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Fig. 1: Plain table (top left), table with zebra striping (top right), color encoding (bottom left), and bar encodings (bottom right).

Abstract—Data tables are one of the most common ways in which people encounter data. Although mostly built with text and numbers,
data tables have a spatial layout and often exhibit visual elements meant to facilitate their reading. Surprisingly, there is an empirical
knowledge gap on how people read tables and how different visual aids affect people’s reading of tables. In this work, we seek to
address this vacuum through a controlled study. We asked participants to repeatedly perform four different tasks with four table
representation conditions (plain tables, tables with zebra striping, tables with cell background color encoding cell value, and tables with
in-cell bars with lengths encoding cell value). We analyzed completion time, error rate, gaze-tracking data, mouse movement and
participant preferences. We found that color and bar encodings help for finding maximum values. For a more complex task (comparison
of proportional differences) color and bar helped less than zebra striping. We also characterize typical human behavior for the four
tasks. These findings inform the design of tables and research directions for improving presentation of data in tabular form.

Index Terms—Data Table, Visual Encoding, Visual Aid, Gaze Analysis, Zebra, Data Bars, Tabular Representations.

1 INTRODUCTION

In the 1970s, tables were described as “nothing more than a systematic
arrangement of items of information” [50]. The role of tables was
solely to show numbers as a matrix of rows and columns [30]. It was
believed that “They are not recommended for communicating data to
the general public; tables are most useful for fellow professionals. Both
constructing and reading tables require skill of a high order.” [30].
Fifty years later tables are found in mass media and used by millions
of people every day, including through spreadsheet software.

Regardless of pervasiveness and usefulness [2, 10, 16, 21, 33, 36],
advice about tables focuses on reducing verbosity [17], “adding vi-
tality” [41], conveying a simple message [13] or proper spacing and
ordering [47]. Following this advice often yields featureless tables con-
sisting mostly of space-arranged text or numbers, with few additional
visuals (e.g., some horizontal lines—vertical lines are frowned upon).

We consider tables from the information visualization perspective,
were the visual elements and aids of the representation can have large
potential effects on reading performance. Within visual aids, we distin-
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guish between visual features and visual encodings.
Visual features are design choices that affect the look of a table,

without visually encoding data values. These include using a different
typeface for table headers, left-aligning cell values, and customizing the
size and color of cell borders. They are discussed often on the Internet
and in advice articles in research journals (e.g., [13, 17, 21, 41, 46–48]).
One particularly interesting visual feature is zebra: the shading of alter-
native rows of a table, presumably to facilitate the readers’ horizontal
gaze movements by avoiding inadvertently switching to a different row
(also vertically, but vertical zebras are much less common).

Visual encodings are visual aids that, unlike visual features, rep-
resent data within the table graphically. For example, MS Excel
supports encoding cell values with cell background color and with
’data bars’ of corresponding length in the cell. While such visual
encodings have only appeared relatively recently in mainstream soft-
ware, they have been used in visualization for centuries (visit https:
//aviz.fr/Bertifier/Bibliography for an annotated bibliography).

Despite the ubiquity of tables, the potential effect of visual features
on table reading (beyond aesthetic preference), and the long history of
table encodings to facilitate table reading, there are almost no studies on
how people read tables and on the effect of visual aids. We address this
gap through a controlled study in which we tested four tasks: finding
the name of the row with the largest value in a given column, the name
of the column with the largest value in a given row, the column with
the highest proportional difference between values in two rows, and the
value at the intersection of a given row and column. We studied plain
gridded tables, zebra, color encoding and bar encoding.
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We found that, for all tasks, at least one visual aid produced a sizable
performance improvement but it was not always the same aid. Color
and Bar encodings were helpful to find maxima, but surprisingly not for
the more complex proportional differences task, for which the Zebra
helped. We attribute the benefits of Zebra to its usefulness in gaze
navigation of the table structure, from our analysis of gaze movement.

2 RELATED WORK

Wright and Fox [50] wrote in 1970 that “[...] there have been very
few experimental studies of the use of tabulated information, so that
almost nothing is known about the effectiveness of alternative formats.
Yet this lack of knowledge [...] is not commensurate with the size of
the problem. Even small differences between tables may be of great
practical importance when the information being displayed has to be
used by a large number of people [...]”. This is still true today. This
section first presents visual features, then in-cell visual encodings.

2.1 Visual Features of Tables
There are many design and ergonomic elements that can be considered
visual features (design choices that affect the look of the table): font
family and size of the table body, row and column headers; presence
or absence of borders, rulers and their stroke style; padding within
cells and between rows and columns; vertical and horizontal alignment
of cell content; alternate shading of rows (zebra); and so on. These
visual features can be customized in table creation and presentation
software, but have not been formally researched. Although there are
many guidelines for creating effective tables (e.g., [17, 47]), these
appear to be based on practical experience.

Zebra striping is a visual feature of particular interest because of
its non-aesthetic purpose: to improve legibility [5, 48]. The familiar
horizontal stripes of alternating darkness (see Figure 1, top right) might
prevent accidentally skipping from one row to another. Horizontal
stripes might also facilitate jumping to and from rows because they
create two visually distinct groups (vice versa for columns in a vertically
striped table). This might come at the cost of adding unnecessary clutter
according to Tufte’s data-ink ratio principle [45].

We only identified three empirical studies of zebra. Enders [14]
found no effect of a horizontal zebra (in terms of time and accuracy)
in 5/6 data retrieval and comparison tasks. The sixth, more difficult
task, showed faster completion times with zebra. In two subsequent
studies, Enders et al. [15] found a reduction in errors with zebra for
similar (but time-limited) tasks, and then a preference for traditional
zebra striping over plain, lined and other table styles. Lee et al. [27]
compared the usefulness of tables without zebra, with horizontal zebra,
and with vertical zebra and found that participants were slightly faster
with the plain condition than with either zebra. However, the task was
to detect the presence of a target symbol in a table otherwise full of
distractors, a task that is not a standard one with numeric tables.

2.2 Visual Encodings in Tables
The history of tabular representation can be tracked back thousands
of years to ancient Sumerian cuneiform tablets [10, 32, 33]. Creating
visual encodings to enhance their readability is almost as old as tables
themselves [43], and has taken multiple forms since, such as map-
ping numerical cell values to grayscale shading [29], black and white
patterns [1, 8, 12] and bars [9].

Bertin presented a range of visual encodings for visual analysis of ta-
bles that were implemented on physical devices [4] and later translated
to the web with Bertifier [38]. Visualization and Visual Analytics sys-
tems such as The Table Lens [39] and Taggle [18] also support encoding
columns in tabular representations — simple ones like color, shading,
length, and position, and more advanced ones like aggregations with
box plots, histograms and UpSet [28]. Commercial software such as
MS Excel support a smaller subset of these variables — typically color
shading and bars, often called data bars. MS Excel also supports
sparklines [46], word-sized graphics with typographic resolution [23]
that can “facilitate holistic recognition of patterns, trends, and outliers
in multivariate sequences” [6]. However, Sparklines do not repre-
sent a single value in a cell, but instead represent series of values as

glyphs. Researchers have also introduced new types of encodings that
are applicable to tables, such as FatFonts [37], a hybrid representation
that integrates numeric representations with a visual mapping to the
“amount of ink” by manipulating the digits’ shapes. The usefulness of
these encodings to read data tables is yet to be determined.

