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Fig. 1: Comparison of our model with state-of-the-art MLLMs on chart question answering. Existing MLLMs often fail to understand
visual mappings, such as inverted Y-axis, truncated axis, bubble sizing, and area stacking. In contrast, our model, trained with the
visualization-referenced dataset we constructed, showcases a better understanding of visualization domain knowledge.

Abstract— Emerging multimodal large language models (MLLMs) exhibit great potential for chart question answering (CQA). Recent
efforts primarily focus on scaling up training datasets (i.e., charts, data tables, and question-answer (QA) pairs) through data collection
and synthesis. However, our empirical study on existing MLLMs and CQA datasets reveals notable gaps. First, current data collection
and synthesis focus on data volume and lack consideration of fine-grained visual encodings and QA tasks, resulting in unbalanced
data distribution divergent from practical CQA scenarios. Second, existing work follows the training recipe of the base MLLMs initially
designed for natural images, under-exploring the adaptation to unique chart characteristics, such as rich text elements. To fill the gap,
we propose a visualization-referenced instruction tuning approach to guide the training dataset enhancement and model development.
Specifically, we propose a novel data engine to effectively filter diverse and high-quality data from existing datasets and subsequently
refine and augment the data using LLM-based generation techniques to better align with practical QA tasks and visual encodings.
Then, to facilitate the adaptation to chart characteristics, we utilize the enriched data to train an MLLM by unfreezing the vision encoder
and incorporating a mixture-of-resolution adaptation strategy for enhanced fine-grained recognition. Experimental results validate the
effectiveness of our approach. Even with fewer training examples, our model consistently outperforms state-of-the-art CQA models on
established benchmarks. We also contribute a dataset split as a benchmark for future research. Source codes and datasets of this
paper are available at https://github.com/zengxingchen/ChartQA-MLLM.

Index Terms—Chart-question answering, multimodal large language models, benchmark

1 INTRODUCTION

Multimodal large language models (MLLMs), such as GPT4-Vision
[3], have made remarkable strides in understanding and interpreting
natural images, enabling breakthroughs in various vision-language
tasks (e.g., visual question answering [4]). These models excel by
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aligning the image representation of pre-trained vision encoders with
the powerful linguistic understanding of LLMs. Thereby, MLLMs show
great potential for visualization tasks that involve interpreting charts
using natural language, such as chart question answering (CQA), chart
summarization [74], and chart reverse-engineering [64]. CQA poses
intricate challenges, requiring both the comprehension of complex
natural language, along with the recognition of information from charts
and the reasoning ability to derive accurate answers [27].

Building MLLMs tailored for CQA necessitates high-quality train-
ing datasets and benchmarks. Recent research [24, 45, 57] in this field
primarily focuses on scaling up training datasets that include charts,
data tables, and QA pairs, employing manual labeling and data syn-
thesis techniques. These efforts have enhanced the performance of
MLLMs in traditional CQA benchmarks [54,58]. However, bottlenecks
have emerged, posing challenges for further improving performance
and adapting to real-world scenarios. Simply scaling up the training
dataset without implementing quality control measures poses signifi-
cant challenges in training efficiency and the feasibility of integrating
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these data into general MLLM training.
Recent research [20] emphasizes the impact of different QA types

on model performance, finding that reasoning-oriented [20] and
complexity-enhanced [63] instruction sets are particularly useful in
improving the performance of MLLMs. In the context of CQA, exist-
ing MLLMs for CQA encompass visual instructions in the format of
<chart, question, answer>. The quality of the chart and question-
answering (QA) pairs is pivotal for the effectiveness and generalizabil-
ity of MLLMs. However, the utilization of visual instruction data to
enhance CQA remains largely under-explored, leaving unanswered
questions about what makes good visual instructions and how to im-
prove the dataset from the perspectives of visual instructions.

To address these inquiries, we conduct a comprehensive evaluation
(Sect. 4) of MLLMs on CQA, aiming to pinpoint deficiencies and iden-
tify visual instructions that enhance MLLMs’ performance. The study
utilizes the ChartQA dataset [54], a widely adopted benchmark for
CQA. Through empirical analysis (Sect. 4.1.1), we uncover notable
distribution bias in both chart and QA pairs within the ChartQA dataset,
as compared to practical datasets such as the Beagle image dataset [6]
and visual literacy assessment datasets [21, 36, 60]. Thorough experi-
ments (Sect. 4.1.2) uncover significant impacts of the distribution bias
on MLLMs’ performance in CQA, highlighting the necessity of incor-
porating more instructions for compositional and visual-compositional
questions. Ablation studies (Sect. 4.2) further confirm that incorpo-
rating more reasoning-oriented QAs can significantly enhance model
performance compared to including data retrieval QAs.

