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Fig. 1: The proposed counterfactual guidance technique can be compared with traditional correlation-based guidance by considering
five archetypal scenarios. Consider the example question “Will coffee drinking cause differences in students’ grades?” An analyst
might compare data based on whether students drink coffee or not, and attempt to answer the question based on differences in the
distribution of grades for the resulting subsets. The leftmost column lists the subsets created in this process (see Section 3.1 for details),
and the various charts illustrate five potential combinations (a-e) of distributions across the different subsets which suggest different
possible answers to the analytical question (see Section 3.2 for details). Across the bottom of the figure, the symbols indicate which
methods more accurately reflect the correct interpretation of the data. As the example illustrates, counterfactual-based approaches
have advantages in two of the five scenarios while they perform equally on the other three.

Abstract— Providing effective guidance for users has long been an important and challenging task for efficient exploratory visual
analytics, especially when selecting variables for visualization in high-dimensional datasets. Correlation is the most widely applied
metric for guidance in statistical and analytical tools, however a reliance on correlation may lead users towards false positives when
interpreting causal relations in the data. In this work, inspired by prior insights on the benefits of counterfactual visualization in
supporting visual causal inference, we propose a novel, simple, and efficient counterfactual guidance method to enhance causal
inference performance in guided exploratory analytics based on insights and concerns gathered from expert interviews. Our technique
aims to capitalize on the benefits of counterfactual approaches while reducing their complexity for users. We integrated counterfactual
guidance into an exploratory visual analytics system, and using a synthetically generated ground-truth causal dataset, conducted
a comparative user study and evaluated to what extent counterfactual guidance can help lead users to more precise visual causal
inferences. The results suggest that counterfactual guidance improved visual causal inference performance, and also led to different
exploratory behaviors compared to correlation-based guidance. Based on these findings, we offer future directions and challenges for
incorporating counterfactual guidance to better support exploratory visual analytics.
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1 INTRODUCTION

Supporting efficient discoveries of insights within complex datasets is a
primary goal for exploratory data analysis. Visual analytics tools often
employ guided approaches to lead users to find meaningful inferences
from high-dimensional data [11, 25, 53]. The most typical and widely
applied guidance metric is correlation [2,60], however correlation-based
guidance may mislead users by suggesting false causal relationships [6,
41, 53].
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Filtering is a common step in visual analytics workflows [7, 36, 46],
whereby users can create data subsets of interest based on specified con-
straints to help answer analytical questions. However, ad-hoc filtering
operations can also lead to mistaken assumptions regarding the strength
and causal nature of relationships between variables. Recent advances
have employed counterfactuals in visualization—visualizing additional
data subsets designed to provide improved context—to provide benefits
to various visualization and visual analytics tasks, such as better inter-
pretations of machine learning models [14, 20, 59] and improved visual
causal inference [35, 54, 55]. However, counterfactual-based methods
require more complicated and nuanced interpretation of visualizations,
potentially leading to more time-consuming and complex analyses [6].

This paper aims to capitalize on the benefits of counterfactual ap-
proaches, while also reducing complexity for the user, by using counter-
factuals to improve guidance in visual analytics systems with respect to
causal interpretations of data. Inspired by existing insights and expert
interviews, we introduce a novel counterfactual-based guidance tech-
nique designed to capture differences between subsets created by coun-
terfactual visualization techniques [55]. Similar to correlation-based
methods, our approach outputs a numeric value that can be used to
guide users’ exploration, thus simplifying the complexity typically asso-
ciated with explaining counterfactuals to users. Our technique therefore
combines the benefits of counterfactuals to better support guided visual
exploration while mitigating its limitations. Unlike previous counter-
factual visualization work, our study incorporates counterfactuals into a
guidance technique that enables effective exploration of datasets while
significantly reducing visualization complexity. In addition, we provide
a more thorough analysis of users’ exploratory patterns.

We illustrate the benefits of counterfactual guidance compared to
correlation-based guidance via a theoretical scenario using a simple
students’ coffee drinking example (Figure 1). Through this use case,
we show how counterfactual guidance can avoid incorrect inferences
and more effectively lead to correct inferences compared to correlation-
based guidance.

Furthermore, through a comparative user study with a prototype ex-
ploratory visual analysis system using a synthetic dataset with ground-
truth causal relationships, we demonstrate that counterfactual guidance
leads to improved performance in visual causal inference tasks com-
pared to correlation-based guidance. Based on the findings, we propose
design implications for better integrating counterfactual guidance into
exploratory visual analytics systems, aiming to facilitate more efficient
and insightful data exploration.

Specifically, the contributions of this paper include:
• A counterfactual-based guidance technique with an open-

sourced library to support exploratory visual analysis. We
propose a new counterfactual-based method to compute guidance
for visual analytics systems. Furthermore, we provide an open-
source Python library to compute counterfactual guidance.

• Theoretical and empirical evidence demonstrating the benefits
of counterfactual guidance for visual analysis. We demonstrate
a theoretical use case and present results from an empirical user
study to illustrate the benefits of counterfactual guidance versus
traditional correlation-based guidance.

• Reflecting on prior work and discussing future research di-
rections. We discuss how our study can reflect and confirm prior
insights and indicate future research directions to better incorpo-
rate counterfactual guidance with exploratory analytics.

2 BACKGROUND AND RELATED WORK

The methods presented in this paper build on prior work in two broad
areas of related research. First, our approach is informed by prior work
exploring counterfactuals and their applications in support of visual
causal inference. Second, our contributions are designed to extend
previous approaches to guided exploratory visual analysis.

2.1 Counterfactuals in Visual Causal Inference
Causal inference techniques are designed to help characterize the causal
relationships between various factors within a dataset, showing how

one factor may lead to changes in another. Pearl [41] established
counterfactual reasoning as the most advanced level of his proposed
statistical causal inference hierarchy, involving the exploration of hy-
pothetical alternatives to observed events. The statistical and machine
learning communities have proposed many techniques to support causal
inference. For example, instrumental variables have been employed
to explore causal structures among datasets [1]. In other work, ma-
chine learning approaches were utilized to perform causal inference
from complex data [33]. Alternatively, score matching methods can be
used to extract impact factors for target outcomes to help create causal
models [31, 51].