Color shading consists of encoding each cell’s value in its back-
ground color on a color scale, similar to heat maps [49]. There are
three main color schemes in visualization: Spectral, sequential, and
diverging [7]. Much previous work studied how to encode data with
color, a full review of which is beyond scope here. Diverging scales are
used to represent quantitative data when there is a meaningful middle
value such as 0 and spectral ones are used to represent nominal data [7].
Since we focus on positive quantitative values, we chose the simplest
type of color scale: sequential. Many effective sequential color scales
exist, such as the blue-white-red color scale [22, 35, 44], or scales rely-
ing on luminance changes [51]. We know that color shading is useful
for product comparison tasks [40] and for comparison of distant values
in scalar fields [31], especially when overlaid with digits [20].

Data Bar encodings are similar to bar charts — a very effective
encoding for quantitative data [3, 25]. It is easy to retrieve information
from the bars [11], especially when they are parallel and their bases
are aligned [42]. Data bars in tables are automatically aligned when
displayed within tables, although only in one chosen direction. Bars
will have reduced benefits when aligned along the direction in which
their lengths vary, the same way that it is more difficult to compare
positions on unaligned scales than on aligned scales [11].

3 GOALS AND RESEARCH QUESTIONS

Our overarching goal is to understand whether and how visual aids
affect how people read data tables. We pose five research questions:
RQ1 Do color and bar visual encodings help read data tables?
RQ2 Does the zebra visual feature help read data tables?
RQ3 Which is more useful: color/bar visual encodings or the zebra

visual feature?
RQ4 Which of color or bar provides most benefit for reading tables?
RQ5 Does mouse movement correlate with the ability to read tables?

We answer these research questions by examining four conditions
(Section 4.1) across four tasks (Section 4.2) against two performance
measures (Section 4.7).

4 METHODOLOGY

We designed a controlled within-subject experiment testing four table
representations for four tasks (with institutional ethics approval).

4.1 Data table Visual Representations (main condition)
To answer our research questions, we selected four representations that:
1) are widely used (to maximize results applicability); 2) are static (so
that results apply to printed as well as on-screen tables); and, 3) are
different (to cover a range of visual aids).
Plain. The Plain table (see Figure 1.A) is the control condition. The
only visual features besides characters and digits are i) the horizontal
and vertical grid lines, ii) a larger font weight for the headers, with a
centered alignment for the column headers and a left alignment for the
row headers; and iii) a right alignment for the numbers inside cells.
These visual aids are present in all other conditions for comparability.
Zebra. The Zebra table (see Figure 1.B) uses a light gray color on the
background of cells in alternate rows. This is a common visual feature
that is invariable to changes in data values.
Color. The Color table (see Figure 1.D) encodes numerical values by
coloring the background of a numerical cell in proportion to the value
in the cell. It is commonly referred to as “conditional formatting”. We
chose to encode the values using one of MS Excel default color scales —
from white for low values to red for large values. The Color condition is
a visual encoding because the visual appearance of the table is affected
by changes in data values.
Bar. The Bar table (see Figure 1.C) encodes numerical values by adding
a left-aligned horizontal bar in the background of a numerical cell, with
length proportional to the value in the cell. It is commonly referred to
as “data bars”. Like the Color condition, Bar is a visual encoding.



4.2 Tasks
To select tasks representative of real world use we started by collecting
tasks evaluated in previous research that empirically investigated tables
and other grid-based visualizations (e.g., [14,20,27,31]). We then short-
listed a set of tasks that together were representative of the real world,
included both low-level and higher-level as well as value-dependent
and value-independent tasks. We settled on these four:
TVertMax. Finding the name of the row that has the maximum value
in a given column. Participants were given the name (header) of a
column and were asked to find the name of the row which had the
largest value for that column. An example prompt was: “Find the name
of the Candy which has the highest ‘Rating’ value”. This is a low-level
task requiring navigation and multiple value comparisons.
THorMax. Finding the name of the column that has the maximum value
in a given row. It is the transpose of TVertMax: participants were
given the name of a row and had to provide the name of the column
with the largest value for that row.
TDiff. Finding the column, out of several possible columns, with the
largest proportional difference between the values in two specific rows.
Participants were given the names of two rows and were asked to
find for which of the last four columns their value difference was
proportionally larger. Example prompt: “For the candies called ‘Pixie
Sticks’ and ‘Life Savers’, find in which column in the last four columns
of the table they are most different (proportionally)”. If the value
in the column ‘Sugar Percent’ was 20 for ‘Pixie Sticks’ and 25 for
‘Life Savers’ (ratio: 1.25), but 40 and 80 for ‘Price’ (ratio: 2), then
the correct answer is ‘Price’. This is a higher-level task involving
substantial navigation and multiple value comparisons.
TValue. Retrieving a value given the names of a row and of a column.
Participants were given a row’s and a column’s names and found the
value of the corresponding cell. Example prompt: “For the Anime
called ‘Ultimate horror’, please find its ‘Watching’ value.”). This is a
low-level task that involves navigating the table and retrieving a value.

4.3 Datasets and Stimuli
We created eight table datasets: two per condition, one for a preliminary
task and one for the rest. The datasets were based on four real data
sets, but sanitized to avoid unnecessary noise in performance due to
variations in familiarity, data ranges and number of attributes. We
selected data sets that: 1) are about a topic and with language that
are familiar to most people; 2) contain data that is not overly familiar
(i.e., participants are unlikely to know in advance or expect particular
values of particular attributes); and, 3) are plausible and realistic. The
topics are candy nutritional values, animation series’ ratings, cereal
nutritional values and movie ratings. We curated the data sets so that
they all contain 30 rows, each with a header of two words (e.g., “Reese
Pieces” for the Candy dataset), and 11 columns, each with a header
of one to three words (e.g., “Sugar Percent”). This results in tables
with 30× 11 = 333 cells. We further sanitized the row and column
headers to avoid similarities and to prevent them from acting as visual
landmarks (e.g., words that would be too distinctive). We rendered the
tables to high-resolution bitmap images that cover the full screen of the
monitor used in the experiment pixel-by-pixel without interpolation.

All cell values are numeric, with digits between 10 and 99 (2 signifi-
cant digits, no decimals, no negative numbers). Although textual and
categorical data are common in tables, in this study we focus on numer-
ical data, which also offers the experimental advantage of keeping the
dimensions and structure of the table the same for all conditions. We
altered values based on specific tasks to normalize the difficulty of tasks
trials and avoid edge cases. For instance, we altered the numbers to
prevent consecutive trials from having the same answer. For TVertMax,
the given column was never the first or last column, and the maximum
value was never the first or last row. The tasks were of variable diffi-
culty, with the second highest value between 1 and 15 units lower than
the target. For THorMax, the given row was never the first three or the
last three rows. Also of variable difficulty, THorMax tasks had second
highest values between 1 and 39 units. For TValue, the given column
was never the first or last two columns, and the given row was never the
first three or the last three rows. The target response value was unique;

otherwise, the value does not significantly influence the difficulty of
this task. For TDiff, the given columns were always the last four and
the given rows were non-contiguous with either 3 or 4 rows in between.
We also forced values in each trial of TDiff to have similar sets of ratios
and ensured that the answer ratios were consistently larger than 2, while
the other ratios were clearly smaller than 2.

