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Fig. 1: This figure illustrates different animation design options for animated line charts. The animations are arranged in a time
sequence from top to bottom and categorized into six conditions from left to right.

Abstract— Dynamic data visualizations can convey large amounts of information over time, such as using motion to depict changes
in data values for multiple entities. Such dynamic displays put a demand on our visual processing capacities, yet our perception
of motion is limited. Several techniques have been shown to improve the processing of dynamic displays. Staging the animation
to sequentially show steps in a transition and tracing object movement by displaying trajectory histories can improve processing by
reducing the cognitive load. In this paper, We examine the effectiveness of staging and tracing in dynamic displays. We showed
participants animated line charts depicting the movements of lines and asked them to identify the line with the highest mean and
variance. We manipulated the animation to display the lines with or without staging, tracing and history, and compared the results
to a static chart as a control. Results showed that tracing and staging are preferred by participants, and improve their performance
in mean and variance tasks respectively. They also preferred display time 3 times shorter when staging is used. Also, encoding
animation speed with mean and variance in congruent tasks is associated with higher accuracy. These findings help inform real-world
best practices for building dynamic displays. The supplementary materials can be found at https://osf.io/8c95v/

Index Terms—Animation, Dynamic Displays, Perception, Motion, Analytic Tasks

1 INTRODUCTION

Visualizations leverage the strength of people’s perceptual abilities to
enhance data analysis. Dynamic visualizations, such as multi-class
animated time series that show changes in a large volume of data over
time, have become increasingly popular with technological advances
in visualization tools [20, 40, 47]. While visualization designers and
data journalists benefit from the ability of dynamic visualizations to
engage audiences, the large volumes of data presented can be effortful
for the viewers to process. Researchers criticize the transient nature
of dynamic displays, as data tends to overlap and move too swiftly
across the display, decreasing the legibility of the key statistics [22,50].
However, making sense of dynamic data can be a necessity in many
scenarios, from health care to network services [17, 31]. For example,
medical professionals might need to quickly extract summary statistics
from ECG data and monitor anomalies, and network engineers might
need to continuously compare network stability to identify unusual
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fluctuations to optimize data streaming. So how can we make dynamic
displays more effective?

In this paper, we explore visual manipulation techniques that might
improve viewer performance in perceptual tasks with dynamic dis-
plays, such as extracting summary statistics or identifying anomalies.
Our work focuses on understanding human perception of dynamic time
series, where data values are streamed into the chart display space fol-
lowing a time variable. This supplements the traditionally more well-
studied animated displays used for transitions and interactive systems
in the visualization field [21], such as transitions between different
static charts representing the same dataset [20], interactive transitions
to afford exploration of radial graphs [55], and transitions between
views of a scatterplot matrix [41]. Visual manipulation techniques
used in these animated transitions, such as staging and tracing, are
implemented differently than in dynamic time series. We define "stag-
ing" in dynamic time series as sequentially, rather than synchronously
presenting data. In a time series with two lines, a "staged" version
would display one line and then the next line. This contrasts with the
notion of "staging" in animated transitions, which focuses on showing
different phases of a transition by breaking it up into a set of simple
sub-transitions [20]. In dynamic time series, we define "tracing" as a
process similar to animated transitions, where the path of an object’s
movement is displayed. Imagine a line in a time series moving from
left to right through time. With "tracing", the line would grow from
left to right as more data is displayed on the screen. Without "tracing",
it would become a single dot moving from left to right. We added an
additional "history" dimension for when the data values are sequen-
tially displayed (staged) [18,25]. The data "history" is considered pre-
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served when the movement trajectory of the previous object remains
on the chart even after the subsequent object starts moving, and it is not
preserved when the movement trajectory of a previous objective gets
erased when the subsequent object starts to move. A staged dynamic
time series will keep the trace of the first line on the chart when dis-
playing the second line if it is "preserving history", otherwise it would
erase the trace of the first line when displaying the second line. Fig-
ure 1 shows combinations of staging, tracing, and history preservation.

We quantify the effects of these visual manipulations—staging,
tracing, and history preservation—in dynamic time series, on percep-
tual analysis tasks, and compare user performance to that in static
displays. This will provide visualization designers with a better un-
derstanding of the trade-offs between using animation for engagement
and using static visualizations for higher visual precision and less ef-
fortful perceptual analysis [22].

Generally, we found dynamic displays to facilitate mean and vari-
ance comparison tasks, but not outlier detection tasks. In addition to
objective performance measures on perceptual analysis tasks, we also
considered people’s subjective preferences, diving into what people
can take away from dynamic displays with qualitative data. The most
preferred condition was static visualizations, and people prefer anima-
tions with history over those without. Overall, animations with traces
are preferred over those without, unless the animation without traces
includes history. Participants’ preference for the visualizations, how-
ever, does not match their performances. We conducted a Kendall’s
Tau correlation test for the accuracy rankings for the perceptual tasks
and for the preference ranking when there were four lines (preference
only measured for four lines). All correlations were low: the prefer-
ence ranking’s correlation was -0.05 with the mean accuracy ranking,
0.24 with variance accuracy ranking, and 0.05 with the significant out-
lier accuracy ranking.

To further improve perceptual task performance with dynamic time
series, we also explore another venue of visual manipulation: motion-
based data encoding. Seminal work in visualization perception by
Cleveland and McGill [10], Munzner [35], and MacKinlay [34] iden-
tified multiple visual encoding channels, such as color, size, and orien-
tation, and provided guidelines on the effectiveness of encoding chan-
nels depending on the data type. For example, size encoding can effec-
tively show an increase in quantity but not in uncertainty [32]. More
recent work has demonstrated that redundantly encoding data values
with multiple visual channels can increase perceptual efficiency when
interpreting visualized data [36]. But despite the increasing popularity
of animation and dynamic displays, the visualization community has
yet to systematically explore the effectiveness of motion-based chan-
nels to supplement existing rankings of visual channels. Motion is a
powerful perceptual cue that tends to draw viewers’ attention regard-
less of context relevance [24]. Its transient nature might help reduce
clutter in a visualization depicting multiple data series. Visualization
readers might have certain mental schema associated with motion that
allows them to more intuitively interpret some data dimensions when
they are encoded with motion, similar to semantic alignments in other
visual channels such as color. For example, a data item that is en-
coded with a color that aligns with its semantic is more easily inter-
preted, such as green with celery [43], or higher quantity with a darker
color [44]. Therefore, we posit that leveraging motion as an encoding
channel can help analysts compare changing means, detect data fluc-
tuations, and identify data points of potential concerns (e.g., outliers)
more effectively. In this paper, we systematically investigate the effec-
tiveness of redundantly encoding motion (with a focus on animation
speed) with y-axis position, data variance, and outlier frequency. We
also point to future opportunities to consider combining the power of
motion and redundant encoding to enhance visualizations.
Contribution: We contribute three experiments examining the effec-
tiveness of animation techniques, including staging and tracing, on
low-level analytic tasks with dynamic time series. Using six animated
time series designs (plus a static version as the control), we compare
objective measures such as readers’ accuracy and speed at extracting
mean and variance, and subjective measures such as reader preferences
and takeaways from these animations. The results allowed us to gen-