Due to their utility in exploring outcome relations [39], counter-
factuals have been increasingly applied in visualization research to
enhance the understanding of datasets [6]. For example, Kaul et al.
introduced the first general-purpose counterfactual-based exploratory
visual analytics system, CoFact [35]. Through a user study, they found
that CoFact could assist users in inferring feature-to-outcome relations
from datasets. However, CoFact utilized complex counterfactual visu-
alizations without well-designed guidance techniques, making effective
data exploration challenging.

Further, preliminary research has explored the potential of coun-
terfactual visualization—visualizing data subsets that do not match
filter inclusion criteria, but are similar to the included subset in other
ways—to benefit users’ causal inferences in exploratory tasks. Wang
et al. proposed a causality comprehension model and found that coun-
terfactual visualizations benefit users’ causality comprehension for
juxtaposed visualizations [54]. However, their studies focused on static
statistical charts and did not address the use of counterfactuals in an
exploratory context.

However, challenges remain in effectively conveying these complex
causal relationships through visual means [6]. The most effective
ways to present information in order to improve causal inference is
still an area of active research. Prior studies also found that although
visualizing counterfactuals can provide improved performance in causal
inference, due to their increased visual and conceptual complexity users
typically took longer to explore and interpret them [54]. These studies
are also limited by a lack of ground truth causal relationships to validate
any advantages of counterfactuals.

These approaches have shown promise in helping users form more
accurate interpretations of data, although the field is still exploring
the most effective ways to integrate counterfactuals into visual data
communication. Built upon existing insights, we aim to maintain the
benefits of visualizing counterfactuals while mitigating their increased
complexity in interpreting visualizations. In this paper, we present a
simple yet effective counterfactual measure to guide exploratory visual
analysis.

2.2 Guided Exploratory Visual Analysis
Guided exploratory analysis in visual analytics refers to the process
of leading users through a structured exploration of data to uncover
insights [11]. Correlation between data variables is the most widely
applied metric to guide users towards potentially interesting insights
for exploratory visual analysis, and has been applied in various do-
mains such as statistical software [60], visual analysis tools [38], and
biostatistics methodologies [12].

Ceneda et al. explored a taxonomy of guidance in the context of
visual analytics [9]. They emphasized that the major goal of such guid-
ance is to mitigate the effects of the knowledge gap across different
guidance degrees [10]. They further developed theoretical frameworks
to better characterize guidance in visual analytics through analyzing
designers’ requirements [8], descriptively connecting visualization on-
boarding and guidance [49], and specifying practical guidance strate-
gies [48].

Other approaches have explored practical methods for guided vi-
sual analysis. The progressive visual analytics workflow [50] enables
user exploration of partial results to quickly lead to the next explo-
ration step by inferring early and meaningful clues. Feedback-driven
visual analytics [5] can provide benefits by providing relevant feed-
back in guiding users during the analysis of large multidimensional



datasets. SOMFlow [44] enables guided exploration for cluster analysis
using time-series self-organizing maps. EVM [34] incorporates model
checks [30] into visual analytics systems to guide users in better ex-
amining the efficiency of data exploration and interpretation based on
statistical models. Indexing [27] and faceted [28] guidance approaches
were reported to improve users’ exploration efficiency in exploratory
search tasks. AI-supported guidance [29] can also benefit users’ trust
and exploration during visual analysis, especially in more difficult
tasks.

Recommendation techniques have also been shown to be beneficial
for visual analytics guidance [66]. For example, modeling user behav-
ior [23] and analytical focus during visual analysis [67] can lead to
improved user exploration in various usage scenarios such as mass text
document analysis [24], web search [15], data pre-fetching [3], and
combating bias [22]. Task-driven approaches for recommendations
have also been employed to guide advanced mixed-initiative visual
analytics of users [16]. Other recommendation systems [40, 57, 61]
utilize design principle-driven recommendations to efficiently guide
user exploration in exploratory visual analytics.

Although this breadth of research offers significant insights on how
to effectively guide user exploration for various specific scenarios,
correlation-based guidance is still the most widely applied in analytical
and statistical software such as SYSTAT [60] and Tableau [2]. To
our knowledge, there have been no prior studies examining the use of
counterfactual guidance for visual analytics systems. In this work, we
compare counterfactual guidance to correlation-based guidance with
respect to their performance supporting causal inference.

3 ARCHETYPAL USAGE SCENARIOS

In this section, we describe five archetypal scenarios for counterfactual
and correlation-based guidance in data analysis. Through these scenar-
ios, we aim to demonstrate how and when counterfactual guidance can
offer benefits over correlation-based methods.

3.1 Data Subsets
First we briefly introduce the definitions of data subsets related to
computing counterfactuals to enable counterfactual guidance. For more
detailed definitions see [54].

IN: The included (IN) subset comprises the data samples that match
user-chosen inclusion criteria when filtering a dataset.

EX: The excluded (EX) subset comprises the data samples that do
not match the inclusion criteria for IN.

CF: The counterfactual (CF) subset comprises data samples from
EX that are the most similar to those from IN based on variables in the
data other than the inclusion criteria. Following prior studies [35, 54],
we employ the Euclidean distance as the default similarity measure.

REM: The remainder (REM) subset comprises the data samples
from EX that are not included in CF.

Figure 1 illustrates instances for these subsets. In this case, the
corresponding data subsets refer to: IN: Students who drink coffee.
EX: Students who don’t drink coffee. CF: Students who don’t drink
coffee but are similar to IN across other variables. REM: Students who
neither drink coffee nor are similar to IN across other variables.

In the following sections, we employ DIN,CF and DIN,REM as terms
to represent the differences between IN and CF, and between IN and
REM, respectively. We also refer to a low guidance value as one that
reflects a low evidence for a causal effect of the filter variable on the
outcome, and a high value as one that reflects greater evidence for a
causal effect.

