscores the importance of carefully selecting table formats based
on the chosen LLMs.

5.4 Table Disruption
We conducted experiments to assess the impact of including additional
unused tables when generating visualization using Matplotlib. In our
dataset, each visualization corresponds to a database that contains
multiple tables but only some of these tables are used for visualization.
In this experiment, we randomly included two unused tables in the
prompt. If the number of unused tables is less than two, then all unused
tables are added to the prompt. As shown in Table 4, the pass rate of
each LLM decreases to varying degrees. This suggests that it may be
necessary to carefully select the required tables at the beginning of the
workflow for generating visualizations.

Table 4: Evaluating the impact of table disruption on pass rate (%).

Choice CodeLlama-7B Gemini-Pro GPT-3.5 GPT-4

w/o disruption 28.17 51.59 61.69 75.27
disruption 17.44 -10.73 31.80 -19.79 54.68 -7.01 65.86 -9.41

6 DISCUSSION

6.1 Potential Development in NL2VIS
The evaluation outcomes in Section 5 show that current methods in
NL2VIS still have room for improvement. These highlight the impor-
tance of enhancing the performance of LLMs by exploring advanced
techniques and knowledge in natural language processing and data
visualization. We discuss the potential development as follows:

• Incorporating supplementary methods, such as linting methods like
pylint [51], can help address issues such as omissions in package
imports. Linting methods analyze code for errors and style inconsis-
tencies, providing proactive guidance and enhancing code quality.

• Observing frequent misuses of APIs by LLMs, it is essential to
develop strategies that guide LLMs using library API documentation
to improve the accuracy of API usage. Such strategies may involve
techniques such as retrieval augmented generation (RAG) [33] or
model fine-tuning.

• Decomposing NL2VIS tasks into subtasks is another effective ap-
proach, addressing errors across multiple steps from data transforma-
tion to visualization transformation. Therefore, simplifying complex
problems into manageable steps like data understanding, column
selection, visual mapping, and sorting can lead to more accurate and
efficient results.

• Iterative generation guided by feedback to refine and improve the
quality of generated visualizations. While it is challenging to directly
detect issues through code alone, integrating visual-based methods
can provide valuable feedback. For instance, incorporating our read-
ability evaluator into the generation process helps identify readability
issues in the generated results, guiding subsequent modifications.

6.2 Limitations and Future work
We summarize several limitations and propose future work direction.

Support for integrating additional grammar or methods. In this
work, we evaluate visualizations generated using Python libraries.
However, our framework’s modular design makes it easy to extend and
evaluate other visualization generation tools, such as JavaScript-based
toolkits. To evaluate Vega-Lite-based methods, for instance, we need
to configure the code execution and construction module. Specifically,
we simulate a browser environment to convert Vega-Lite code into
SVG format and adapt our deconstruction rules to accurately extract
data from the rendered charts. As a result, our framework is capable
of adaptively and robustly evaluating a broad spectrum of automatic
visualization tools. This level of flexibility ensures that our framework
remains useful and adaptable to emerging visualization technologies.

Expand the scope of benchmark. Currently, our dataset focuses on
common chart types. While it provides a solid foundation for bench-
marking, it does not encompass the full range of natural language
queries and visualizations. In the future, we aim to create a more
comprehensive and challenging benchmark that can drive further ad-
vancements in the field of NL2VIS. We plan to collaborate with BI-tools
teams and the broader community to expand our benchmark, including
real-world queries and more complex visualizations. By leveraging
our proposed construction process, which integrates the capabilities of
state-of-the-art LLMs with insights from human experts, we anticipate
enhancing the efficiency and quality of future dataset expansions.

Extend the coverage of metrics. The evaluation dimensions covered
in VisEval primarily focus on fundamental errors that hinder com-
prehension. At this point, we have not included metrics related to
aesthetics or expressiveness. This is partly because these aspects rep-
resent higher-level requirements that are not the primary challenges
currently faced. Additionally, they involve more subjective consid-
erations that are influenced by the visualization’s intended use and
audience, necessitating more complex evaluations. In the future, we
plan to expand the assessments to include aesthetic, expressiveness,
and stylistic aspects by leveraging more advanced models, enhancing
the performance and capability of VisEval.

7 CONCLUSION

We present VisEval, a novel NL2VIS benchmark aimed at compre-
hensive and reliable evaluation of generated visualizations. Our work
includes the construction of a large-scale and high-quality dataset,
the development of an automated evaluation framework covering di-
mensions of validity, legality, and readability, and the evaluation of
state-of-the-art LLMs. Our evaluations reveal common challenges of
LLMs, offering valuable insights for future advancements. Overall,
our framework represents a significant step forward in improving the
quality of NL2VIS systems in the era of LLMs.
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