erate design guidelines for animated time series. We also contribute
a close investigation of animation speed as a data encoding channel,
identifying its potential strengths and shortcomings.

Study Overview As outlined in Figure 2, Experiment 1 examines peo-
ple’s ability to extract summary statistics, such as mean and variance,
and identify significant outliers from the dynamic time series across
different amounts of data and animation designs. Experiment 2 mea-
sures peoples’ preferences for animation speed. Experiment 3 investi-
gates which data attribute is the most effectively encoded using speed,
specifically focused on the average y-axis position, the variance, and
the presence of outliers. Experiment 4 qualitatively examines conclu-
sions people generate across the animated versus static displays.

2 RELATED WORK

2.1 Visual Perception of Motion

Our visual system has evolved to process a dynamic world. We can
rapidly summarize the average speeds, directions, and trajectories of
moving objects at high accuracy [19, 52, 53]. It has been proved that
visualizations in motion have perceptional benefits in some real-world
applications, like a particle flow map [13] and an algorithm [15] that
generates intermediate frames in an animated visualization to show
uncertainty. In the literature review of animated visualization of time-
oriented data by Kriglstein et.al [28], animated visualizations are used
to "track the changes in data" and traces are used to "support users in
analyzing trends in data or data that evolves over time." When being
presented with animations, people often find it engaging and efficient
as animations can quickly depict the changes. But when being asked
to explore or analyze data with animations, animation becomes slower
and less accurate [18]. In addition, animation is good at showing
changes in data and works better for small-batch data (otherwise over-
lapping). According to Robertson et al., although trend animations
are the fastest and most engaging presentation technique, participants
were faster to analyze static trends with traces than with animations
which showed no path information [40]. Kriglstein found evidence
that participants are confused about traces, especially when more
datasets are presented [28]. However, these findings lack systematic
and quantitative models, and are not tested on low-level tasks of re-
calling statistic values. The analysis process was also slower with ani-
mated than static traces as participants needed to replay the animation,
and replaying is the only way of reinspection of animations despite
still resulting in a fleeting reception of information [50]. In addition,
between two static displays with trends, trend analysis is more accu-
rate when using a small multiple format that shows individual trends
without overlap than when using one single display that combines and
overlaps all trends.

While motion helps visualize changes in data, there is a limit to the
amount of individual moving objects we can process at a time. When
tracking multiple objects across space and time, we can typically track
up to four objects. When we attempt to also remember the history of
the objects’ features (e.g. how the colors, sizes, and trajectories of the
data points change), the capacity is even lower [26]. Thus, such limits
in the motion processing capacities restrict the motion information we
can process and analyze simultaneously. However, the task people do
in this work is not recalling statistic values in visualizations, judgments
such as summary statistics regarding multiple moving objects could
still be overwhelming when the dataset is large.

2.2 Dynamic Visualizations

With more visualizations being displayed on screen than on paper,
more opportunities arise for visualization designers to use animation
to leverage the power of our visual perceptual system for data story-
telling. Animated visualizations can deliver a larger amount of infor-
mation to the viewer compared to their static counterparts within the
same number of pixels [21]. They can help users more effectively
extract summary statistics and increase data engagement [27, 29, 51].
Animated transitions can help users keep track during data exploration
such as pan and zoom operations [2]. There is often a mismatch in



people’s preference and performance regarding animated visualiza-
tions. People prefer animated visualizations over static ones for be-
ing more engaging and more obvious in showing changes, and they
tend to be more confident when learning through animated visualiza-
tions [5, 6, 40]. However, when designed carelessly, animated visual-
izations can overwhelm viewers and impair insights compared to static
displays (e.g., [23, 40]). It remains unexplored how different designs
of animated visualizations would affect analytic tasks.

Researchers have begun to explore animation perception in visual-
izations. Chalbi et.al [8] tested dynamic and stationary variables (po-
sition, size, luminance) in conflict conditions and observed how par-
ticipants group objects. They confirm that the Law of Common Fate
can be expanded to dynamic variables with motion being strongest,
and their relative weight varies in different real-world settings. Cheva-
lier et.al. [9] tested the effect of staggering (delay) in animated tran-
sition in different complexity by asking participants to track a set of
dots. It shows staggering only works in limited conditions. Robertson
et.al. [40] found that trace visualization (like Gapminder) is good at
helping people detect abnormal trends. There is also work on how peo-
ple understand or design animated visualizations. Thompson et al. [48]
proposed a taxonomy for “Animated Data Graphics” in three dimen-
sions: object, graphic, and data, and divided common transitions into
these dimensions. They studied how participants break down the ani-
mation into dimensions, their preference for transition types, and how
they author animations themselves. Thompson et.al [49] proposed an
interactive GUI, Data Animator, for animated data creation, leveraging
transition from one data view to another. It allows edition on staging
and staggering, as well as visual aids on object pairing in different data
views. A usability study was conducted to test the completion time of
different tasks. Zong et al. [56] also created a visualization program
language that enhances vega-lite to support animation, and compared
the user experience with existing techniques like Data Animator [49].

While excessive motion information in animated visualizations
would likely overwhelm viewers, researchers see the benefits of an-
imations for being enjoyable and depicting changes. With better de-
sign, especially targeting specific perceptual tasks and dataset sizes,
there is great potential for animations to maintain their benefits and
more effectively deliver their underlying messages.