3.2 Archetypes Overview
The five archetypes presented in this section are determined based on
the degree of similarity between the key subsets defined earlier in this
paper: IN, CF, and REM. More specifically, if we take a simplified
binary view of similarity between two subsets, we can specify five
different scenarios relating these three sets: (1) IN is similar to both CF
and REM; (2) IN and CF are similar, but REM is different; (3) IN and

REM are similar, but CF is different; (4) CF and REM are similar, with
both different from IN; and (5) all subsets are different from each other.

We illustrate these five archetypal scenarios with examples from
a guided exploratory analysis of data describing how coffee drinking
relates to students’ grades as depicted in Figure 1. In all of these
examples, the filter students who drink coffee is used to define IN while
the distributions represent the outcome variable students’ grades.

3.3 Case 1: All Subsets have Similar Distributions
When all subsets exhibit similar data distributions (Figure 1 (a)), the
conclusion is relatively clear: there is no evidence that the filter variable
(coffee consumption) meaningfully influences the outcome (students’
grades). This can be seen by comparing the grades of those who
consume coffee with those who don’t (both similar and non-similar
students). In all cases, the grades are similarly distributed.

Mathematically, this scenario will lead to a very low DIN,CF value
as well as a very low DIN,REM value, and should result in a low coun-
terfactual guidance value. Similarly, the correlation between coffee
drinking and grades (as evidenced by the small difference in outcomes
between IN and EX) is low, resulting in a correspondingly low correla-
tion guidance value.

3.4 Case 2: REM is Different
In this case, IN and CF exhibit similar outcomes (similar grades), while
the REM subset shows a different outcome distribution (Figure 1 (b)).
This case suggests that students who drink coffee earn grades similar to
those of non-coffee drinkers who are "just like them" except for their
coffee drinking. In contrast, students in the REM subset do not drink
coffee but are also dissimilar from coffee-drinking students in other
ways beyond their coffee intake. The REM students, in this case, earn
different grades from the others and these can be attributed to factors
other than coffee given the similar grades within IN and CF.

For these reasons, a user would ideally avoid focusing on these types
of variables, and guidance during exploratory analysis would not push
users toward such a pattern. When considering counterfactual guidance
approaches, even though DIN,REM can be relatively high, guidance
should still be low because of the low DIN,CF value. In sharp contrast,
correlation-based guidance might very well lead users directly to this
less interesting pattern because the correlation between coffee drinking
and grades (as evidenced by the difference between IN and EX) is
substantial given that REM is part of EX along with the large DIN,REM .

3.5 Case 3: CF is Different
A third possible pattern shows IN and REM having similar outcomes
while CF is different as shown (Figure 1 (c)). This case is less com-
mon and reflects a more complex circumstance. Using the coffee and
grades example, the difference in students’ grades between IN and
CF suggests that coffee drinking is an important factor given that IN
and CF contain similar students except for their coffee consumption.
However, the similar grades between IN and REM, which also differ in
coffee consumption, suggest that other factors that distinguish between
REM and CF may also influence the students’ grades. Moreover, the
other factors may influence grades in a way that is similar to coffee
consumption.

This pattern could be reflected in both counterfactual and correlation-
based guidance approaches. Counterfactual guidance would lead users
to explore these cases because of the large DIN,CF value. Correlation
guidance, meanwhile, would capture the difference between IN and
EX, though the strength of the signal may be weaker due to it reflecting
a combination of the large DIN,CF and the low DIN,REM .

3.6 Case 4: IN is Different
A fourth common pattern is when the CF and REM subsets have similar
outcomes that are both different from the IN subset (Figure 1 (d)). In
our example, this pattern would reflect coffee drinkers earning grades
that are different from those who don’t drink coffee and that this differ-
ence was seen for all non-coffee drinkers regardless of how similar or
different the students were to their coffee-drinking counterparts.



In this case, the difference in students’ grades for both REM and
CF to IN will result in large values for both DIN,REM and DIN,CF .
Therefore, this pattern would be identified by both correlation-based
guidance and counterfactual guidance.

3.7 Case 5: All Subsets are Different

In the fifth and final case, the outcome distributions are different across
all three subsets IN, CF, and REM (Figure 1 (e)). This situation
would reflect that all three groups have different grade distributions:
coffee-drinking students, non-coffee-drinking students who are like
their coffee-drinking peers, and non-coffee-drinking students who are
dissimilar from their coffee-drinking peers.

This scenario combines aspects from both cases 2 and 3. As in
case 3, counterfactual guidance would highlight this pattern for explo-
ration given the large difference between IN and CF. However, as in
case 2, CF and REM are also different. The correlation-based guidance
would therefore be more difficult to predict because it depends on the
combined distributions of those two subsets.

3.8 Summary

As outlined in the description of these five archetypes and their depic-
tion in Figure 1, correlation-based and counterfactual guidance can
both be used effectively under multiple conditions. More specifically,
they can both be used to help productively guide users towards cases 3
and 4 and away from case 1. In contrast, cases 2 and 5 are more prob-
lematic for correlation-based guidance and could result in incorrect or
misleading guidance, whereas counterfactual guidance should be able
to provide correct results for both cases.

These archetypes help demonstrate the theoretical rationale for, and
benefits of, counterfactual guidance as summarized in the table at
the bottom of Figure 1. Motivated by these observations, the study
presented in Section 5 provides empirical evidence about the benefits
of counterfactual guidance during exploratory analysis when compared
to a correlation-based approach.

4 COUNTERFACTUAL GUIDANCE

In this section, we first share results from formative interviews with
visualization experts which aimed to distill key design requirements.
Then, informed by the findings from those interviews we present the
details of our counterfactual guidance methodology.

4.1 Insights and Concerns from Expert Interviews

Building upon prior findings on counterfactuals in visualization, we
gathered suggestions from qualitative expert interviews to identify ra-
tionales and practical key insights to incorporate counterfactuals into
visual analysis systems. The interviews were conducted with 6 ex-
perts, comprising three visualization researchers and three visualization
engineers. The interviews lasted 30 minutes on average.

During each interview, experts were introduced to and shown exist-
ing counterfactual visualizations and visual analytic tools. They then
discussed their concerns and proposed suggestions for building efficient
and easy-to-use counterfactual-based analytics systems. We summarize
the main insights and concerns raised during these interviews within
the following themes.