Because different columns often represent different types of values
with different scales, we encode each column independently in the
Color and Bar conditions. This is a common design choice; applying
a global color or bar encoding often does not make sense because the
differences between values in columns in the order of tens would not
be perceivable if another column has values in the order of millions.
For Color, we map the minimum value of a column to the first color
on the scale (white) and the maximum value of the column to the last
value on the scale (red). For Bar, we map the value 0 to a length of 0
and the maximum value of the column to the maximum length value
(i.e. the cell width). We made this choice to avoid having bars of length
0 for values that would be larger than 0.

4.4 Procedure

Participants provided consent and filled a demographic questionnaire.
Then, they went through a preliminary task that consisted of reading
a table and describing it for maximum 60 seconds for each condition
(see supplementary materials). This allowed participants to familiarize
themselves with the different conditions.

Participants then completed four task blocks — one block per task.
For each task block, the experimenter first demonstrated the task to
the participant through toy examples and the participant could ask
questions until they understood the task. Then, the participant carried
out four trials of that task with each condition (16 trials per task ). The
first trial of each task-condition combination is considered training and
excluded from the analysis.

Participants completed tasks in a fixed order (TVertmax, THormax,
TValue, TDiff). They were assigned an order for the conditions (coun-
terbalanced across participants using all possible orders) and that order
was the same in each task block. For each condition, all participants
saw the same dataset (e.g., the ‘Candy’ dataset for trials with Plain).

For a given trial, participants were first shown a white screen with the
prompt. Upon pressing the space bar, the screen showed the correspond-
ing table (t0). When the participant found the answer, they pressed
the space bar (t1), which turned the screen blank, and after what they
provided the answer verbally to the experimenter for recording. If a
participant misunderstood a task (e.g., if they provided a numeric value
instead of the expected name of a row) the experimenter marked the
trial as invalid, the participant repeated the trial, and the repetition was
marked as invalid too. Invalid trials are excluded from the analysis. At
the end of each task block, participants ranked the conditions in terms
of preference, speed and accuracy.

Participants were not allowed to use their hands or fingers on the
screen, as this would have distorted the gaze location measurements.
However, they could use a mouse to move a cursor around the screen
if they so chose. This enables a more realistic interaction matching
how some people interact with tables in real contexts, although it also
introduces variance in the performance of the tasks. The experimenter
also asked participants to keep a stable comfortable distance to the
screen, without coming closer to the screen to see the table from closer.
The study lasted approximately 1 hour.

4.5 Participants

We recruited 24 participants (aged 19 to 48, average 27, 14 female, 10
male). Participants had to be able to see a computer screen at a regular
sitting distance (∼ 80 cm) without glasses or contact lenses (due to
gaze-tracker constraints), not have a visual disability, come across data
tables in their regular activities, and not have photo-sensitive epilepsy.
We discarded the data of three participants: two who had to sit very
close to the screen to see the tables well, affecting eye tracking, and
one who exceeded the allotted time by 30 minutes.



Table 1: Summary of hypothesis tests. Dark-green cells indicate strongly supported hypotheses (prob > 95%); light-green cells indicate a weaker
(prob > 90%) or partial support (e.g., only one of two comparisons holds); and the pink cell indicates evidence against the hypothesis.

TVertMax THorMax TDiff TValue
Time τ Error ε Time τ Error ε Time τ Error ε Time τ Error ε

H1 Color and Bar encodings help τColor < τPlain
τBar < τPlain

εColor < εPlain
εBar < εPlain

τColor < τPlain No Support No Support No Support No Support No Support

H2 Zebra helps No Support No Support No Support No Support τZebra < τPlain No Support τZebra < τPlain No Support

H3a Color and Bar better than Zebra τColor < τZebra
τBar < τZebra

εColor < εZebra
εBar < εZebra

τColor < τZebra No Support τZebra < τColor
τZebra < τBar

No Support N/A N/A

H3b Zebra better than Color and Bar N/A N/A N/A N/A N/A N/A τZebra < τColor
τZebra < τBar

No Support

H4 Color faster than Bar (τ)
Bar more accurate than Color (ε)

τColor < τBar No Support τColor < τBar No Support τColor < τBar No Support No Support No Support

4.6 Apparatus
Participants sat at a table in an office, in front of a 32 inch 4:3 display
(3840×2160 resolution, 60Hz) with mouse and keyboard. They wore
a light, untethered head-mounted gaze tracking device1 that allowed
them to move their head and body freely. The experimenter sat to
the right of the participant with an additional mouse and a screen not
readable by the participant. The experimenter used this setup to input
participants’ answers to the trials in the experimenter interface.

4.7 Measurements
Trial Completion Time (τ). The time from when the table becomes

visible to when the participant presses the space bar after having
found an answer (t1 − t0).

Error Rate (ε). The proportion of trials not answered correctly.
Gaze Tracking Data. The video from the participant’s viewpoint,

which includes the gaze points.
Mouse Movement (µ). The distance traveled by the mouse per trial.
Subjective Rankings. Participants ranked conditions from 1 to 4 in

terms of preference, speed and accuracy for each task.

4.8 Hypotheses
The a priori hypotheses and analyses that match to RQ1–RQ4 were
pre-registered2. We use the MeasurementTechnique notation to simplify
reading comparisons. For example, τBar > τPlain means that completion
time with Bar is larger than with Plain for the task at hand. 4 research
questions × 4 tasks (TVertmax, THormax, TDiff and TValue) × 2
measures (completion time: τ and error: ε) results in 32 hypotheses.

H1 (RQ1, all tasks): Participants will complete TVertmax, THor-
max, TDiff and TValue faster and with fewer errors with vi-
sual encodings than without, i.e.: τColor < τPlain, τBar < τPlain,
εColor < εPlain and εBar < εPlain. Rationale: Visual encodings
help find target locations without reading digits.

H2 (RQ2, all tasks): Participants will complete all tasks faster and
with fewer errors with Zebra than with Plain:, i.e.: τZebra < τPlain
and εZebra < εPlain. Rationale: Zebra helps people navigate
tables and has been shown it can help [14, 15].

H3a (RQ3, TVertMax, THorMax, TDiff): Participants will com-
plete TVertmax, THormax, and TDiff faster and with fewer er-
rors with visual encodings than with Zebra, i.e.: τColor < τZebra,
τBar < τZebra, εColor < εZebra and εBar < εZebra. Rationale:
Value comparison subtasks (possibly easier with encodings) are
harder and more time consuming than visual navigation subtasks
(made easier with Zebra).

H3b (RQ3, TValue): Participants will complete TValue faster and
with fewer errors with Zebra than with encodings, i.e.: τZebra <
τColor and εZebra < εBar. Rationale: TValue does not include
value comparison subtasks (made easier with encodings), only
visual navigation subtasks (made easier with Zebra).