Drawing inspiration from the results, we introduce a novel data en-
gine (Sect. 5) to generate instruction-enhanced CQA datasets. This
engine comprises a data-filtering component (Sect. 5.1), utilizing a
classifier with fine-grained chart features to reveal distributions and
filter existing chart datasets. To mitigate the bias in the chart distri-
butions and generate unavailable chart tasks, we further design a data
generation component (Sect. 5.2) employing a chart space-guided data
augmentation strategy to ensure the inclusivity of real-world possible
charts. We further enrich reasoning-oriented QAs for the generated
charts, contributing to a new CQA dataset and benchmark (Sect. 5.3)
that features a wider variety of chart types and more QAs with effective
visual instructions.

Existing MLLMs, mostly relying on CLIP encoders trained on nat-
ural images, are not optimally suited for visualization charts due to
inherent differences. Recognizing the limitations, we develop a new
MLLM (Sect. 6) that unfreezes the vision encoders in CLIP to better
adapt to chart-specific features. Our MLLM is trained using the newly
curated CQA dataset with more effective visual instructions. Addition-
ally, we incorporate a mixture-of-resolution adaptation strategy [52]
to enhance the fine-grained recognition capabilities of chart elements.
Quantitative experiments (Sect. 7) demonstrate that even trained on
a dataset with significantly less CQA data, our model consistently
outperforms state-of-the-art CQA models on established benchmarks.

In summary, our contributions are three-fold:
• An empirical study that identifies limitations of current MLLMs

and ChartQA dataset and key factors (i.e., recognition and reason-
ing) that contribute to effective visual instructions for MLLMs’
chart understanding.

• A novel data engine encompassing data filtering and data gen-
eration, producing a high-quality dataset and benchmark using
visualization-referenced instruction tuning.

• An MLLM that outperforms existing open-source CQA mod-
els on existing CQA benchmarks and is comparable to the best
commercial models on our proposed benchmark.

2 BACKGROUND OF MLLMS

Recently, LLMs [8, 67] have showcased powerful text generation and
comprehension capabilities. However, native LLMs live in the pure-text
world and cannot process other common modalities such as images
and videos, thereby limiting their application scope [5]. To break this
limitation, a group of MLLMs (e.g., LLaVA [48], Qwen-VL [5], and
GPT4-Vision [3]) have emerged to endow LLMs with the ability to
perceive and understand visual images.
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Fig. 2: A typical architecture of MLLM, consisting of image encoder,
projector, and LLM. represents the concatenation process of image
Ximg and text tokens Xtext.

Inspired by LLaVA [48], current open-source MLLMs adopted a
similar architecture to align the visual and textual features. Figure 2
illustrates the typical MLLM architecture that comprises three modules:
Vision Encoder, Projection Layer, and Large Language Model. Particu-
larly, the Vision Encoder (e.g., CLIP-Vit [61]) extracts a sequence of
visual features from the input image. Then, the Projection Layer (e.g.,
multiple linear layers [48] and querying transformer [40]) transforms
the visual features into the LLM word embedding space, resulting in
compatible visual tokens Ximg for the subsequent LLM (e.g., Vicuna-
1.5 [77]). Finally, the LLM processes the concatenated visual Ximg
and text tokens Xtext, i.e., [Ximg,Xtext], and then autoregressively gen-
erates responses Y. Formally, the language model predicts the response
Y = {yi}L

i=1 conditioned on the multimodal input Ximg,Xtext , where L
means the number of tokens in the response. Therefore, the response is
predicted by maximizing

p
(
Y | Ximg,Xtext

)
=

L

∏
i=1

pθ

(
yi | Ximg,Xtext ,y<i

)
, (1)

where θ is the trainable parameters.
Despite the architectural harmonization, the biggest challenge in

training generic MLLMs is collecting high-quality visual instruction
data, i.e., [Ximg,Xtext,Y]. Visual instructions facilitate the align-
ment of the multimodal (i.e., language-image) space, thus preserv-
ing and fusing the knowledge and abilities in the pre-trained vision
encoder and LLM, empowering the MLLM with image-based con-
versation capabilities. In a general form, visual instructions are
composed of <target image, text task description, text
output>, namely <chart, question, answer> in CQA.