3 EXP 1 AMOUNT OF DATA AND STYLE PREFERENCES

We first examined how different animation types might benefit or hurt
performance on perceptual tasks depending on the amount of data for
the readers to process. We also measured their subjective preference
for animation styles. We designed visualizations animating two, three,
or four lines, across combinations of animation techniques. We iden-
tified three predominant animation techniques from perception and vi-
sualization research to investigate: staging, tracing, and history preser-
vation [40] [18]. We manipulated staging by either showing the data
values in the visualization sequentially or synchronously, manipulated
tracing by either displaying data values’ movement trajectory or not,
and manipulated history preservation by turning the final outcome of
what the data looked like after the animation plays through on or off.

As shown in Figure 1, we generated six animation conditions: H

Sequential, Trace, History; H Sequential, No trace, History; Se-
quential, Trace, No History; Sequential, No trace, No History; H

Synchronous, Trace, History; and Synchronous, No trace, No His-
tory. Two manipulations from a complete permutation of the three
techniques, Synchronous, no trace, history and Synchronous, trace, no
history, were not possible to execute (showing history conflicts with
tracing in synchronous lines), and thus were not created as conditions
in this study. We instead included a static visualization showing all the
data at once as a control, resulting in seven conditions total.
Participants and Safety Measures: We recruited 189 participants
who are fluent in English from Prolific.co [38]. The study took on
average 40 minutes and participants were compensated at the rate of
$12 per hour. Based on existing works [3], [4], we implemented two
safety measures for experimental quality control. First, we filtered out
participants who spent less than 550 seconds, based on the average
completion time of 1226 seconds and a standard deviation of 555.1
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Fig. 3: Recalling mean value has the highest accuracy in all conditions.

seconds (people who spent less than 1.5 standard deviations away from
the mean time were excluded). Second, participants who provided
abnormal responses (people who selected the same answer for all trials
or provided nonsensical data in their free response) are excluded.

3.1 Experiment Design
We synthesized data to generate time series line charts with two, three,
or four lines. To ensure generalizability, our synthetic dataset covers a
range of data distributions and relations between the means, variances,
and the number of outliers. The synthesized means, variances, and out-
liers (most significant outliers) were designed to be uniformly sampled
from two pools: high pool or low pool, based on summary statistics
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Fig. 5: Performance and preference rankings of 4-line dynamic series
across conditions. The conditions on top mean higher performance
or stronger preference. We observed asymmetry between subjective
preference and objective performance.

generated from the real-world dataset for external validity (see Section
6). For all charts, the x-axis ranged from 0 to 100, and the y-axis from
100 to 700. We calculated the mean values and standard errors (to rep-
resent variance) for each subset of data. The means in high pool are
filtered to be larger than the median of all mean values, and those in
low pool are filtered to be smaller than the median. Similarly, the vari-
ance values (represented with standard deviation) are set to be higher
than the median of all standard deviations in the high pool, and lower
than the median in the low pool. For the most significant outlier, high
pool means having an outlier while low pool means not. If a line has
an outlier, its y-axis value would be five times the standard error of the
line’s data, and its x-value is uniformly sampled from 0 to 100.

We permutated through the high and low pools for these three met-
rics to generate displays. The permutation for 6 visualization designs
plus the static condition yielded 1512 conditions (see supplementary
materials for details). For each display we created 5 color variants
to control the effect of color, resulting in 1512× 5 = 7560 animated
visualizations. We used a between-subject design to examine the ef-
fect of animation conditions and line numbers on task accuracy. We
controlled for animation display time and kept it consistent across all
conditions to be 5 seconds (with 1 second of blank frame). We further
tease apart the effect of animation speed in Experiment 2 and 3.

3.2 Experiment Procedure
After consenting to the study, to ensure that everyone sees the stimuli
in the same resolution and size, participants adjusted the size of a vi-
sualization by resizing a rectangle to fit the size of a credit card on the
web page, according to virtual-chinrest by Li et al. [30]. Participants

then went through a short training on how to compare means, vari-
ances, and the most significant outliers in time series. Next, they went
through a practice trial where they viewed an animated time series vi-
sualization (with 4 lines appearing sequentially and trace and history
both turned ’on’), and identified the line with the highest mean, vari-
ance, and outlier. Participants can study the visualization for unlimited
time before proceeding to the experiment.

For the main experiment, participants viewed an animated display
for five seconds and, on a separate page, completed three perceptual
tasks involving comparing the means, variances, and the most signifi-
cant outliers (operationalized as identifying the line with the most ’sig-
nificant spike’ ) of the lines. Specifically, they were told to identify the
line with the highest mean, variance, and the most significant outlier
value. They repeated this task 40 times, with each display randomly
sampled from the 7560 visualizations described in Section 3.1.

We also asked the participants to rank the 7 visualization conditions
(6 animations and 1 static) by arranging them in a horizontal box from
left to right, with the left-most display being the most disliked and the
right-most display being the most preferred.

The experiment finished with demographic questions asking for
participants’ level of education and experiences coming across and de-
signing animated charts.

3.3 Results: Amount of Data and Animation Overview

We first took an overview to examine the effect of the amount of
data on performance across three tasks, and used a logistic regres-
sion model to predict performance with the number of lines crossed
with three tasks. As shown in Figure 4, we found a main effect of the
number of lines, such that participants were the most accurate when
completing perceptual tasks with two lines, 1.66 times more accu-
rate than tasks with three lines, and 2.32 times more accurate than
tasks with four lines. These perceptual tasks were the most difficult
when there were four lines in the display, where participants’ perfor-
mance was significantly worse compared to displays with three lines
(OR= 1.40, p< 0.0001). Overall, participants performed the most ac-
curately on the outlier task, 1.23 times more accurately than the mean
comparison task and 1.62 times more so than the variance comparison
task (p<0.001). They performed the worst on the variance compari-
son task, and were only 1.32 times as likely to correctly respond as
compared to the mean comparison task (p<0.001), see Figure 3.

3.4 Results: Effect of Animation Conditions

We first took an overview of a logistic model predicting performance
for each task based on whether staging, tracing, and history preser-
vation are manipulated. Overall, we found that staging hindered task
performance (OR=0.696). Tracing also hindered task performance,
although the effect seemed small (OR=0.978). Showing history im-
proved task performance by 1.36 folds.