1https://www.tobiipro.cn/product-listing/tobii-pro-glasses-2/
2https://osf.io/b67xu?view_only=b9cc56507fc54ae399d0f468d53474ed

H4 (RQ4, all tasks): Participants will complete all tasks faster with
Color than with Bar, but with fewer errors with Bar than with
Color, i.e.: τColor < τBar and εBar < εColor. Rationale: Bar might
slow down participants because of more visual interference in a
cell (sharp transitions under numbers) than Color. Conversely,
Bar could result in fewer errors because people are better at
estimating and comparing variations in length than variations in
color brightness/saturation (e.g., [11]).

4.9 Analysis Approach

To answer our research questions, we analyze the measurements in
Section 4.7 both quantitatively and qualitatively.

QUANTITATIVE ANALYSIS - To answer hypotheses H1–H4 that rely
on ε and τ , we use a Bayesian statistical approach based on Markov
Chain Monte Carlo (MCMC) simulations [19, 26]. τ (log-transformed)
is modeled through a Student-t distribution (robust to outliers), with
distribution average as function of condition and participant. When we
report average times, they are back-transformed values of averages in
the log-transformed domain. ε is modeled through a binomial distribu-
tion. Chance of error is a logistical function dependent on condition and
participant. We substituted the pre-registered error model because par-
ticipants made very few errors, rendering it inadequate for the collected
data. Our corrected approach corresponds better with modeling of error
recommended by Kruschke [26, p. 621]. All priors were suitably unin-
formative. Posterior predictions reasonably matched the data. Every
MCMC simulation had chains with good mix and sufficient resolution
(all psr f < 1.05, ESS > 10,000).

The quantitative analysis tests for RQ5 (i.e., about µ) are variations
of the models above which incorporate a mouse movement variable
and answer three subquestions: 1) is µ different in different conditions?
2) Does µ affect τ? 3) Does µ affect ε? These analyses were not
pre-registered, because we did not speculate a priori on µ questions.
We encoded all trials where µ > 2000px as “mouse trial”. The 2000px
threshold corresponds to movements of half the horizontal size of the
4K screen and separates well trials with little activity from trials with
mouse activity (only 14/1152 trials had 0 < µ < 2000). The µ analyses
are correlational, since we did not force nor discourage mouse use.
Scripts and data are provided in supplementary materials.

The scores obtained from the subjective ranking of conditions in
each task are not tested statistically, we simply report average rankings.

QUALITATIVE ANALYSIS - The qualitative analysis of gaze data helps
us depict participant strategies to complete tasks and provide possible
explanations for performance differences between conditions. We opted
for a qualitative analysis because the level of granularity of the analysis
needs to adapt depending on the observed behavior (i.e., a posteriori).

We performed a systematic visual analysis of the trial video record-
ings captured by the glasses-mounted camera that were overlaid with
gaze data by the Tobii gaze-tracker software. We only analyzed each
participant’s last two trials with each condition to remove transitory
behaviors of participants familiarizing themselves the visual aids or
developing their strategy. We lost the videos for one participant due to
a recording error. The number of videos manually analyzed per task is
thus 23(participants)×4(conditions)×2(repetitions) = 184, but we

https://osf.io/b67xu?view_only=b9cc56507fc54ae399d0f468d53474ed
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Fig. 2: Visual descriptions of predominant gaze patterns for each task. Labels s1, s2 and s3 refer to Step 1 to Step 3 we describe for each task.

could not analyze an additional 39 videos in TDiff (see Section 5.3).
Our analysis process had 6 steps in total.
Steps 1 and 2. One author watched the videos with overlaid gaze posi-
tions, identifying types of movements (e.g., smooth scans, jumps), and
their characteristics of interest (e.g., direction, presence of regressions).
At each iteration, all the authors convened to validate the accuracy of
the measurements and whether the categories were fit for purpose.
Steps 3 and 4. We tried to subcategorize the codes but realized that the
large number of movement-characteristic combinations required instead
an articulated language (see supplementary materials) to express types
and sequences of movements. One author then used it to code all trials.
Step 5. The team verified that all movements were describable and
validated a subset of the coded trials. The coded data is provided in
supplementary materials.
Step 6. We queried the final coded video data for patterns that charac-
terize the data (e.g., Smooth Scans are common when searching for a
named column in the column headers) and differences in movements
between conditions (e.g., Jumps are more common with Color than
with Plain). These constitute the core of our qualitative analysis.

5 RESULTS

Results are grouped by task. Table 1 summarizes hypothesis support,
Figure 3 subjective rankings and Figure 2 dominant gaze patterns.

5.1 TVertMax Results
TVertMax is about finding the name of the row with the maximum
value in a given column.

COMPLETION TIME AND ERROR - Figure 4 shows that τColor is
smallest (average 6.5 s) and is 89% smaller than τPlain (12.3 s), 90%
smaller than τZebra (12.4 s), and 16% smaller τBar (7.6 s). This supports
H1, (Color and Bar encodings help), H3a (Color and Bar are better
than Zebra), and H4 (τColor < τBar), but not H2, since τZebra is not
smaller than τPlain.

Error levels are low (18 errors in total, or 6.2%, see Figure 5).
Participants were less likely to make errors with Color than with Plain
and Zebra (strong evidence) and with Bar than with plain and Zebra
(slightly weaker evidence). This supports H1 and H3a. H2 is not
supported since we did not find conclusive evidence that εZebra is
smaller than the other visual aids. H4 is not supported in terms of error
because there is no conclusive difference between εColor and εBar.

EFFECTS OF MOUSE USE - Participants were more likely to use the
mouse with Plain and Zebra (40.3% and 41.7% of the time, respec-
tively), than with Color and Bar (32.4% and 34.7%). Trials where the
mouse was used in Zebra took almost certainly longer (> 99% proba-
bility), by an estimated 3.5 seconds on average; for the other techniques
the differences are not conclusive. There is also no evidence that using
the mouse affected the number of errors in any of the conditions.

TASK GAZE PATTERN - Most trials exhibit a clear three-step strat-
egy illustrated in Figure 2. Participants completed these steps with
consistent types of movement across all conditions.
Step 1. Finding the column header indicated in the prompt. 60% of
the trials started with this step (in 40% the participants did not need
to check the column header to find the required column). To find the
column, participants went left to right, and mostly with Jumps (47/108,
43%) or Smooth Scans (62/108, 57%), but no Super Smooth Scans.
Step 2. Finding the cell within the corresponding column that has the
maximum value. 99% of the analyzed trials contained this step. This
step required slower movements, with no Jumps observed. Participants
mostly used Jump Scans, in 75/183 trials without the mouse and in

28/183 trials with the mouse, and all with regressions. They also used
Smooth Scans (25/183) and Super Smooth Scans (47/183), both split
by about half on their use of the mouse, and all with regressions.
Step 3. Finding the row header that corresponds to the cell with maxi-
mum value. 99% of the analyzed trials contained this step. Participants
mostly used right-to-left Smooth Scans without the mouse (89/183
trials, only 5 of these with regression) and with the mouse (42/183
trials, only 4 with regression). Jumps and jump scans were unusual (21
and 22 out of 183 respectively), with very few regressions or mouse
use (6/183). As in Step 1, no participant used Super Smooth Scan.