3 RELATED WORK

Vision-Language Models for Chart Understanding. Researchers
have long been committed to developing vision-language (VL) models
with strong capabilities in chart-related tasks (e.g., CQA and chart
summarizing). Previous works fall into two categories: 1) two-stage
approaches that employ vision models to convert charts into data tables
for subsequent processing with language models [15, 19, 43, 54]; and 2)
unified VL models that directly process and interpret the fused chart
and text features in a single integrated phase [44, 55, 57].

The two-stage pipeline struggles with preserving visual information
(e.g., color and spatial location) [43] when performing the chart-to-table
transformation, which inherently limits their applicability to specific
scenarios. For unified models, Matcha [44] integrates mathematical
reasoning and chart data extraction tasks into a pre-trained generic VL
model, Pix2Struct [35], thus excelling at CQA and chart summarizing.
UniChart [55] follows Matcha while collecting more data to undergo
multitask instruction tuning for more chart-related tasks. However,
their limited language model performances pose challenges, especially
in reasoning problems that necessitate numerical calculations [54].

The advent of MLLMs has shifted the paradigm, achieving break-
throughs in visual question answering [4]. Notably, the open-source
generic model Qwen-VL [5] demonstrates superior performance over
all specialized chart models in the ChartQA benchmark [54], especially
those posed by humans as opposed to machine-generated questions.



Despite these advancements, our extensive empirical study has uncov-
ered limitations in the current MLLMs’ ability to handle real-world
CQA tasks, especially those that fall outside of the training data distri-
bution. Rectifying these limitations necessitates the consideration of
the visualization reference model [9] when constructing training data,
which elucidates the practical mapping process from raw data to final
graphical representations. Accordingly, this study contributes to en-
hancing the performance of MLLMs in CQA by integrating knowledge
from the visualization reference process into training data generation
and augmentation.
Enhancing Capabilities of MLLMs. The enhancement of MLLMs
in specific scenarios, such as medicine images and text-dense images,
can be categorized into two primary approaches: model-centric works
that aim to improve the performance and efficiency of vision encoders
or projectors; data-centric works that try to improve the model perfor-
mance by boosting the number and quality of training data. In data-
centric advancements, several studies employ powerful LLMs (e.g.,
GPT-4 [3]) to generate various instruction-format VL tasks, like caption
generation [48]. Another line of studies has explored converting classi-
cal VL task datasets (e.g., COCO [42]) into an instruction-following
format with pre-defined templates. Within this context, to enhance
chart comprehension, ChartLLaMA [24] finetunes LLaVA with 160K
instruction data generated by GPT-4. Similarly, ChartAst [57] crawls
a huge amount of tables from arXiv and then uses tables to gener-
ate charts for large-scale chart-to-table pre-training. ChartAst also
generates QA pairs based on the tables they collected. Despite these
efforts, the factors contributing to efficient instruction data for chart
understanding are still unclear.

Our research seeks to investigate this gap with an empirical study that
revisits the differences in improving model performance using different
types of CQA task data. The results underscore the significance of
integrating complex chart reasoning questions, prompting us to develop
a data engine enriched with real-world chart tasks. Moreover, we have
also made improvements to the model-centric side by tailoring the
training methodology of base MLLMs, initially tailored for natural
images, to suit visualization contexts.
Visualization Datasets and Benchmarks. Datasets form the founda-
tion of model training, and well-structured benchmarks help researchers
evaluate and choose appropriate models for downstream tasks. Spe-
cific to visualization scenarios, current benchmarks mainly focus on
evaluating chart understanding performance via chart-to-table transfor-
mation [54,58], CQA tasks [54,58], and chart summarizing [30,62,66].

ChartQA [54] and PlotQA [58] are representative of the QA datasets
and benchmarks. ChartQA features partially high-quality human-
annotated QA pairs, while PlotQA offers a more voluminous collection
of lower-quality items crafted using templates. Beyond QA tasks,
VisText [66] introduces a comprehensive benchmark, which incor-
porates multi-level and fine-grained chart labeling, covering aspects
such as chart construction, summary statistics, relations, and complex
trends. The primary strength of these datasets is their expansive size
and the carefully crafted templates used for data generation. However,
they have limitations, including a restricted range of chart types, the
challenge of maintaining high-quality questions and answers, and a
tendency to focus excessively on basic data retrieval from the charts.