Next, we more systematically examined performance on the three
perceptual tasks across the six animation conditions and three line
numbers. This allowed us to identify the most effective animation
technique for each task. We report the most significant takeaways from
our analysis. Refer to supplementary materials for detailed statistics.

Mean Task: We show the participants’ performance in comparing the
mean value in Figure 3. The best-performing condition is syn-
chronous, no trace, no history for 2 lines, sequential, trace, history
for 3 lines, and H synchronous, trace, history for 4 lines. Generally,
synchronous animations and static visualization perform well in re-
calling the highest mean value. For sequential animations, keeping
histories can improve people’s performance, especially when there are
more lines in the animation.

Variance Task: As shown in Figure 3. The best-performing condi-
tion is H sequential, no trace, history for 2 lines, H sequential, trace,
history for 3 lines, and both H synchronous, trace, history and STATIC

static for 4 lines. Generally, static visualization and animations with
traces perform well in comparing the variance. For both sequential and
synchronous animations, keeping traces can improve people’s perfor-



mance. For sequential animations, keeping histories can also improve
people’s performance.
Outlier Task: We show the participants’ performance of recalling the
most significant outlier in Figure 3. The best-performing condition is

synchronous, no trace, no history for 2 lines, H sequential, no trace,
history for 3 lines, and STATIC static for 4 lines. Static and animations with
histories have generally high performance in the task of recalling the
most significant outlier. For both sequential and synchronous anima-
tions, keeping histories can improve people’s performance, but keep-
ing both trace and history in sequential animations can lower people’s
performance when there are more than 3 lines.
Subjective Preference: We conducted a one-way Kruskal-Wallis
ANOVA with a Dunn’s post-hoc analysis to compare preference for
each animation condition (p-values are corrected via Bonferroni’s
method to account for multiple comparisons). Overall, participants
preferred the STATIC Static display the most (Meanrank=2.80, SE=0.135),
followed by H Synchronous, trace, history (Meanrank=3.04,
SE=0.129, p=0.00975). Synchronous, no trace, no history was
the least preferred (Meanrank=5.30, SE=0.129) and Sequential, no
trace, no history (Meanrank=5.30, SE=0.143, p=0.979).
Comparing Subjective and Objective Measures: As shown in Fig-
ure 5, participants varied in how well they completed the mean, vari-
ance, and outlier tasks depending on the animation condition. Their
reported animation preferences also did not match their objective per-
formance. That is, participants did not always complete the perceptual
tasks with the highest accuracy under the more preferred animation
conditions. We performed a Kendall’s Tau correlation test for perfor-
mance rankings of the three tasks without considering the number of
lines. The correlation between the performance rankings of mean and
variance was 0.33, the correlation between the performance rankings
of mean and significant outlier was 0.52, and the correlation between
the performance rankings of variance and significant outlier was 0.05.

We report participants’ rankings of the visualizations in Figure 5. STATIC

Static was most preferred, followed by H synchronous, trace, history.
These were also the top two visualization conditions for the accuracy
performance of the three tasks. Sequential, no trace, no history and

synchronous, no trace, no history were the least preferred.

Discussion: The conditions synchronous, no trace, no history were
not preferred by most participants, but people are performing well in
the perceptual tasks, especially when comparing the mean and the
most significant outliers. Because this condition yielded the highest
performance in mean and outlier tasks, we suspect animation styles to
have their own affordances for different visual tasks, similar to other
encoding channels. This motivates us to investigate what analytic task
each speed and animation technique affords in subsequent studies.

4 EXP 2 PREFERENCE & PERFORMANCE UNDER SPEEDS

To design animated displays with speed as an encoding channel, we
first identified which speeds are the most subjectively preferred by vi-
sualization readers. We then examined readers’ performance for the
mean, variance, and outlier tasks under these speeds.

4.1 Participants, Experiment Design, and Procedure
We recruited 100 participants from Prolific.co [38], with the same fil-
tering criteria and safety measures for quality control as those in Ex-
periment 1. The study took about 38 minutes. Participants were com-
pensated at the rate of $12 per hour.

We conducted a within-subject experiment to study the effect of
animation conditions and speed on accuracy and preference. We cre-
ated dynamic time series visualizations showing the movement of four
lines, with line colors randomly assigned to each line. We manipulated
the animation speed with display times ranging from two to eight sec-
onds with one-second increments (seven unique display times in total).

In the first phase, we adopted the psychophysics method of lim-
its [16]. Participants viewed a dynamic visualization playing for either
two seconds (maximum speed) or eight seconds (minimum speed).
They indicated whether the animation was too slow, too fast, or ‘OK’.

Depending on their response, we increased or decreased the anima-
tion speed until they selected ‘OK’. We repeated this task over six tri-
als, randomly dispersed across all the other trials, alternating between
starting from slow or fast for all six animation conditions.

In the second phase, we showed the participants displays in the six
animation conditions, across all intervals of display times (6×7 = 42
displays). For each display, participants completed the mean, variance,
and outlier tasks.

4.2 Results: Subjective Preference
We first computed each person’s preferred speed over the six trials
they viewed for each animation condition. Figure 6(a) shows one par-
ticipant’s data for a single animation condition H sequential, trace,
history. In this example, for the first trial, they saw a 2-second dis-
play and indicated that the animation speed was ‘OK’. They then saw
an 8-second display and indicated the animation was ‘too slow’ until
the speed was lowered to 4 seconds. Next, they saw a 2-second dis-
play and indicated the animation was ‘too fast’ until the speed was in-
creased to 3 seconds, and so on. Speeds marked as ‘OK’ are averaged
to generate a mean preferred speed for this animation and participant.
We repeated this process for all participants (see Figure 6(b)) and all
animation conditions (see Figure 6(c)).

We first took an overview of the effect of staging, tracing, and his-
tory preservation techniques on preference via an ANOVA predicting
preferred play speed with these three variables (two levels for each:
on/off), with post-hoc pair-wise comparisons.