GAZE DIFFERENCES BETWEEN CONDITIONS - We found some
stark differences in gaze movement types between conditions:

• Participants used two to three times as many Jump Scans with
encodings (28 for Color and 29 for Bar) compared to without
encodings (10 for Plain and 10 for Zebra).

• Participants almost never used Super-Smooth Scans with encod-
ings (0 for Color and 2 for Bar) but used them often without
encodings (25 for Plain and 25 for Zebra).

• Participants used Jumps (Jump, Jump Scan and Mouse Jump
combined) fewer times with Plain (19) than with Zebra (29),
Color (44) and Bar (44).

Step-specific analysis reveals further condition differences in Step 2,
where participants used Jump Scan (without mouse) more often with
encodings (29 times with Color and 31 times with Bar) than with Plain
(5) and Zebra (10). This was also the case for Jump Scan with mouse
(Color: 13, Bar: 12, Plain: 2, Zebra: 1). Conversely, participants used
Smooth Scan (without mouse) more with Plain (8) and Zebra (8) than
with Color (2) and Bar (1) and Super-Smooth Scan (without mouse)
more with Plain (11) and Zebra (10) than with Color (0) and Bar (1).
They also used Smooth and Super-Smooth Scan with mouse more with
Plain (16) and Zebra (14) than with Color (0) and Bar (2).

SUBJECTIVE RESULTS - Bar was ranked best, then Color, then Zebra
then Plain, for all measurements (see Figure 3).

TVERTMAX DISCUSSION - The results for TVertMax generally
align with our expectation that Color and Bar help (with both time and
error–H1). We can explain differences between conditions through
gaze behavior: Color and Bar allowed participants to jump to candidate
maximum values in a column, presumably because they could identify
the most likely cells before fixating on number values. With Plain and
Zebra, participants instead scanned vertically and read values in the
column one by one. In other words, Step 2 is the step that takes the
most time, and it is where these visual encodings help.

We can also link the slower completion times with Zebra and Plain
to increased mouse usage. Using the mouse as bookmark or moving
guide to keep gaze movements horizontal might have some benefits,
but these seem overridden by the cost of controlling the mouse itself,
hence the slower gaze movements with Zebra and Plain. Note that this
analysis is correlational and mouse use can be cause or consequence.

Participants did not do better with Zebra than with Plain (H2 not
supported). We did not observe obvious differences in the types of
movements when gaze had to move left to find the row header in Step
3, even though we expected Zebra to allow participants to move faster
horizontally by reducing their fear of inadvertently “changing lanes”.

We also found a clear completion time difference between Color and
Bar (∼1 second). We speculate that, when not in the fovea, differences
in color saturation are more salient than differences in length, allowing
people to move more efficiently to candidate values.



Fig. 3: Average subjective ranking (between 1 and 4) in terms of prefer-
ence, accuracy and speed for the four conditions, per task. Darker cells
(and smaller value) mean higher (better) ranks.

H2 44% H3a >99% H4 >99%
H3a >99% H1 >99%

H1 >99% 

12.3s 12.4s 6.5s 7.6s

Fig. 4: Completion time for TVertMax. The widths of Violin plots indicate
density of measurements. Error bars are 95% High-Density Intervals of
the log-untransformed mean estimation (in seconds). Pairwise compar-
isons (lines at the top) are black if the estimated probability of a condition
is > 95% or < 5% and gray otherwise.
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Fig. 5: Errors for TVertMax. Pairwise comparisons cells (test of column
condition being more likely to produce errors than row condition, in
percentages) are black if the estimated probability of a condition (number)
is > 95% or < 5% (the conjugate), grey if > 90% or < 10% and white
otherwise. The horizontal stacked bars on the right indicate the number
of correct, incorrect, and invalid trials per condition (row).

5.2 THormax Results

THorMax is about finding the name of the column that has the maxi-
mum value in a given row.

COMPLETION TIME AND ERROR - Figure 6 shows that τColor is
shortest (8.9 s, over 9%, 11% and 12% shorter on average than τZebra =
9.8 s, τBar = 9.9 s and τPlain = 10 s respectively). Because only Color
helped (not Bar), H1 is only partially supported. H2 is not supported

H2 67%  H3a 96% H4 97%
H3a 39%H1 98%

H1 56%

10.0s 9.8s 8.9s 9.9s

Fig. 6: THorMax completion time. Refer also to Figure 4 caption.

(no evidence that Zebra shortens time), H3a is only partially supported
(only τColor < τZebra) and H4 is supported (τColor < τBar).

Error levels (ε) are low (15 errors in total, or 5.2% of valid trials—
see supplementary materials). εColor is largest, but statistical reliability
is relatively weak (89% probability of Color being more error-prone
than Bar, and 86% with respect to Plain and Zebra). No hypotheses are
supported by the analysis of ε .

EFFECTS OF MOUSE USE - Participants use the mouse more with
Plain than with the other conditions (52.7% vs < 44% in all others,
all with probability > 96%). We also found that using the mouse is
associated with smaller τ values. When participants used the mouse,
this added 2.9 s on average to τColor, 2.5 s to τPlain, 1.2 s to τZebra and
1.0 s to τBar). The evidence does not support a ε-µ correlation.

TASK GAZE PATTERN - Most trials exhibit a clear three-step pattern
illustrated in Figure 2 — the transposed version of that in TVertMax.
Step 1. Finding the row header indicated in the prompt. 98% of the
trials started with this step. Most participants used vertical Smooth
Scan (in 172/178 trials), with mouse in 89/172 trials and with regression
in 65/172 trials. There were no Jumps, very few Jump Scans (6/178),
and no Super-Smooth Scans.
Step 2. Finding the cell within the corresponding row that has the
maximum value. Like in Step 1, most participants used Smooth Scan
(in 140/184 trials) – all but two with regression. The second preferred
gaze movement was Super-Smooth Scan (in 47/184 trials), with mouse
in about half the trials. All Super-Smooth Scans were with regression.
There were 0 Jumps and 0 Jump Scans.
Step 3. Finding the column header that corresponds to the cell with
maximum value. Most participants used a bottom to top Jump, without
regression, and without mouse (in 145/184 trials). Second is Smooth
Scan, again without regression and without mouse (in 18/184 trials).

GAZE DIFFERENCES BETWEEN CONDITIONS - The analysis of
gaze patterns did not reveal any clear differences between conditions,
either globally or when analyzing based on the different steps.

SUBJECTIVE RESULTS - Color was ranked best, then Bar, then Zebra
then Plain, for all measurements (see Figure 3).

THORMAX DISCUSSION - We included THorMax as a counterpoint
to TVertMax so that we could understand the symmetry or asymmetry
of effects due to the anisotropy of tables (cells are wider than tall, there
are more rows than columns). However, unlike TVertMax, THorMax
is not a natural task for most tables because columns, which usually
represent attributes, have wildly varying measurement units and orders
of magnitude (e.g., one column could count milligrams of potassium —
0.01 to 0.2, and the next the percentage of sugar — 40% to 80%). This
means that, unless columns happen to be homogeneous (e.g., the same
measurement for a series of years), it is usually meaningless to find the
attribute with the largest value within a row. As a consequence, value
encodings make more sense per column, which means that comparing
encodings per row can lead to errors when a value is the maximum
in a column, yet low in the row. This was the case in our stimuli
and it explains the higher number of errors with Color, because we



found that all errors belonged to the group of trials where the encoding
“contradicts” the values (7 out of 16 trial types).