In the visualization field, real-world image datasets like Beagle [6],
VisImage [18], Vis30K [12], multi-view [14] and composite visual-
izations [16, 22], and dashboards [17, 65], together with practical QA
benchmarks for visual literacy test [21, 36, 60], have been introduced.
The challenge lies in converting them into high-quality instruction data
due to sparse label annotations. Our research draws upon methodolo-
gies that utilize GPT to generate code-format charts and associated
instruction data. Specifically, we aim to guide the data generation pro-
cess with the well-defined chart-task space [36] to contribute a dataset
encompassing the real-world spectrum of chart features and QA tasks,
thereby improving current MLLMs’ chart understanding capability.

4 EMPIRICAL STUDY: REVISITING MLLMS FOR CQA
We conduct an empirical study to revisit the effectiveness of existing
MLLMs for CQA, aiming to identify limitations and glean insights for
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Fig. 3: Comparison of chart distribution between ChartQA [54] and
Beagle [6].

further improvements. The study is informed by the CQA leaderboard1

and recent research [3, 5, 47], where highlights that ChartQA [54]
serves as the primary training and testing dataset for MLLM in chart
understanding. ChartQA encompasses large-scale real-world charts
sourced from online platforms, accompanied by data tables and both
human-authored and machine-generated QA pairs. Nevertheless, in-
depth analyses are imperative to ensure that MLLMs exhibiting good
benchmark performance on ChartQA can reliably transition to real-
world scenarios. In particular, this empirical study aims to address the
following research questions:

• RQ1: How can ChartQA be enhanced to reflect real-world scenar-
ios better? We aim to refine ChartQA to align more closely with
real-world contexts. While the charts in ChartQA are sourced
from online platforms, they do not encompass the entire spectrum
of chart designs, as a recent study [75] identifies a biased distribu-
tion of online charts. Specifically, we will explore the diversity of
chart design and QA pairs, both essential aspects for enhancing
the effectiveness of CQA models.

• RQ2: What makes effective visual instructions for CQA? While
QA pairs inherently serve as instruction data, they include var-
ious question types (e.g., data retrieval and visual). Exploring
which specific QA features can better improve the effectiveness
of visual instructions is notably under-explored. Furthermore, pre-
vious studies [43, 54] suggest that incorporating the chart-to-table
translation task improves VL models’ general chart understanding
performance, while its effect within the context of MLLMs merits
deeper investigation.

4.1 Computational Analysis of ChartQA Dataset

To address RQ1, we conduct computational analyses of ChartQA’s dis-
tribution in terms of chart and QA pairs. We identify distribution bias
by comparing them with practical charts and visual literacy data. Sub-
sequently, we assess the performance of various MLLMs on ChartQA
and contrast these results with performances in real-world scenarios,
emphasizing the impacts of distribution bias on model performance.

4.1.1 Distribution Biases in Chart and QA Pairs

Chart distribution. ChartQA primarily consists of bar, line, and pie
charts sourced from online platforms. These charts have similar visual
styles (e.g., color themes) and lack the coverage of the diverse range of
chart types such as area charts and scatterplots. Moreover, even within
their included chart types, there can be significant differences in fine-
grained chart features compared to practical charts. To investigate these
differences, we utilize Beagle [6] as the control group to compare their
distributions of chart features. Beagle crawls visualizations from the
web using keyword searches and is considered to be comparatively di-
verse among available visualization datasets [75], encompassing charts
from various visualization tools and libraries (e.g., D3 [7] and Chart-
blocks [11]). Specifically, we use the pre-trained CLIP-Vit [61], a
commonly used vision encoder of MLLMs, to extract high-dimensional

1https://paperswithcode.com/task/chart-question-answering
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"To calculate the difference in the monthly 
average earnings per hour of all employees in the 
US between May 2020 and May 2021, we need to 
subtract the earnings per hour in May 2020 from 
those in May 2021.

In May 2020, the earnings per hour were . 
In May 2021, the earnings per hour were .


",



"annotation": "0.59",

$29.42

$30.33 - $29.42 = $0.91
$30.33

"To determine the ratio of political competition to 
political participation, we divide the percentage of 
political competition by the percentage of political 
participation. Political competition:  Political 
participation:  Now, let's divide the 
percentage of political competition by the 
percentage of political participation: 

."