We consider synchronous displays as not staged and sequential dis-
plays as staged. We found participants overall preferred a shorter
display time for synchronous displays (Mean = 4.20, SE = 0.064)
compared to sequential displays (Mean = 5.60, SE = 0.046, pad j <
0.0001). Sequential displays stage the line animations, therefore it
takes four times as long for a sequential display to play out compared
to a synchronous display showing the same four lines, assuming the
lines move at the same speed. If participants have an absolute prefer-
ence for line movement speeds, we would expect their preferred dis-
play time for the sequential display to be four times that of the syn-
chronous display. However, our results indicated that to not be the
case. On average, participants preferred the lines in a sequential dis-
play to move three times faster than the lines in a synchronous display.

For tracing, participants preferred longer animation display time for
displays with trace (Mean = 5.16, SE = 0.056) compared to displays
without trace (Mean = 4.64, SE = 0.055, pad j < 0.0001). This sug-
gests that participants preferred the displays with trace to play slower
than displays without trace.

However, for history preservation, participants preferred shorter an-
imation display time for displays with history (Mean = 4.78, SE =
0.056) compared to displays without history (Mean = 5.03, SE =
0.056, pad j < 0.0001). This suggests that participants preferred an-
imation with history to play faster.

For clarity of result interpretation, we also conducted a one-way
ANOVA comparing the six conditions to better understand partici-
pants’ relative speed preference across these conditions. Overall, par-
ticipants preferred significantly different speeds across the six anima-
tion styles (F = 111.10, p<0.0001). We conducted a post-hoc analysis
with adjustments for multiple pair-wise comparisons. We report sig-
nificant differences here, and detailed statistics can be found in the
supplementary materials. Our data suggests that participants preferred
the longest display time (t = 6.05s) for the sequential, trace, no
history condition. The next tier of display time includes the se-
quential, no trace, no history (t = 5.67s) and the H sequential, trace,
history (t = 5.53s) conditions. This is followed by the H sequential,
no trace, no his condition, where participants preferred a moderate dis-
play time (t = 5.25s) compared to all other conditions. They preferred
the H synchronous, trace, history to play at the second shortest time
of 4.54s. They preferred the display time to be the shortest for the
synchronous, no trace, no history condition, at 3.87s.
Discussion: Animation design has a significant effect on people’s sub-
jective preference for animation display speed. Generally, participants
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preferred the lines in a synchronous display to move three times slower
than the lines in a sequential display. Regarding trace and history, par-
ticipants preferred the animations with trace to play slower than those
without trace, but preferred animations with history to play faster than
those without history. It suggests that even though trace and history
both involves leaving the lines on the screen for a certain amount of
time, people have opposite preference for them and they should be
treated separately in design. When the trace is displayed, participants
have more information to look at but are limited to animation dura-
tion, so they might need more time. On the other hand, preserving
the history until the end of the entire animation might make partici-
pants feel more “assured” that they will have history information later
for reference, so there is no need for longer display time. This sug-
gests that more complex perceptual heuristic mechanisms might be
involved. For example, participants might be sensitive to both the hor-
izontal speed of the line movement, and the speed of jumps between
data points, as drastic changes capture their attention.

4.3 Results: Speed and Task Performance

Next, we examined participants’ objective performance across all
seven levels of animation speeds (2 to 8 seconds). We conducted a
logistic regression predicting task accuracy with the type of percep-
tual task (mean, variance, significant outliers), animation conditions
(with or without staging, tracing, history), and animation display time.

Overall, participants performed most accurately on the outlier task,
1.62 times more so than the mean comparison task and 1.82 times
more so than the variance comparison task (p<0.001). They performed
worst on the variance comparison task, being 0.89 times as likely to
respond correctly as on the mean comparison task (p<0.001).

Animation speed has a main effect (p<0.0001) that with each sec-
ond of increase in animation display time, the accuracy increases by
1.05 folds across all perceptual tasks. In terms of staging, tracing, and
history preservation, staging the animation (displaying lines sequen-
tially) decreases the accuracy by 1.34 folds, while tracing increases
by 1.08 folds and history increases by 1.38 folds (all p<0.001).

Next, we systematically examined perceptual task performance
across the six animation conditions for the three tasks. This allows
us to identify the most effective animation technique for each task.

Again, we report the most significant takeaways from our analysis.
Details can be found in the supplementary materials.
Mean Task. For the mean task, we see a small effect of time, such that
increasing display time by one second would increase the odds of get-
ting the correct answer by 1.07 fold (p<0.001). Overall, the animation
conditions H synchronous, trace, history leads to the highest perfor-
mance on the mean task. The animation condition sequential, no
trace, no his resulted in the lowest performance.
Variance Task. We see a small effect of time, such that increasing dis-
play time by one second would increase the odds of getting the correct
answer by 1.03 fold (p<0.001). Overall, similar to the mean compari-
son task, the animation condition H synchronous, trace, history leads
to the highest performance, and sequential, no trace, no his leads
to the lowest performance.
Outlier Task. For the outlier task of identifying the line with the most
significant outlier, we observed a small effect of time, such that in-
creasing display time by one second would increase the odds of get-
ting the correct answer by 1.04 fold (p<0.001). Overall, the animation
condition H synchronous, trace, history leads to the highest perfor-
mance on the mean task, and the condition sequential, no trace, no
history leads to the lowest performance.
Discussion: H Synchronous, trace, history had the highest perfor-
mance for all three tasks while sequential, no trace, no history had
the lowest performance for all tasks. Increasing display time only had
a small effect on increasing performance and cannot compensate for
the low performance brought by other conditions.

4.4 Results: Comparing Preference and Performance

Overall, across the six animation conditions and the three perceptual
tasks, we observed a discrepancy between participants’ subjective dis-
play time preference compared to the display time that affords the
highest accuracy in the perceptual task.
Mean Task: Participants performed the mean comparison tasks with
the highest accuracy (65.0%, SE=0.0024) when the display time is
6.50s (SE=0.070), which is significantly different from their preferred
display time of 5.15s (SE=0.049, t=−15.788, p<0.001). Their accu-
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Fig. 8: Participants accuracy with different animation design, task, and
encoding in Experiment 3. For each arrow, the beginning value rep-
resents the accuracy when participants were not explicitly told about
the meaning of the speed encoding, and the ending value represents
accuracy when they were explicitly told. If the arrow points upward,
it suggests that being explicitly told about the meaning of the speed
encoding improved their task performance, while pointing downwards
suggests knowing the speed encoding hurts their performance.

racy at their preferred display time is only 55.4% (SE=0.0026).
Variance Task: Participants performed the variance comparison tasks
with the highest accuracy (60.0%, SE=0.0025) when the display time
is 6.50s (SE=0.056), which is significantly different from their pre-
ferred display time of 5.15s (SE=0.049, t=−6.90, p<0.001). Their
accuracy at their preferred display time is only 51.6% (SE=0.0024).
Outlier Task: Participants performed the variance comparison tasks
with the highest accuracy (73.2%, SE=0.0029) when the mean display
time is 6.50s (SE=0.070), which is significantly different from their
preferred display time of 5.15s (SE=0.049, t=−15.79, p<0.001). Their
accuracy at their preferred display time is only 66.2% (SE=0.0033).
Discussion: Across all three tasks, participants did not perform the
best at their preferred display time, suggesting a discrepancy between
subjective v.s. objective measures of optimal animation speed.