Despite this, most participants carried out the task correctly in all
conditions, and faster with Color – which we explain in two ways. One
is that the (partially misleading) information provided by the encoding
was still leveraged by participants to find the highest value candidates
faster, in the same way as in TVertMax. An alternative is that the
background color of the cells created useful landmarks when traversing
and comparing the values in the row. We lean towards the latter because
most of the gaze movements in Step 2 were Smooth Scans and Super-
Smooth Scans with regression, while using color information to identify
candidates would have resulted in more Jumps or Jump Scans.

Bar did not help, likely because it is difficult to compare lengths
when bars are aligned in the direction that they vary (horizontally in our
case). This makes Bar ineffective, in stark contrast with what happened
in TVertMax. This is not the only consequence of the anisotropy of
tables: in Step 3, to reach the column header, the dominant movement
was Jump; while in TVertMax, Step 3 consisted mostly of Smooth
Scans. In other words, it seems that participants naturally recognized
that moving horizontally along a narrow row to its beginning (Step 3 in
TVertMax) is much riskier than jumping vertically to the wider (and
less distant) column header, and adapted accordingly.

As in TVertMax, participants did not do better with Zebra than with
Plain (H2 not supported). The potential benefit of Zebra helping “stay
on the lane” when following a row to find its maximum (Step 2) might
be negligible when the gaze movement is a non-risky smooth scan.

5.3 TDiff Results

TDiff is about finding the column, out of several possible columns, that
has the largest proportional difference between two given rows.

COMPLETION TIME AND ERROR - As expected, TDiff being more
complex than the other tasks, it took longer to complete (around half a
minute in all conditions). Figure 7 shows that τZebra is smallest (30.46
s average) and is 5.8% smaller than τColor (∼ 2 s), 9.5% smaller than
τPlain (∼ 3 s) and 12% smaller than τBar (∼ 4 s). We found no conclu-
sive evidence that these encodings help (H1); H2 is clearly supported
(Zebra helps); H3a is contradicted by the results, with τZebra < τBar
and τZebra < τColor; H4 is moderately supported, with τColor < τBar.

Participants made more errors in this task (17% of trials—See supple-
mentary materials), but we see no clear differences between conditions.

EFFECTS OF MOUSE USE - Participants used the mouse in most trials
(91%), similarly across all conditions. There is also no conclusive
evidence that using the mouse affects τ or ε .

TASK GAZE PATTERN - Of the 184 trials, we lost the videos for 24
trials from 3 participants when the eye-tracking device failed to record
these trials, or when the trials exceeded the device’s recording time
limit. 15 other trials were too noisy for analysis. We analyze the 145
remaining trials. TDiff is a more complex task that can be performed
in many different ways, and we did not identify clear strategies to
complete it. However, we did identify two common initial steps (Step
1, Step 2) followed by a group of diverse and somewhat chaotic actions
with lots of variations between participants (Step 3). Figure 2 shows
the typical gaze patterns for TDiff.
Step 1. Finding the two row headers indicated in the prompt. 99% of
the trials started with this step, and 42% came back to this step after
they went through Step 2. Most participants used Smooth Scan (in
143/145 trials), with or without mouse. Most trials were with mouse
(124/145). This step included regression in most trials without mouse
(91%) and less often in those with mouse (65%). There were no Jumps,
Jump Scans, or Super-Smooth Scans.
Step 2. Finding the horizontal location of the values to compare by
identifying the corresponding columns based on the column header.
Most participants used Smooth Scan (in 113/145 trials). Of those,
63.5% were with mouse, with regression (54/145 trials) or without
(37/145 without). Participants who used the mouse tended to hover
the cursor over the second row of interest, then kept gaze and mouse
position vertically synchronized. There were no Jumps or Jump Scans.

H2 97% H3a 10% H4 90%
H3a <1%H1 76%

H1 71%

33.3s 30.4s 32.3s 34.2s

Fig. 7: TDiff completion time. Refer also to Figure 4 caption.

Step 3 (group). Comparing Cells. After completing Step 2, 42% of
trials (61/145 trials) included a horizontal back-and-forth Jump to the
row header, without mouse and without regression. Presumably, this
was to check that the viewer was still looking at the right row. After
that, different types of movement patterns took place. For example, in a
Compare pattern, participants moved up and down between two relevant
cells in the same column several times. Another common pattern was a
jump up and back to column headers or additional jumps left and back
to row headers between instances of ‘Compare’, presumably to check
they were still comparing the correct rows and columns.

GAZE DIFFERENCES BETWEEN CONDITIONS - The analysis of
gaze patterns did not reveal any clear differences between conditions,
either globally or when analyzing based on the different steps.

SUBJECTIVE RESULTS - Zebra was ranked best, then Bar, then Color
then Plain, for all measurements (see Figure 3).

TDIFF DISCUSSION - TDiff is likely the most complex task studied
empirically on tables to date. We expected Color and Bar to be helpful
because we assumed that visually decoding values would be quicker
than decoding the symbolic digits. We did not find evidence of this (H1
not supported). Instead, only Zebra seems to help (H2 is supported).
As a consequence, H3a is also not supported (the benefits of these
encodings are negligible compared to the benefits of Zebra).

The evidence points to three possible insights: A) Color and Bar
might not help (or help too little) when estimating the proportional
difference between two cells. This might be because the estimation task
is easier to do with digits than with bars or shaded cells, or because the
setup of the task hinders this operation (e.g., the estimation requires
comparison of cells across some space, which is filled by other encoded
cells which interfere). B) Navigational sub-actions required by the task,
which are presumably helped by Zebra, dominate the completion time
for the task. C) Landmarks created by these encodings might not help
much with navigation, at least compared to Zebra.

We also suspect that participants’ time to decide on a task-completion
strategy affects the timing and hides effects that would be more promi-
nent after participants have settled on that strategy.

5.4 TValue Results

TValue is about retrieving the value contained in the cell specified by
the names of its row and column.

COMPLETION TIME AND ERROR - Figure 8 shows that τZebra is
smallest (9.5 s, 9%, 14% and 16% smaller than τColor = 10.3 s, τBar =
10.8 s and τPlain = 11 s, respectively). There is no statistically reliable



H2 98% H3b 89% H4 76%
H3b 97%H1 84%

H1 60%

10.8s10.3s9.5s11.0s

Fig. 8: TValue completion time. Refer also to Figure 4 caption.

difference between τPlain and τBar nor between τPlain and τColor (H1
not supported). H2 is clearly supported (τZebra < τPlain). H3b, which
is specific to this task, is supported, although the evidence that τZebra <
τBar is much stronger than that for for τZebra < τColor.

There were only six errors for TValue (see supplementary materials)
— too small a number to infer any differences between conditions.