"annotation": "7.02", 

5.9%
0.84%

5.9%/0.84%=6.96

"To ......, we need to divide store C's sales by store B's sales.

, as 

indicated by the blue line on the graph. 

, 

as indicated by the purple line on the graph.

So, 

This means that store C's sales in February 1995 were 
approximately half of store B's sales.", 



"annotation": "approximately 1.0", 

Store C's sales in February 1995 are approximately 5000

Store B's sales in February 1995 are approximately 10000

the proportion of store C's sales to store B's sales in 
February 1995 is: 5000 / 10000 = 0.5


21Recognition error1 Recognition error Recognition errorInference-Numerical error2 Recognition error1 Inference-Knowledge error3

What is the difference in the monthly average earnings per hour of all employees 
in the US between May 2020 and May 2021? please think step by step.

How many times political competition data bigger than political participation? 
please think step by step.

Approximately, what is store C’s total sales as a proportion of store B’s total sales in 
February of 1995?  Please think step by step.

Fig. 4: Three typical categories of failed reasons: recognition error, numerical error during inference, and knowledge error during inference. False
reasoning steps are colored in red, while correct steps are colored in green.

Table 1: Model performance on ChartQA and the collected visual literacy dataset. ChartQA-M and ChartQA-H refers to the machine-generated and
human-annotated set, respectively. Particularly, ChartQA-H is divided into four subcategories for fine-grained analysis.

Model ChartQA-M ChartQA-H LiteracyData Retrieval Compositional Visual Visual-Compositional
LLaVA-1.6-13b 72.16% 70.28% 30.24% 66.10% 10.81% 22.13%
LLaVA-1.6-34b 77.52% 71.49% 44.35% 71.19% 35.14% 35.11%
Qwen-VL-Chat 85.36% 66.67% 23.79% 62.29% 18.92% 25.19%
Qwen-VL-Plus 70.32% 51.00% 24.60% 60.81% 24.32% 24.42%

GPT-4-vision-preview 87.25% 68.43% 25.96% 68.84% 20.85% 41.98%

features from the images. We then project the features into two dimen-
sions with t-SNE [68]. Figure 3 presents the projection results, which
show the distribution bias within specific chart types.

Importantly, chart type serves as a broad categorization, limiting the
utilization of fine-grained chart features in constructing visual instruc-
tions. For instance, number annotations allow MLLMs to recognize
and retrieve data directly. In contrast, when numerical annotations are
absent, MLLMs must approximate data values based on the axes and
positions of visual elements, posing a significantly more complex task.
This highlights the need for considering fine-grained chart features
when formulating CQA datasets, as elaborated in Sect. 5.1.
QA pair distribution. ChartQA comprises two testing QA datasets:
ChartQA-H for human-authored QAs and ChartQA-M for machine-
generated QAs. These QAs are categorized into data retrieval, visual,
compositional, and visual-and-compositional types, as defined in [31].

• Data retrieval: finding the value of the corresponding elements
through the entity name in the chart.

• Visual: leveraging visual channels, such as color identification,
comparison between entities using visual attributes (e.g., which is
rightmost, highest, or largest)

• Compositional: requiring mathematical operations like sum, dif-
ference, and average.

• Visual-and-compositional: blending of visual and compositional.
However, ChartQA does not annotate the question type for each

QA pair, hindering the fine-grained accuracy analysis based on ques-
tion types. To address the issue, we manually labeled the questions
in the ChartQA-H and ChartQA-M test sets, each containing 1250
QAs. Statistics reveal that data retrieval task (1035/1250) dominates
the ChartQA-M set. This distribution likely stems from the limited
performance of the language model used for generation, which re-
stricts ChartQA-M to specific question templates. In contrast, the
human-authored ChartQA-H set features a more diverse distribution,
containing (251) data retrieval, (476) visual, (251) compositional, and
(272) visual-and-compositional types. The diversified distribution mo-
tivates us to conduct a more comprehensive evaluation of the model’s
chart understanding ability across different question types, as detailed
in the subsequent section.