5 EXP 3 SPEED AS A VISUAL ENCODING CHANNEL

With the optimal speeds identified, we now closely examine how
motion-based data encoding channels can benefit or stymie perceptual
task performance, across the three tasks and six animation conditions.
We explore the potential benefits or hindrances to perceptual task per-
formance by redundantly encoding animation speed with y-axis posi-
tion, data variance, and the most significant outliers.

5.1 Participants, Experiment Design, and Procedure
The study took about 15 minutes, and participants were compensated
at the rate of $12 per hour. We recruited 100 participants from Pro-
lific.co [38], with the same filtering criteria and safety measures for
quality control as those in Experiment 1.

We randomly generated dynamic line charts showing four lines fol-
lowing the same algorithm as that in Experiment 1, for all six anima-
tion conditions. We identified the animation speeds associated with the

highest performance on perceptual tasks based on results from Exper-
iment 2. For each animation condition, we manipulated the movement
speed of each line via three encoding choices to associate speed with
one of the three data attributes (y-position, variance, and number of
outliers), to generate 6*3 = 18 animated visualizations:
Choice #1 Speed is redundantly encoded with the average y-axis po-
sition (lines with higher mean value move faster).
Choice #2 Speed is redundantly encoded with the variance (lines with
higher variance move faster).
Choice #3 Speed is redundantly encoded with the significant outliers
(lines with a more significant outlier move faster).
These encoding choices will help us observe whether encoding a spe-
cific attribute would increase performance accuracy when people ex-
tract statistics from that particular attribute.

We conducted a within-subject experiment to study the effect of
knowing, encoding channels, and animation conditions on accuracy.

Animation Speed: We determined the specific animation speeds by
taking the speeds under which participants in Experiment 2 performed
the most accurately. Take the versions where speed is redundantly en-
coded with the most significant outlier as an example. For the H syn-
chronous, trace, history condition, we chose the animation that plays
for 5 seconds, as it is the display time that elicits the highest accuracy
in the outlier task. For the H sequential, trace, history condition, we
chose the animation that plays for 7 seconds (see Figure 7).

However, since we are treating speed as an encoding channel, each
line in the display should have a different animation speed correspond-
ing to the data attribute (mean, variance, and significant outlier) with
which speed is encoded, without altering the overall animation time.
To achieve this, we scaled the display time for each line by the at-
tribute where the speed is encoded. For sequential displays, keeping
the overall animation display time means that each line’s display time
should be scaled. To determine the scaling interval, we referenced the
data collected on participants’ animation speed preference from Ex-
periment 2. The preference data shows a standard deviation of one
second, which suggests that a one-second change in overall animation
display time is noticeably visible to a viewer. Considering that the
fastest preferred display time for sequential animation was three sec-
onds, we scaled each line’s display time to ensure their interval was
1/3 of the original display time. Take the H sequential, trace, history
condition that each line plays for 7/4=1.75 seconds as an example: the
display time of lines with most to least significant outliers would be
1.75× [0.5,0.5+ 1/3,0.5+ 2/3,1.5] seconds. For synchronous dis-
plays, adhering to the overall animation display time means that the
display time of the slowest moving line should match the overall ani-
mation display time. With this constraint, considering the one-second
noticeable difference, and that the fastest preferred display time for
synchronous display is five seconds, we scaled each line’s display time
to ensure the interval is 1/5 of the original display time. Take the H

synchronous, trace, history condition that all lines play for five seconds
as an example: the display time of lines with most to least significant
outliers would be 5× [2/5,3/5,4/5,1] seconds.

Intuitiveness: To investigate the intuitiveness of the speed-based re-
dundant encoding, we also manipulated whether participants were ex-
plicitly told about the meaning of the speed encoding channel. To miti-
gate the effect of the curse of knowledge [54], we generated another set
of 18 animated displays and showed the two sets to participants in two
blocks. In the first block, participants were not told anything besides
to look at the animation, before they completed the mean, variance,
and outlier tasks. In the second block, participants were explicitly told
that the display they saw has speed redundantly encoded with either
the mean, variance, or significant outliers (i.e., “higher speed means
higher average/variance/spikes”). Overall, each participant saw 36 an-
imated visualizations (6 conditions x 3 speed encodings x 2 sets).

As with Experiment 1, after consenting to the experiment, partic-
ipants went through an instruction module training them on how to
extract mean, variance, and outlier information from the line displays.
They view the 36 animated visualizations in two blocks, and respond



to the mean, variance, and outlier perceptual tasks.

5.2 Results: Intuitiveness (Effects of Knowing)

According to Figure 8, if speed encoding matches the perceptual task,
explicitly telling participants the meaning of the speed encoding im-
proves their task performance across all tasks and animation condi-
tions. One exception is that comparing outliers in sequential, trace,
no history has a slight decrease in accuracy. If speed encoding does not
match the perceptual task, there is no obvious pattern between telling
participants the meaning of speed encoding and the change in their
performance.

We built a logistic regression model predicting response accuracy
for each task, based on whether participants were told explicitly about
the meaning of the speed encoding or not. Generally, we found speed
encoding to be significantly more beneficial when participants were
explicitly told its meaning, as illustrated by the higher number of ar-
rows pointing upwards in Figure 8. Notably, explicit knowledge of the
speed encoding channel varied in how much they benefit each task.