Complex counterfactual concepts. One common theme was that
counterfactual visualizations were seen as helpful tools, but that they
are not typically employed in their analytical workflows and may be a
complex concept for new users to understand. Four out of six experts
reported they had no prior knowledge of counterfactuals, and that under-
standing the definitions involved in counterfactual visualizations was
challenging for them even though examples were provided. All experts
suggested that if we want to effectively incorporate counterfactuals
into the visual analytics workflow for general users, it would be best
if it was done in a way that avoids introducing new complex concept
definitions.

Difficulty in understanding the impact of the REM subset. An-
other challenge raised by the experts focused on the REM subset. When
exploring datasets, users are primarily focused on the impact of chosen
filters, i.e., the IN subset. Moreover, the experts all agreed that visual-
izing the CF subset was useful as a way to help them understand the
differential impact of their chosen filters. However, five experts men-
tioned that they didn’t easily understand the usefulness of looking at
data from the REM subset. This aligns with the more complex concep-
tual basis required to meaningfully account for the REM subset when
interpreting a chart. It involves a three-way subset comparison which
requires a deeper understanding of counterfactuals (e.g., ’if IN and
CF are different, but REM and CF are alike...’). Given this difficulty,
five experts suggested that visualizing REM be de-emphasized. This
reflects a difficulty in implementation, however, as the REM subset is
critical in counterfactual interpretation.

Lack of simple explanatory use cases. Previous studies pro-
vided use cases to explain how counterfactuals in visualizations could
be interpreted. However, five experts expressed concern that these
use cases may be too complex for users to understand. Furthermore,
they reported that the examples didn’t effectively illustrate at a glance
how counterfactuals can be useful for data exploration rather than the
interpretation of an individual chart. This concern helped guide the
development of the archetypes in Section 3.

Complexity in visualizations. Many current counterfactual visual-
ization systems typically combine multiple charts to render the different
subsets. However, four experts suggested that this kind of presentation
significantly increases the complexity of interpreting visualizations,
especially for general users. Users have to interpret the individual
charts and then mentally combine them to draw the correct insight
based on their understanding of counterfactual reasoning. Therefore,
our experts suggested that we find ways to simplify the representations
of counterfactual visualizations.

4.2 Computing Counterfactual Guidance
Given these insights, we aimed to use counterfactual information in a
manner that hides some of the complexity from users. By calculating a
value based on user-selected filters in the computed data subsets, coun-
terfactual information can be used to provide improved guidance for
exploratory visual analytics. Examples illustrating the counterfactual
guidance metric are provided in Section 3.

Note that all the guidance computations described here incorporate
only user-selected variables (filters and outcome) and do not include
other dataset variables that are used by the computation of data subsets
(see Section 3.1).

4.2.1 Counterfactual Dissimilarity
The counterfactual guidance is based on the similarity under user-
selected variables for filters and the outcome of interest (e.g., coffee
drinking and students’ grades in Figure 1) between the previously
introduced data subsets. To compute the distance between data subsets,
we first define the Similarity between two individual data points as:

Similarity(i, j) = exp−distance(i, j), (1)

where i and j are two data points and the exponential function maps the
distance to a range of [0, 1] with a lower distance leading to a higher
Similarity. The distance can be any kind of distance measurement
between data points. In this study we employed Euclidean distance for
simplicity, familiarity, and continuity with prior work [35],

distance(i, j) =
√

(|xi − x j|)2 +(|yi − y j|)2. (2)

Note that the distance measure should be calculated based on all dimen-
sions in the datasets for Equation 2.

Although the results in this paper use the Euclidean distance, other
distance measures may be more appropriate for certain domain-specific
applications, datasets with unequal importance between variables, or
datasets containing large amounts of noise. For example, methods such



as the Mahalanobis distance [18] or propensity score matching [13]
could be applied for treatment analyses and other healthcare appli-
cations. We therefore provide several commonly used distance mea-
sures in the counterfactual library used to implement our guidance
system [55]. Developers can also implement or use their own preferred
distance measures to replace the implemented ones if they have specific
needs.

For typical analyses, users are seeking filter variables that indicate
differences in outcomes between subsets. Therefore, the more similar
CF is to IN, the less likely it is that the filter constraints is one of
interest in the analysis, and vice versa. We therefore define DIN,CF , as
introduced in Section 3.1, as the normalized dissimilarity between IN
and CF:

DIN,CF =
1

|SIN ||SCF |

|SIN |

∑
i∈SIN

|SCF |

∑
j∈SCF

(1−Similarity(i, j)), (3)

where SIN and SCF are the IN and CF subsets, and 1−Similarity(i− j)
is the dissimilarity between points i and j. This formulation of DIN,CF
results in a range of [0, 1].

4.2.2 Remainder Dissimilarity
The similarity between IN and REM also impacts data interpretation,
as outcome differences between IN and REM could suggest the im-
portance of non-filter variables in the dataset. We therefore define the
dissimilarity between IN and REM subsets DIN,REM in a similar way
to Equation 3 However, we replace the CF subset SCF with the REM
subset SREM throughout the equation:

DIN,REM =
1

|SIN ||SREM |

|SIN |

∑
i∈SIN

|SREM |

∑
j∈SREM

(1−Similarity(i, j)), (4)

4.2.3 Guidance Score
To compute an overall guidance score, we incorporate DIN,CF and
DIN,REM to represent how IN and CF are dissimilar and how IN and
REM are dissimilar, respectively. For each, larger values indicate that
the selected filters may be of more importance to explore during guided
analysis.

To reflect this design, we incorporate both dissimilarities together,
weighting DIN,CF more heavily than DIN,REM to capture the focus on
the inclusion criteria, as:

GuidanceCF =
1
2
(DIN,CF +

√
DIN,CF ∗DIN,REM). (5)

To reduce the weight of REM we calculate the geometric mean with
the CF subset (i.e., the square root item). This ensures that REM is
impactful only when CF is impactful. This guides away from archetype
case 2. With this guidance equation, we combine the impacts of both
subsets, while emphasizing the impact of the CF subset.