4.1.2 Impacts of Distribution Bias
We further study how the distribution bias identified in the above section
affect the model performance.
Models. Our selected MLLMs include open-source models explicitly
trained on ChartQA: LLaVA-1.6-13b [47], LLaVA-1.6-34b [47] and
Qwen-VL-Chat [5]; and mainstream commercial models: Qwen-VL-
Plus [5], and GPT-4-vision-preview [59]. The commercial models are

accessed through their official APIs.

Evaluation metric. Following existing research [24, 54, 55], we adopt
the widely-used relaxed correctness [54], which requires exact matches
for text responses but allows 5% error for numerical responses.

Prompt settings. The CQA evaluation requires the model to answer
with a single word or short phrase. Following the LLaVA setup for
short answers [46], we prompt the model with "Please answer with a
single word or phrase" for metric evaluation and "Please think step by
step" for zero-shot chain-of-thought (CoT) [70] to investigate the key
and error steps in the model’s reasoning process.

Datasets. Besides ChartQA-H and ChartQA-M test sets, we have
mixed QA pairs from studies on visual literacy [21, 36, 60], resulting in
the creation of a new dataset comprising 131 QA pairs. Visual literacy
QAs are designed to assess an individual’s ability to read, comprehend,
and interpret data visualizations. These are representative examples of
real-world QAs covering most of the chart-task space [36].

Result analysis. Table 1 presents the experimental results, showing
that all MLLMs exhibit a performance disparity between ChartQA-M
and visual literacy. A plausible hypothesis is the uneven distribution
of question types in ChartQA-M. To validate this hypothesis, we dis-
aggregate the performances on different question types in ChartQA-H.
The results unveil significant discrepancies among various question
types. Specifically, all models demonstrate high performances on data
retrieval and visual questions, while their performances notably decline
on compositional and visual-compositional questions. Typically, data
retrieval and visual questions mainly require the ability for chart recog-
nition. In contrast, the compositional questions need chart recognition
followed by calculation and reasoning, heavily relying on MLLM’s
reasoning ability. This confirms the validity of the hypothesis.

To gain deeper insights into the underlying reasons for the issue,
we examine the responses generated by MLLMs equipped with CoT.
Figure 4 illustrates three typical cases, highlighting deficiencies in
three categories: recognition errors, inference errors for numerical
calculations, and inference errors regarding chart knowledge. Multiple
factors contribute to these errors. First, errors often occur for chart
types common in visual literacy but rare in ChartQA, such as stacked
bar charts. Additionally, uncommon questions in ChartQA, such as
accurately determining a range of data values, may lead MLLMs to
struggle to identify the correct range.

Summary. These insights highlight a crucial issue with ChartQA: while
it includes a wide range of real-world images and QAs, biases in chart
and QA distributions constrain its generalizability. This emphasizes
the need for a dataset incorporating a broader variety of chart types and
QAs. Such a dataset can potentially enhance MLLM’s ability to tackle
the complex challenges inherent in real-world scenarios.



Table 2: Results on ChartQA-H test set with models trained on individual and different combinations of training datasets in ChartQA.

Model Data Retrieval Compositional Visual Visual-Compositional
Baseline LLaVA-1.5 24.50% 9.27% 28.60% 13.51%
LLaVA-1.5 + ChartQA-H 32.93% 15.73% 47.25% 8.11%
LLaVA-1.5 + ChartQA-M 31.33% 10.08% 38.77% 8.11%
LLaVA-1.5 + Chart2Table 36.55% 9.68% 47.46% 13.51%
LLaVA-1.5 + ChartQA-H & ChartQA-M 43.37% 15.73% 51.91% 5.41%
LLaVA-1.5 + ChartQA-H & Chart2Table 42.17% 16.94% 51.91% 13.51%
LLaVA-1.5 + ChartQA-H & ChartQA-M & Chart2Table 48.59% 18.55% 54.66% 13.51%

4.2 Instruction Tuning Ablations
To address RQ2, we design a series of ablation studies to examine
the effect of different question types and chart-related tasks on CQA,
aiming to identify effective visual instructions.