Explicitly knowing the meaning of speed encoding increased per-
formance the most in the variance comparison task, by 1.31 fold, fol-
lowed by the mean comparison task (OR=1.16), and least so in the
significant outlier task (OR=1.14, all p<0.001).
Takeaway: Overall, using speed encoding will be the most effective
when the speed encoding matches the perceptual task, and when you
explicitly tell participants what speed represents.

5.3 Results: Benefits of Speed Encoding

Next, we examined the overall benefits of adding speed as an encod-
ing channel. We compared participants’ overall performance in this
experiment to participants’ performance in Experiment 2 when speed
was not used as an encoding channel. The horizontal black lines in
Figure 8 represent the baseline accuracy from Experiment 2.

We are also interested in understanding whether speed encoding can
hurt perceptual task performance through interference. For example,
encoding the average variance with speed could make a mean compar-
ison task more difficult to complete, as participants get distracted by
the salient speed encoding that represents variance and become less
attentive to mean values. For each perceptual task, we constructed a
logistic regression predicting the effect of encoding the mean, vari-
ance, or significant outliers with speed on task accuracy.
Mean Task: We compared participants’ performance on the mean
comparison task when speed is encoded with mean values (congruent),
variance (incongruent), and the significant outlier task (incongruent).

Overall, while encoding speed with mean values enhances perfor-
mance on the mean comparison task (OR=1.10), encoding speed with
data attributes incongruent with the mean task significantly hurts task
performance (p<0.001). Namely, encoding speed with variance val-
ues decreases accuracy on the mean task by 1.25 folds, and encoding
speed with the significant outlier attribute decreases accuracy on the
mean task by 1.13 folds. As shown in the top row of Figure 8, the
average positions of the orange arrows, representing speed encoded
with mean values, are higher than the black baseline. The average po-
sitions of the blue and green arrows, representing speed encoded with
variance and outlier, are lower than the black baseline.
Variance Task: Encoding variance values with speed (congruent) im-
proved performance on the variance comparison task by 1.12 folds,
and encoding mean values with speed (incongruent) hurt performance
on the variance comparison task by 1.20 folds (p<0.001). Interest-
ingly, for this task, encoding significant outlier values with speed did
not interfere with performance on the variance task despite the incon-
gruence, increasing performance accuracy by 1.07 folds (p=0.002).
Outlier Task: Performance in the outlier task was hurt by all three
choices of speed encodings, congruent or not (p<0.001). Encoding
mean values with speed decreased outlier task accuracy by 1.40 folds,
and encoding variance values with speed decreased it by 1.45 folds.
Surprisingly, even encoding the most significant outlier with speed de-
creased outlier task accuracy by 1.32 folds.

Takeaway: Speed encoding helps in the task of recalling mean value
and variance, but only when the encoding is congruent with the goal
at hand. Encoding data attributes in a way that’s incongruent to the
perceptual task generally hurts performance. Speed encoding is not
helpful for significant outlier tasks and should be avoided if the goal
is to identify outliers. The asymmetrical benefits of speed encoding
to analytic tasks also suggests a complex underlying mechanism for
visualization animation perception that warrants future investigation.

5.4 Results: Staging, Tracing, and History Preservation
Next, we examine how speed encoding might interact with anima-
tion conditions to even augment or diminish performance in percep-
tual tasks. We first took an overview of a logistic model predicting
performance for each task based on whether staging, tracing, and his-
tory are manipulated. Overall, we found that when speed encoding
was present, staging hindered task performance (OR=0.74). Trac-
ing also hindered task performance, although the effect seemed small
(OR=0.74). History improved task performance by 1.49 folds.
Discussion: In Experiment 2, where speed encoding was not used in
displays, we found that staging hurt performance while tracing and
history helped. These results hold when speed encoding was used in
displays, except for the diminished benefits of tracing.

5.5 Results: Speed encoding by Animation Condition
Next, we took a closer look at the relative performance across the
six animation conditions to generate task-specific recommendations
on which animation style to use to optimize performance. We con-
structed logistic linear regression models for each task, to compare
performance under each of the six animation conditions. Instead of re-
porting all pair-wise comparisons by overloading the interaction term,
we prioritize the usability of our results by focusing our analysis on
the animation condition that can be combined with a speed encoding
choice to optimize a given perceptual task. The remaining detailed
statistics can be found in the supplementary materials.
Mean Task: Generally, encoding speed with mean values of lines
produced the highest accuracy on mean comparison tasks. The per-
formance can be further increased by visualizing data in the H syn-
chronous, trace, history condition. On the other hand, we recommend
designers to avoid using the sequential, no trace, no history condi-
tion for mean comparison tasks, which led to the worst performance.

Variance Task: Generally, encoding speed with variance values of
lines produced the highest accuracy on variance comparison tasks. De-
signers can even further increase performance accuracy by visualizing
data in the H synchronous, trace, history condition. We recommend
designers avoid the sequential, trace, no history condition for vari-
ance comparison tasks as it leads to the worst performance.
Outlier Task: Generally, not using speed encoding for the outlier task
would lead to the highest performance. Therefore, we compared the
overall performance on this task when no speed encoding was used.
The H sequential, trace, history condition led to the highest perfor-
mance, while the sequential, no trace, no history condition led to
the worst performance (refer to Experiment 2 for detail).
Takeaway: In the mean comparison task, we found synchronous con-
ditions to be the most beneficial, likely because participants can si-
multaneously compare the mean values of the lines without having to
rely on their working memory, which they have to do in the sequen-
tial conditions. For the variance task, including traces in synchronous
lines with history helped, but including traces in sequential lines with-
out history led to the lowest performance. When lines were played
out synchronously, it was easier to spot which lines were faster. When
synchronous lines preserve histories as well, faster lines have their his-
tory on the screen for a longer time, helping people to find out which
lines were faster. Even though showing the trace helps people visu-
alize the variance in each line, showing the lines one at a time and
without history requires people’s working memory of the shape and
speed of each line, making it more difficult in comparison. Similarly,



for the outlier task, sequential lines work when trace and history are
showing, but yield the lowest performance without trace and history.
Without either trace or history, people cannot directly visualize the
shape of each line, and also need to memorize the shape of each line
to compare across the lines. And especially when lines were played
out sequentially without traces, people need to find outlying shapes
depicted by multiple moving dots at the same time.