As a baseline for our control group in our evaluation study, we also
developed a correlation-based guidance measure. Correlation guidance
(Guidancecorr) follows a somewhat similar computation process in
our prototype, but replaces the calculation of counterfactual subset
distances with correlations between IN and EX.

4.2.4 Subset Distribution Score
A threshold-based method is used to create data subsets. The size n
of IN is directly determined by user-selected filters. To create CF we
select the n closest point to IN from EX, resulting in IN and CF having
the same size, with the remaining points belonging to REM, following
previous work [54]. However, if IN contains more than 1

3 of all data
points, we split the data points in EX evenly between CF and REM.

We note that the effectiveness of these subsets may be impacted by
the relative sizes of their data samples. For example, when IN includes
almost all data samples from the target dataset, no matter how large the
GuidanceCF or Guidancecorr value may be, we cannot conclude that
the data subsets would have a high impact. Similarly, if the size of IN

were very small, the dissimilarity between these subsets would not be
very informative.

Further, we define subset distribution scores DistributionS1,S2 to
measure the difference between the sizes of different subsets, based on
the SizeDi f f erenceS1,S2:

SizeDi f f erenceS1,S2 =
|SS2|

|SS2|+ |SS1|
, (6)

DistributionS1,S2 = 1−2∗ |SizeDi f f erenceS1,S2 −
1
2
| (7)

= 1−2∗ | |SS2|− |SS1|
|SS2|+ |SS1|

|, (8)

which results in a normalized value between 0 and 1.
For example, GuidanceCF relies primarily on the differences be-

tween IN and CF, so we use SizeDi f f erenceIN,CF . In ideal cases,
the number of samples in IN and CF would be similar, such
that SizeDi f f erenceIN,CF would be close to 0.5, and the overall
DistributionIN,CF would be close to 1. Whenever IN has an extremely
large or small number of samples, SizeDi f f erenceIN,CF will approach
0 or 1, and DistributionIN,CF will approach 0. Therefore, this measure
can be employed as an empirical validation of GuidanceIN,CF , where
lower values of DistributionIN,CF imply a smaller impact of the CF
subset. Empirically, when DistributionIN,CF is smaller than 0.1, we
find that the subset distribution cannot reliably support insights from
GuidanceIN,CF .

For correlation-based guidance, since Guidancecorr measures the
differences between IN and EX, we calculated its subset distribution
score as DistributionIN,EX .

4.3 Implementation

A Python implementation of the proposed counterfactual guidance
technique can be found in the cf_guidance file accompanied by
the Co-op library [55] as two functions, get_cf_guidance_score and
get_distribution_score. This library also contains basic computation
mechanisms for creating counterfactual subsets, built on efficient scien-
tific computing packages including NumPy, SciPy, and Pandas. The
integrated open-source library is available at GitHub.

5 USER STUDY

We conducted a comparative user study using a prototype visual in-
terface to evaluate the performance of counterfactual guidance and
compare it to correlation-based guidance. The user study was approved
by the UNC-Chapel Hill Institutional Review Board. This section pro-
vides detailed descriptions of the study design, analysis process, and
results.

5.1 Visual Interface

We designed the functionalities and interactions of the prototype system
based on insights from a prior counterfactual-based exploration sys-
tem [35] and expert interviews. The system enables guided exploration
by providing a feature guidance view to help users pick interesting
variables and an analytical summary view to help them explore se-
lected filters in detail. Here we describe the two primary views, feature
guidance and analytical details, and supported atomic interactions. We
compare it with the CoFact [35] interface to illustrate how our interface
can provide a simplified counterfactual-guided exploration experience.

Note that following prior studies [4, 64], the task, dataset, and out-
come variable were fixed in our study design (see Section 5.2 and
Section 5.5), therefore we disabled the configuration page for selecting
datasets and outcome variables during the study. The same outcome
variable is therefore always displayed, and the user is able to filter
based on other variables in the dataset to examine changes in the dis-
tribution of this outcome variable and interpret relationships between
these variables and the outcome variable.

https://github.com/VACLab/Co-op


Fig. 2: A comparison between CoFact [35] (a) and our interface (b). The red indicates the visualized counterfactual information shown to guide user
analysis in each interface, demonstrating how our technique simplifies the counterfactual information shown to users. The labels (b.1) to (b.7) refer to
different information and functionality shown in the interface, see Section 5.1 for details.

Feature Guidance. The bottom view in Figure 2 (b) shows the
feature guidance view for users to select variables for filtering. Se-
lectable variables (i.e., those other than the outcome and already se-
lected variables) are shown under Variable Name, see Figure 2 (b.1).
The variables are ordered by their guidance values, shown in Relevance,
see Figure 2 (b.2). These values may reflect counterfactual guidance or
correlation-based guidance, based on different user groups in the study.
The term Relevance is used for both guidance types. Users can select
a variable name displayed in Figure 2 (b.1), and then a visualization
of the distribution of the selected variable will be shown in Filter, see
Figure 2 (b.3). In this Filter view, users can click the distribution chart
to control the filter ranges they want to apply, as shown in Figure 2
(b.4), and click the Apply Filter button to apply the selected filter range.
Once the button is clicked, the feature guidance view will be updated
based on guidance values calculated using user-applied filters.

Analytical Detail. After applying filters in the feature guidance
view, users can switch to a more detailed view, as shown at the top
of Figure 2 (b). Selected variables are shown in the Selected Variable
panel, see Figure 2 (b.5), in the order they were added. Users can
also remove a selected variable by clicking the × button next to each
variable name in Figure 2 (b.5). Data distributions of the outcome
variable for IN, EX, and CF subsets are shown in the Data Distribution
panel, see Figure 2 (b.6). Note that to ease understanding of the subset
distributions, we did not show the subset names explicitly, instead
explaining the IN, CF, and REM subsets’ patterns as filtered data, those
similar with filtered data, and those dissimilar with filtered data, as
shown in the data legend in Figure 2 (b.6). Similarly, when using
correlation-based guidance, the distributions of IN and EX are shown,
where the legend of EX shows those not in filtered data. Detailed
analytical and guidance information, including all filter ranges and
guidance values (guidance score and subset distribution score), are
shown in the Analytical Summary panel Figure 2 (b.7).