EFFECTS OF MOUSE USE - Participants used the mouse in 70-76%
of the trials, depending on the condition. There is no evidence that they
were more likely to use the mouse in one condition than another. There
is reliable evidence (98% probability) that mouse use reduced τBar by
about 1.7 seconds. There is no such evidence for the other conditions,
and no evidence that mouse use correlates with error.

TASK GAZE PATTERN - Participants completed TValue in two vari-
ants, each decomposed into three steps, regardless of condition (see Fig-
ure 2). Only two trials started directly at step 3.
Steps 1 and 2. Finding the item named in the prompt in header (step 1),
then the other header (step 2). 79% of the time, participants started by
finding the row header in step 1, then the column header in step 2. Most
participants used Smooth Scan in both steps (in 166/184 trials). We did
not find an explicit Step 2 in 62 trials, presumably because participants
remembered the location of the column or row. Participants were more
likely to use the mouse while scanning the row header (103/164 trials
were with mouse, i.e. 63% of trials) compared to the column header
(10/138 trials were with mouse, i.e. 7% of trials). Also, 111/182 trials
(61%) were with mouse for Step 1, against 2/120 (1.5%) for Step 2.
Step 3 (group). Find the cell within the corresponding row/column that
aligns with the specified column/row header (depending on variant).
In the first variant, participants traverse vertically the column that they
found in step 2, with occasional Jumps and Scans to the row headers
as they approach the target row, until they locate the crossing of row
and column. In the second variant, they traverse horizontally the row
found in step 2, with occasional Jumps and Scans to the column headers
as they approach the target column. The predominant movements are
Jumps (in 179/184 trials) and Smooth Scans (175/184). Almost all trials
contained both, although Jumps are more than twice as numerous (737
Jumps out of the 1003 movements) than Smooth Scans (318/1003).

GAZE DIFFERENCES BETWEEN CONDITIONS - The analysis of
gaze patterns did not reveal any clear differences between conditions,
either globally or when analyzing based on the different steps.

SUBJECTIVE RESULTS - Zebra was ranked best, and Plain, Color and
Bar received similar rankings, for all measurements (see Figure 3).

TVALUE DISCUSSION - We initially thought TValue would be the
simplest and most straightforward task. However, TValue requires a
relatively large number of operations (e.g., going to, and back from,
headers). This can be explained with the limitations of the human
visual system: gaze locations are not always easy to return to, especially
when there is high density of possible locations or when there are no
distinctive landmarks confirming return to the appropriate location.

It is precisely this difficulty that might explain Zebra’s advantage to
complete TValue (H2 supported). Vertically, the Zebra stripes reduce

the density of elements to come back to by a factor of two (i.e., par-
ticipants remember that they are traveling back to a dark or light row).
Horizontally, the stripes may help participants “stay on the lane” when
facilitating jumps back and forth to the headers.

As expected, Color and Bar did not help, since the cell value is
irrelevant to this task (H3b supported). However, Color and Bar do
produce visual landmarks that could have helped participants recover
the gaze position in the table when jumping or scanning back and forth;
however, the data did not show evidence of this.

This task also shows how the mouse is sometimes used as a “mobile
landmark”. Participants who started by scanning the row headers left
the cursor at the appropriate row so that, when finding the correct
column, they could more easily find the intersecting cell.

6 DISCUSSION

Summarizing discussion from Section 5.1, Section 5.2, Section 5.3 and
Section 5.4 provides answers to the research questions of Section 3:
visual encodings help read data tables, at least for TVertMax and THor-
Max (RQ1); Zebra helps read data tables faster, at least for TDiff and
TValue (RQ2); both visual encodings and visual features are useful, but
in disjoint task sets (RQ3); the color encoding brings more benefits than
the bar encoding (RQ4); and using the mouse seems to be detrimental
unless it is used as a mobile landmark in complex tasks that otherwise
require significant spatial memory such as TDiff and TValue (RQ5).

We further interpret findings around four themes: i) the nature of
table tasks, ii) the benefits of visual aids; iii) the effect of mouse use,
and iv) the shape of tables. Design recommendations are in boldface.

6.1 The Nature of Table Tasks and their Operations

Explaining differences between tasks and between conditions requires
further distinctions in the operations required to perform each task. Our
gaze analysis uncovered types of relevant operations — note that an
operation does not necessarily correspond one-to-one to a step from
our analysis. Some tasks rely heavily on (gaze) navigational operations.
For example, TValue requires travelling left from a cell to check the
name of its row header. Navigational operations tend to be fast, but
their contribution to completion time is not negligible. Other operations
are mostly cognitive, such as in Step 2 of TVertMax, which requires
comparing cells in a column and remembering the highest value until
the full column is scanned. Cognitive tasks such as scanning row or
column headers to find a name or comparing two cell values to derive
a proportion (in TDiff) still have substantial navigational components,
and tend to be accompanied by regressions (repeated back and forth
gaze movements between cells). In contrast, purely navigational oper-
ations do not have regressions. Finally, some navigational operations
require spatial memory, such as returning to a previously seen cell.

Predictably, some tasks take longer to complete than others because
they involve different operations. Unsurprisingly, the most sophisti-
cated task (TDiff) takes about three times as long to complete as the
other tasks (30 s vs. 10 s). Unexpectedly, participants took longer to
complete TValue than THorMax and than TVertMax with encodings.
This is explainable by the number and types of operations required.
TValue, perhaps the most fundamental task in tables, involves a rel-
atively large number of varied operations: scanning both headings
sequentially to find the selected column and row (both cognitive opera-
tions with per-element matching), then jumping back to an approximate
location (navigational with spatial memory), then one or more naviga-
tional jumps back and forth to the heading to verify the right location.
In contrast, the flow of operations to find a maximum is much smoother:
a scan of the header, then a linear navigation until the maximum value
is found, and then a jump to the other header. Although finding the
maximum theoretically involves a larger number of comparisons (e.g.,
each value to the memory-held maximum), the spatial memory-reliant
completion of TValue results in many navigational operations that add
up to a similar time. When finding a maximum is facilitated by en-
codings, this makes a task like TVertMax much faster than TValue.
From here we derive a first — trivial yet important — recommendation:
when designing a table, consider the main tasks it will support.



6.2 The Benefits of Visual Encodings and Visual Features
Because we found that no single aid offered advantages in all tasks,
selection of visual aids should be matched to the main tasks to be
supported. However, there were no cases of participants being more
performant with Plain than with any visual aid (with the exception of the
errors for Color in THorMax that are more an issue of communicating
that encoding is applied by column and not by row). Knowing that
visual aids do help, the question is which one(s) to use and when.

The encodings (Color and Bar) show important speed advantages
for TVertMax, most likely because the cognitive subtask of reading
each value in a column is replaced by reading a much smaller selection
of candidate values to which it is easy to direct gaze with a saccade.
Color is better than Bar, most likely because it is easier to perceive
from further distances when not foveated. Therefore we recommend to
leverage Color to find extrema, as long as the encoding is consistent
with the task. This is consistent with findings from similar tasks tested
in numeric scalar data fields [20, 31].