6 EXP 4 TAKEAWAYS AND REAL WORLD DATA

Finally, we examined how these animation conditions we tested can
lead to different viewer takeaways in a more ecologically valid setting,
using real-world data from Dolby labs.

6.1 Participant, Design, and Procedure
We recruited 195 participants from Prolific.co [38]. After applying the
same exclusion criteria as previous experiments, we were left with 187
individuals (52 female, 132 male, 3 non-binary or self-described, Mage
= 33.72, SDage = 10.25). The study took on average 22 minutes and
participants were compensated at the rate of $12 per hour.

We generated the visualization using real-world time-series perfor-
mance data captured from three Content Delivery Networks (CDN)
was shared by Dolby Laboratories. [14] The data contained time-to-
first-byte (TTFB) measurements taken at a rate of 900 measurements
per hour over a two-week interval in June 2022. The resulting visual-
izations are line charts where movements of latency values are shown
on the y-axis, time is shown on the x-axis, and each service is repre-
sented by a line of a unique color, similar to the experimental set-up
in our previous studies. We randomly selected two subsets of this data
and generated two sets of visualizations (seven visualizations per set,
one for each visualization condition), each depicting latency values
over time in a different location (A and B).

After consenting to the study, participants first completed a mini
VLAT [39]. The average accuracy for all participants is 93.05%,
meaning that the participants overall have high visualization literacy.
Next, they read a visualization depicting the latency of four services
over time in location A in a randomly selected condition out of the
seven conditions (sequential/synchronized, yes/no trace, yes/no his-
tory, static), and reported the salient message or pattern they saw in
a free-response question. They then saw the six animation conditions
plus the static chart and ranked them based on preference (1 = most
preferred, 7 = least preferred). All seven visualizations depicted the
same data of latency over time in location B. (preference results re-
ported in Section 4.3) The survey concluded with demographic ques-
tions asking about their level of education and experiences working
with and designing animated charts (details see supplementary mate-
rials), as well as a debrief summarizing the purpose of the study.

6.2 Results: Qualitative Report
We coded participants’ takeaways following visualization tasks iden-
tified from prior work, including Cottam et al., [11], Burns et al., [7],
Saket et al. [42], and Shneiderman [45]. The most commonly men-
tioned tasks were variance (the overall deviation of values from the
average), shape (the shape of part of the visualization or the entire vi-
sualization), retrieving or deriving values (directly reading values of
the x-axis or y-axis), and outliers (outlying values in the visualization).
see the supplementary materials for details).

The lines continuously fluctuate so that participants were likely to
describe or even compare the fluctuations of the lines (considered as
both variance and shape). The significant outliers in the visualizations
also stood out, so often mentioned as well (considered as both outliers
and shape). Under unlimited time to examine the visualization, partic-
ipants were able to extract more detailed information, such as looking
at the axes to describe specific numbers that mark interesting patterns
in the visualizations (considered as retrieving or deriving values).
Takeaway: In addition to perceptual tasks, animation design styles
also afford different qualitative takeaways from data, validated by ex-
isting work highlighting the value of animation beyond analytic tasks
measured by speed and accuracy, like facilitating engagement [1, 46].

7 SUMMARY FINDINGS AND DESIGN IMPLICATIONS

Prior work (e.g. [40]) has shown that people typically prefer animated
visualizations over static ones because they are more engaging, but we
found people preferred static visualization the most. This might be be-
cause participants were asked to rank their preferences after perform-
ing perceptual tasks, so their preference rankings were based on the
effectiveness of these visualizations rather than their engagement. We
observed a consistent discrepancy between the animation styles and
speeds that people subjectively preferred and the ones that objectively
afford higher performance on perceptual tasks. Generally, people dis-
liked the synchronous, no trace, no history condition, but they tend
to perform well with it on perceptual tasks.

Considering both subjective and objective measures, synchronous
displays outperform sequential displays, consistent with prior results
that staggering is not so helpful in animated visualizations [9]. Prior
findings show that traces could be confusing, especially for large data
sets [28], we found that showing traces could lower performance for
evaluating the mean values, despite it being preferred. History, which
is also subjectively preferred, enhances judgments of variance. The H

synchronous, trace, history animation condition had the highest per-
formance for all perceptual tasks, while sequential, no trace, no
history condition had the lowest performance.

Generally, if a designer has to use sequential displays, preserving
histories and traces can improve viewer performance, especially when
there is more data. In terms of speed, people preferred the lines in a
sequential display to move approximately 3 times faster than the same
data in a synchronous display. They also preferred animations with
trace to play slower and those with history to play faster. Motion-
based visual encoding can improve performance on perceptual tasks.

Encoding the mean or variance values of lines with speed can in-
crease performance accuracy on the corresponding task, but encoding
outlier information with speed can hurt task performance.

8 LIMITATION AND FUTURE DIRECTIONS

We only tested the animation techniques in line charts with up to four
lines. Future work should test for the generalizability of our find-
ings across other chart types, datasets, and animation styles, including
complex dashboards or more information-rich analytic environments.
For example, a monitoring device showing dynamic time series might
fade away the history lines without completely removing them. Future
work can investigate animation affordances on visual analysis in these
more real-world applications.

Further, we only considered time steps from two to eight seconds
for our speed investigations. Future work can increase the range of
display time and test for discriminability over small intervals. Fol-
lowing a more psychophysics approach [16], for example, future work
can determine just-noticeable differences and limits of animation per-
ception, such as the fastest speed for which people can still accurately
complete perceptual tasks.

We also did not account for individual differences systematically.
We took an online crowd-sourcing approach to balance out individual
differences, which can have their own drawbacks [3, 4]. Viewer pref-
erence could be swayed by their background [33], expertise [54], and
personality [37]. Participants could also have differed on the amount
of cognitive load and attention resources they were willing to commit
to our study. With further enhancement to the quality of experimental
data collection, such as additional checks for participant engagement
filters and study environment, future work can model individual dif-
ferences in perceptual task performance, such as employing methods
introduced by Davis et al. [12]. Finally, it is possible that participants
interpreted the speed encoding as an implicit variable showing the time
factor in data. For example, one interpretation might be that some
lines were changing values faster than others because they came from
sources with different data processing speeds.

Future work can examine the strategies participants used to gain a
deeper understanding of animation perception in visualizations. This
might also inspire additional data encoding channels to afford more
efficient data extraction.
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