Atomic Interaction Types. Two atomic interactions are available
in the system. Changing filter variables refers to user interaction to
add or remove different variables from the filter inclusion criteria to
explore their impact on the outcome. Changing filter ranges refers to
user interaction to adjust the range of values used for a filter variable.

Comparison with CoFact [35]. Figure 2 compares our interface
with CoFact. The red dashed boxes emphasize the panels and views that
show counterfactual and guidance information to help users explore
data in each interface. Our interface simplifies much of the information
related to guidance, whereas CoFact (see Figure 2 (a)) shows more

complex subset information and visualizations for achieving the same
goal.

5.2 Synthetic Data
One key limitation of prior empirical studies on counterfactuals in
visualization is the lack of ground truth causal relations in the studied
datasets. To address this issue we generated a dataset with a defined
ground truth causality between variables based on a causal graph by
selecting example variable names from typical healthcare data [21],
such as blood pressure and cholesterol.

Our data generation is based on prior work on graphical causal in-
ference mechanisms. Since constructing causal models from a dataset
is usually complex and may not always guarantee ground-truth causal-
ity, we instead first defined a directed acyclic causal graph using our
selected variables as nodes and assigned causal relationship strengths
between these variables as links using DoWhy [45]. We then gener-
ated the synthetic data based on the constructed causal graph [32] (see
CausalSynth [58] for a web application). Due to the difficulties in
controlling the causal strength of categorical variables in a causal graph,
all of the variables are continuous.

Figure 3 shows the defined causal graph and corresponding values
of the ground truth causal relationships shown near each causal link. In
this causal graph, we define mortality risk as the target outcome variable
with different causal relationship strengths to other variables. The top
five causal links are shown in red. The causal relationship strengths
are assigned with a 0.05 interval (i.e., one’s strength to outcome is
0.05 higher than its nearest-lower factor) to avoid potential effects
caused by unbalanced differences in causal strength. Several causal
links between factors were randomly added to increase data complexity
(e.g., cholesterol → blood pressure).

To facilitate exploratory analysis, we predefined default filter ranges
for each variable, determined by two expert analysts to highlight poten-
tial interesting filter ranges to serve as inclusion criteria for IN.

5.3 Participants
We recruited 20 users (14 male, 6 female; 19–30 years old) to participate
in the study via mailing lists and contacts within professional networks.
All participants were at least 18 years old, had or were pursuing a
university degree, and had experience using visualization and data
analysis such as taking information visualization or data science courses.
We employed a between-subjects design by randomly assigning 10
participants to use counterfactual guidance (the CFACT group) while
the other 10 participants used correlation guidance (the CORR group)

https://github.com/VACLab/CausalSynth


Fig. 3: The defined casual graph in the synthetic data. The middle node
is the target outcome, mortality risk, shown in red. The values near each
link are the causal relationship strengths. The top 5 causal links are
shown in red. Causal strengths range from 0.21 to 0.86, with a 0.05
interval between each causal strength in the graph.

in the same prototype system. On average, the study took around 20-30
minutes for users in each group.

5.4 Hypotheses

We aimed to explore the effectiveness of counterfactual guidance for
finding causal relationships in a dataset using exploratory visual analy-
sis. Based on this goal, we hypothesized that:

• H1: Counterfactual guidance would lead to higher accuracy in
finding causal relationships compared to correlation guidance.

• H2: Counterfactual guidance would lead to higher confidence in
users’ findings.

• H3: Counterfactual guidance would lead to fewer wrong attempts.

• H4: Users using counterfactual guidance may spend more time
in analysis.

Through these hypotheses, our study aims to better characterize the
impact of counterfactual guidance and compare its effectiveness with
correlation-based guidance.

5.5 Procedure and Task

After accepting the informed consent form including the study’s pur-
pose and participants’ rights, we gave the users a tour of the visual
interface and introduced the available interactions and functionalities.
With mortality risk chosen as the target outcome variable for the visual
interface, participants were asked to complete two tasks:

• T1: Identify which variables may be most likely to cause higher
mortality risk, choosing up to 5 variables.

• T2: Rank those variables from most likely to least likely.

Participants recorded their confidence on a 5-point Likert scale follow-
ing each task. The ground truth results of these tasks are five variables
with the highest causal relationship strengths to mortality risk, as shown
by the red links in Figure 3.

5.6 Analysis

We measured our results as accuracy, confidence, interactions, and time
spent. The only independent factor was the two user groups, so we
calculated individual t-tests based on these measures.

5.7 Results

Table 1 provides the results of the main measures from our analysis. Of
note is that all users reported 5 variables, despite the freedom to choose
fewer.

Table 1: The t-tests results for main measures in our study. Significant
effects are indicated by bold text and the corresponding rows are high-
lighted in green.

5.7.1 Accuracy
We assess the accuracy of T1 by computing the relative ratio between
the number of correct answers and 5, i.e., the number of provided
answers that were in the top 5 of the ground truth causal relationships,
independent of order.

To measure the accuracy for T2 we use an offset distance, similar to
the edit distance [43]:

O f f setT 2 =
5

∑
i=1

|i−RankGT (Answeri)|, (9)

where Answeri is the variable at the i-th position (i ∈ [1,5]) in the user’s
ranking, and RankGT (Answeri) is the ground truth (GT ) ranking of
this variable. This metric measures the accuracy between two rankings
by summing how much each variable’s position in the user ranking
deviates from its correct position in the ground truth ranking.

We found significant differences in accuracy between the CFACT
and CORR groups for both T1 (t = −4.40, p < .0001) and T2 (t =
3.43, p = .003). The mean differences between CFACT and CORR are
0.28 for T1 and 2.80 for T2, indicating that counterfactual guidance
performed better. The results on accuracy therefore support H1: we
found that counterfactual guidance can lead to higher accuracy in
finding causal relationships.