Bar also helps with TVertMax, but less. In addition, Bar not helping
for THorMax echoes previous findings that there are differences in
accuracy between aligned length/position and length [11]; but our
results, for the tasks we tested, go one step further because Bar did not
help at all when the bars are on an unaligned scale. Vertical bars would
likely help for horizontal comparisons, but differences would be harder
to see due to the typical aspect ratio of table cells (wide). Nevertheless,
we speculate that Bar may have advantages, such as better compatibility
with Zebra, and supporting spatial graphical thinking (e.g., easier to
calculate midpoints or averages across cells).

Surprisingly, the encodings did not help with the more complex
task we tested (TDiff), although we know an encoding like Bar is
particularly suitable for proportion estimation [11]. It is troublesome
that that encodings help perform simple, granular tasks, but might not
help with complex, compound tasks. Encodings may be difficult to
use for anything other than identifying large or small values when the
intermediate space is filled with other values and their benefit might
be constrained to cognitively cheap filtering, not to simplification of
cognitive comparisons. Therefore, we recommend to not assume that
the advantages of visual aids in simple tasks will translate to larger
tasks, even for tasks with similar low-level operations.

For TDiff, only Zebra showed an advantage. This is likely be-
cause Zebra helped with the numerous vertical navigational operations
required in this task, as participants could remember to focus on a dark-
ened or clear background. Zebra also saved time in the TValue task,
which requires similar navigational operations (see Figure 2). This is
consistent with Enders’ findings that horizontal Zebra striping is ben-
eficial [14, 15], although only for their most difficult question. There
might be operations beyond finding extrema that benefit from visual
encodings and are substantial constituents of complex tasks. However,
for the complex task we tested, we recommend to use Zebra striping
unless operations that benefit from visual encodings, such as find-
ing extrema, constitute a large proportion of the task. The benefits
are, however, only around 10%.

Zebra’s lack of benefit in TVertMax and THorMax indicates that
it does not necessarily support horizontal visual flow [27] or “staying
in the lane”, but reduces vertical bandwidth to enable more confident
vertical gaze navigation (it facilitates saccades to a dark or clear row).
Further empirical research should confirm this insight; nevertheless we
should not assume that the benefits of the Zebra are exclusively in
horizontal navigation.

Finally, although it seemed plausible that encodings could help
navigational tasks by creating visual landmarks through data patterns,
we did not find any substantial evidence of this. This is most evident
from the TValue task, where the encoding does not have any cognitive
function and encodings are not better than Plain.

6.3 The Effect of Mouse Use
We observed that participants used the mouse in two ways: A) to
accompany their gaze with the cursor (e.g., when scanning a heading) to
improve their performance, perhaps recognizing that gaze is somewhat
unreliable when scanning; and B) as a “bookmark” to keep track of a

row or a column when the task required them to look away (e.g., when
both the location of the row and the column is necessary).

Although the evidence is correlational (participants could choose)
and partial (only for some conditions), the benefits of using the mouse to
accompany gaze (A) do not seem to overcome the extra cost of moving
the mouse (use of the mouse is statistically associated with slower
completion times in some conditions for TVertMax and THorMax). In
contrast, using the mouse cursor as a bookmark might be beneficial for
completing TValue with Bar and Plain; yet, the evidence is not strong
enough to recommend interventions regarding mouse use.

6.4 The Shape of Tables
Tables are generally more dense vertically than horizontally. This is
because text, at least in the western tradition, is conventionally written
left to right, making the natural shape of cells and headings rectangular
and horizontally aligned. This has consequences for most tasks.

For example, we saw that after finding the maximum in THorMax,
it usually only takes a single saccade (a jump) to get to the column
heading, whereas in TVertMax, the last step to reach the row headers
is most often a slow scan right to left. This also has implications for
TValue because it requires multiple heading checks which are easier
when following a row (vertical checks) than when following a column
(horizontal check). In cases like these, the width of, and the spacing
between, columns becomes an asset that trades off with the table’s in-
formation density. We therefore recommend to consider carefully the
row-column mapping of the data (a table and its transposed version
will not usually be equivalent), and to balance the data density of the
table with people’s ability to quickly navigate it. Our decomposition
of task operations is a good starting point for these considerations.

7 LIMITATIONS AND FUTURE WORK

Although this work represents the broadest empirical investigation of
tasks on tables to date, most are low-level tasks. Many other tasks
take place on tables; tables can be of different physical sizes and data
densities; and tables can contain mixed numerical and categorical/text
data. Performance and behavior on those tasks will offer surprises
just as those we found for our tasks. This makes results difficult to fit
to existing models of graphical perception (e.g., [34]). Our data also
does not enable us to validate such models because we would have to
infer operations from noisy gaze movements, model the tasks in the
different models, and consider the different possible strategies for each.
Further work to refine models for this problem is worthy of exploration.
While more precise gaze recognition could offer value in the future
(e.g., to guide the design new visual aids), our analysis already provided
valuable insights and explanations for performance differences based
on empirical data.

We believe that the visual aids we studied are the most likely to affect
reading performance; however, further research should consider the
effect of more prosaic visual aids, such as separator lines and general
spacing. Interaction with digital tables (e.g., interactive transient high-
lighting of rows or columns) also has received little attention, which is
surprising given the puzzling UI and display decisions implemented in
existing spreadsheet software. Our results suggest that interactivity that
fits the requirements of the most important tasks is a promising source
of performance improvements. Some of these optimizations could rely
on empirical measurements of key parameters. For example, what is the
distance and width at which readers start feeling confident with quick
saccades to headings? We also believe that there is plenty of space
for innovation in new methods to facilitate reading tables, from static
approaches such as better versions of the Zebra and hybrid encodings
to dynamic gaze-contingent dynamic techniques.

8 CONCLUSION

Despite the importance and ubiquity of tables, most advice about how
to build them is based on experience and speculation, not empirical
evidence. We carried out an experiment with four tasks that supports the
use of visual encodings to save cognitive effort when finding maxima,
and of zebra shading in the other tasks we tested. Visual aids on tables
are more than “chart junk”.



SUPPLEMENTAL MATERIALS

The supplemental materials, available at https://osf.io/jfg3h/?view_
only=f064cff189c4440299a3c3b10ddab232, include the following directo-
ries:

• Preliminary task: the description of the preliminary task and
a Sankey Diagram that shows gaze behavior for this preliminary
task.

• Additional Figures: two additional figures that represent the
most typical gaze pattern for THorMax and TVertMax, and three
additional figures that show the errors for THorMax, TDiff and
TValue.

• Data and Time-Error-Mouse quant analysis: the fold-
ers necessary to reproduce the quantitative analysis of com-
pletion time, error and mouse use. The files are Jupyter
notebooks that run on the R kernel (R version 4.1.3) and re-
quire the installation of JAGS (JAGS version 4.3.0) and Run-
JAGs as interface between the two. The data is in CSV for-
mat in the folder: ./Data and Time-Error-Mouse quant
Analysis/Analysis/data/test/.

• Gaze Analysis: the coded data from the visual coding of gaze
videos and the description of the codes.

• Stimuli: the image files of the tables used in the experiment.

The pre-registration for this research is available at https://osf.io/
b67xu?view_only=b9cc56507fc54ae399d0f468d53474ed.
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