5.7.2 Confidence
We did not find any significant differences for confidence between
the CFACT and CORR groups. This indicates that the results do not
support H2: we found users’ confidence was not significantly impacted
by guidance type.

5.7.3 Atomic Interactions
We also examined differences with respect to the overall atomic inter-
actions (changing filter variables and changing filter ranges) employed
by users in each group. Users in CFACT employed significantly more
atomic interactions (t = −3.56, p = .002). We also found that the
CFACT group performed significantly more changes to filter ranges
(t =−4.17, p = .0005), but found no significant difference in changing
filter variables.

Furthermore, we identified wrong attempts as the total number of
atomic interactions involving a variable that does not exist in the top
5 ground truth causal variables. We found a significant difference in
wrong attempts (t = 7.85, p =< .0001), with a mean difference of -8.7,
indicating that users in CFACT had fewer wrong attempts. Our results
on interactions therefore support H3: we found that counterfactual
guidance can help users explore fewer incorrect variables.

5.7.4 Time
We found no significant difference between groups in the overall time
spent on analysis, indicating that the results do not support H4: coun-
terfactual guidance did not lead to a significant difference in time spent.



Table 2: Significance results for different interaction behaviors in our
study. Significant effects are indicated by bold text and the corresponding
rows are highlighted in green.

5.7.5 Exploratory Analysis for Interaction Behaviors

Interaction strategies and behaviors can also impact users’ explo-
ration [4, 64]. Given the significant differences in accuracy and number
of interactions, we performed a more fine-grained analysis of detailed
interaction behaviors to identify any differences between the CFACT
and CORR groups. This section follows the previous definition of
atomic interaction types from Section 5.1 and extends them based on
user behaviors. See Table 2 for a summary of the results for each
interaction behavior.

Figure 4 illustrates two sets of key interaction behaviors—go-back
and go-next—which we identified from users’ exploration behaviors.
Each node represents an atomic interaction (changing filter variables or
filter ranges). The gray nodes are starting points, which could be any
interaction. The green nodes represent a filter variable interaction and
the red nodes represent a filter range interaction. Go-back behaviors
are cases in which users first add a variable, and then remove it after
exploring insights with this variable. Go-next behaviors are cases in
which users add a second variable during the analysis of the current
variable. Go-next may therefore indicate that users are trying to explore
the combined impact of multiple variables. In addition, we subdivide
go-back and go-next interaction behaviors into two subtypes according
to users’ filter range interactions. Go-back interactions include go-back
after changing filter ranges (Figure 4 (a)) and go-back without changing
filter ranges (Figure 4 (b)). The same subtypes are also included for
go-next (Figure 4 (c, d)).

No significant differences were found between the overall go-back

Fig. 4: Four types of identified interaction behaviors in our exploratory
analysis consist of atomic interactions. (a-b) are go-back behaviors and
(c-d) are go-next behaviors.

Fig. 5: A search tree of a user in the CFACT group, with a width of 8, a
filter-range layer of 8, a filter-variable layer width of 6, and a depth of 6.

and go-next behaviors. However, significant differences were found
between each sub-type. The CFACT group exhibited more interaction
behaviors of go-back (t =−3.17, p = .005) and go-next (t = 2.71, p =
.01) after changing filter ranges, with mean differences of 1.8 and
1.2 respectively, and exhibited fewer interaction behaviors of go-back
(t =−2.98, p = .008) and go-next (t = 4.56, p = .0002) after changing
filter variables, with mean differences of -1.8 and -2.2 respectively.

Additionally, we examined the impact of counterfactual guidance
on the overall interaction structures of users. Following prior work [4],
we identified each variable change and range change as a node and
removed the backward edges to construct search trees for each user and
assessed the data patterns. The tree structure captures the exploration
path and helps us better evaluate users’ analysis behaviors [4]. Figure 5
illustrates a search tree created based on a user in the CFACT group of
our study, with red and green nodes denoting changing filter variables
and changing filter ranges respectively. We denote the layer with red
nodes as the filter-range layer and the layer with green nodes as the
filter-variable layer.

We employed tree width and height as measurements [4] to perform
significance tests between the CFACT and CORR groups, using the
largest width and the largest height, as well as the largest width on
the filter-range layer (filter-range width) and the filter-variable layer
(filter-variable width), for each tree (see Figure 5). We found a signifi-
cant difference for tree depth (t =−4.34, p = .0003), with a 2.5 mean
difference, indicating that users in CFACT had deeper search trees. For
tree width we found a significant difference for the filter-range layer
(t =−3.75, p = .001), with a 2.2 mean difference, indicating that users
in CFACT had wider filter-range layer widths.

Taken together, these exploratory patterns indicate that counterfac-
tual guidance could lead to more filter range explorations within each
filter variable, and visualizations of more filter variable combinations.

6 DISCUSSION

The analysis results indicate that counterfactual guidance was effective
for improving the accuracy of finding causal relationships in exploratory
analysis, and that counterfactual guidance led to different interaction
behaviors compared to correlation-based guidance. Here we discuss
how our results relate to prior work, identify limitations of this work,
and point out future research directions.

6.1 Reflection on Prior Work
Our results indicate the effectiveness of using counterfactuals as guid-
ance in exploratory visual analysis workflows. Here we discuss how
our results reflect on insights from prior work.

6.1.1 Counterfactual Visualization
The main insights of general-purpose counterfactual visualizations
were reported by Kaul et al. [35] and Wang et al. [54], which both
demonstrate the potential utility of counterfactuals in fostering a deeper
understanding of causal relationships within datasets. Our method,
even though largely simplifying the counterfactual information in the
interface, also found that using counterfactual information as guidance



can benefit data exploration. One of the reported limitations of these
studies was increased analysis time and complexity. Our counterfactual
guidance method was able to address these limitations while retaining
the benefits of counterfactuals for analyzing causal relationships.

However, our results are inconsistent with their findings in terms
of confidence. Kaul et al. [35] reported counterfactual visualizations
would reduce or confirm users’ confidence in different filter choices
in analytics systems and Wang et al. [54] also found counterfactuals
would impact confidence in static charts. We anticipate that these
contradictions may be a result of our simplification of counterfactual
information, as shown in Figure 2. But further work should better
examine this assumption.

6.1.2 Exploratory Behaviors
Our results indicate that when exploring data with counterfactual guid-
ance, users’ interactions are more likely to construct deeper search
trees. This insight aligns with Battle and Heer [4], where they found ex-
ploratory sessions are more likely to be depth-oriented (using Tableau).

Moreover, we also found correlation-based guidance leads to a rel-
atively low overall causal inference accuracy. This result aligns with
Zgraggen et al. [65], however, Battle and Heer [4] found that users
performed very well in their tasks. They explain these differences as
being due to recruiting more experienced users for their datasets (i.e.,
from professional Tableau User Groups). In addition, we propose that
these differences may also be due to differences in tasks and datasets,
for instance, our task is more open-ended, similar to [65].

6.2 Limitations and Future Directions
This research, while providing valuable insights into the use of counter-
factual guidance in visual analytics, acknowledges several limitations
that pave the way for future exploration:

6.2.1 Empirical Elements in Counterfactual Guidance Compu-
tation

When computing counterfactual guidance, we mitigated the REM sub-
set’s impact using the geometric mean (

√
DIN,CF ∗DIN,REM), and

added it to the impact of the CF subset (DIN,CF ) in our counterfac-
tual guidance technique. This formulation was determined empirically.
Future work should aim to provide analytical evidence to support these
weight choices or explore adaptive weighting schemes to better empha-
size the significance of the impacts of the two subsets. In addition, for
the subset size and subset distribution score, we provided empirical sug-
gestions to users, but did not perform any statistical analysis to measure
at which scale the subset size and its distribution score may imply a
significant impact for the effectiveness of the guidance. More statistical
analysis and usage suggestions for empirical thresholds related to the
data subsets should be thoroughly examined in future work.

6.2.2 Automated Computing Counterfactual Filtering
The counterfactual guidance technique does not incorporate automated
methods for determining filter ranges for computing counterfactual
subsets, therefore we employed expert-designed filters as the default for
both counterfactual and correlation guidance. This limits the potential
usage of guidance as an overview of the dataset prior to any user inter-
actions. Future improvements should integrate automated approaches
to suggest default filter ranges, such as machine learning models, which
may enhance the guidance’s ability to create meaningful counterfactual
subsets automatically, leading to more efficient data exploration.

6.2.3 Synthetic Data
The synthetic data used cannot accurately reflect the complex causal
relationships as well as noise existing in real-world datasets [19]. The
noise in these datasets may make counterfactual analysis more challeng-
ing. Future studies should investigate the applicability of our guidance
technique to more real-world and complex datasets. Further, other
distance measures such as Mahalanobis distance [17] should be ex-
plored in the future to mitigate the impact of noise. Further, real-world
data is often influenced by numerous factors beyond immediate causal
relations between two variables. These factors, such as confounders

and colliders, can introduce significant biases and distortions into users’
analyses, potentially leading to incorrect conclusions [26]. However,
the synthetic data did not account for confounders and colliders, limit-
ing its ability to simulate real-world cases. Addressing these elements
is essential for a more comprehensive evaluation of the counterfactual
guidance method. In the future, we plan to incorporate more causal
structure techniques to better identify confounders and colliders, such
as causal diagrams, statistical testing, and domain knowledge-assisted
identification [47]. Furthermore, our study did not test unbalanced
distributions or out-of-distribution cases between the employed sub-
sets. Investigating these scenarios is important for understanding the
robustness of counterfactual guidance.

6.2.4 Task Design

Our study tested only open-ended tasks even though it required users
to explore many variables. Providing more tasks and designing them
with a more focused scope (e.g., “What relationships do you observe
involving weather conditions and strike frequency? [4]”) may reveal
different exploratory insights. At the same time, experimenting with
questions that are even more open-ended, such as inferential tasks, may
better examine users’ abilities to reason from data [52]. Future research
should explore a wider range of exploration tasks designed to be both
more focused and more open-ended.

6.2.5 Impact of Prior Beliefs

Our study did not consider the impact of users’ pre-existing beliefs
when selecting variables in the synthetic data, which may impact users’
data interpretation. For example, studies have shown that users’ prior
beliefs can impact their estimations of correlations [63] and judgments
of causalities [56] from visualizations. Meanwhile, techniques such
as Bayesian-guided inference can be effectively used to assist users’
belief updating [37]. Future research should examine how beliefs
influence users’ exploration process when using counterfactual-based
guidance, and investigate potential technologies to assist in evaluating
and estimating priors.

6.2.6 Visual Interface

The employed exploratory visual interface did not support sophisti-
cated visualizations or more complex exploratory interactions, such
as users’ random exploration strategies [4], varying data aggregation
levels [62], and different visual encodings [42]. However, these fac-
tors may impact users’ data understanding and exploratory behaviors.
Enhancing the interface to accommodate a wider range of interactions,
user customizations, and visualizations could improve user experience
and analytical outcomes and may lead to more interesting interaction
behavior patterns, which should be explored in future work.

7 CONCLUSION

This paper presented a novel counterfactual-based guidance technique
to support exploratory data analytics. By transforming the subsets
generated for counterfactual visualizations into guidance values, our
approach addresses the limitations of complexity and time-consuming
analysis associated with counterfactual visualizations. Employing coun-
terfactual guidance, we retain the advantages of counterfactual reason-
ing while mitigating the cognitive load on users. Through the usage
scenario analysis and empirical study, our investigation has demon-
strated the efficacy of counterfactual guidance for exploratory visual
analysis. The empirical evidence shows that counterfactual guidance
significantly enhances the accuracy of interpreting causal relationships
in datasets, suggesting that counterfactual guidance can serve as a pow-
erful tool in guided visual analytics without overwhelming users. In
summary, our research advocates for the integration of counterfactual
reasoning into visual analytics systems more widely using counter-
factual guidance. This technique promises to facilitate more precise
and insightful data exploration, ultimately empowering users to make
informed decisions based on robust exploratory analysis and causal
inferences.
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