4.2.1 Experiment settings
Backbone MLLM: We select LLaVA-1.5 [46] as the baseline because
its training data does not contain a specific chart dataset, making it
easier to study the effect of different training data composition. We
follow the official fine-tuning settings of LLaVA-1.5, where we freeze
the vision encoder and only update the parameters of the projector and
the LLM. Specifically, we employ the Low-Rank Adaptation (LoRA)
[28] strategy to train LLM to reduce the training workload.
Dataset Control: Despite the biased chart distribution with ChartQA,
we utilize it for instruction tuning ablation tests due to its suit-
ability for examining how MLLMs learn from and react to spe-
cific data distributions. In addition to ChartQA-H and ChartQA-M,
each chart in ChartQA is associated with its data table, constitut-
ing a chart-to-table translation task, denoted as Chart2Table. Stud-
ies [43, 54] reveal that Chart2Table has the potential to enhance
chart recognition capabilities, which justifies its inclusion in our ab-
lation study. Specifically, the instruction data for Chart2Table are
structured as <chart, "Please extract the underlying data
table from the given chart", data table>.
Ablation Models: We use the backbone MLLM without fine-tuning
as the baseline. Furthermore, we fine-tune the backbone model with
individual and different combinations of ChartQA-H, ChartQA-M, and
Chart2Table, resulting in a total of six fine-tuned MLLMs.

4.2.2 Results and Analysis
Table 2 shows the results of the ablation experiment of baseline and
the fine-tuned MLLMs on different question types in ChartQA-H test
set. Overall, models fine-tuned with more training data (individual vs.
combinations datasets) achieve higher accuracy. Specifically, the inclu-
sion of the human-generated ChartQA-H dataset substantially enhances
model performance across all question types. In contrast, ChartQA-M
dataset is less effective and mainly improves data retrieval and visual
questions. This difference further underscores the limited impact of
data retrieval questions for tackling CQA challenges and the critical
role of diverse, reasoning-intensive questions over simple recognition
questions. Moreover, Chart2Table serves as an accompanying effective
instruction task if the data tables are available.

In summary, enhancing MLLM’s chart understanding necessitates
focusing on diversity, especially in question types demanding reasoning,
over expanding the volume of data retrieval-focused training examples.

5 DATA ENGINE

Collecting all available CQA data for training an MLLM is inefficient
and cannot address inherent distribution flaws. First, research has re-
vealed the importance of data balance in training a generic MLLM [10].
Without precise labeling, aggregating all data produces a massive
dataset, causing learning inefficiency and training expensiveness of
MLLMs [26]. For instance, LLaVA [48] as a leading generic MLLM
only requires 1223K instruction data, whilst UniChart [55] and Char-
tAssistant [57] use about 6900K and 39.4M chart-related instruction
data. This disparity highlights the impracticality of incorporating all
available chart data into generic MLLMs’ training data. Furthermore,

Table 3: Statistics of existing datasets, only considering the training set
if dataset splits (i.e., train-test) exist. Data counts consider the data
tables and QA pairs associated with images. For example, a chart may
be attached with its data table and two QA pairs, and then it is counted
three times in total.

Dataset Chart tables Chart QA pairs
Statista, OECD, OWID 144,147 679,420
PlotQA 155,082 2,414,359
Unichart 189,792 2,218,468
Beagle 3,972 51
ChartInfo 1,796 21,949
VisText 9,969 0
ExcelChart 106,897 0
Total existing 611,655 5,334,247
Filtered dataset 69,418 68,223

our empirical study has demonstrated the distribution flaws in existing
CQA data, underscoring the necessity of generating new data.

To this end, we opt to design a data engine for a dataset of appropriate
size while encompassing the real-world spectrum of chart features and
QA tasks. The data engine consists of two modules: data filtering
(Sect. 5.1) for efficiently utilizing the existing data and also ensuring
appropriate training cost; and data generation (Sect. 5.2) for optimizing
the data distribution. Finally, we present the obtained visualization-
referenced dataset and benchmark (Sect. 5.3).

5.1 Data filtering
This module is designed to filter representative data from existing CQA
datasets. We first establish principles for what constitutes an appro-
priate chart distribution. Specifically, drawing on the taxonomy of the
chart and corresponding task types outlined by [36] (see Table 4), our
methodology involves analyzing the distribution across the following:

• chart types summarized in visualization literacy papers [21, 36]
(see Table 4 for details);

• fine-grained chart attributes identified in visualization retrieval
tasks [72], e.g., color, trends and layouts; and

• chart attributes that significantly affect MLLMs’ chart under-
standing, i.e., number annotations (existent or absent) and data
grouping (single or multiple).

Given that studies have shown common pre-trained visual feature ex-
tractors (e.g., CLIP-Vit [61]) are not sensitive to fine-grained chart
attributes [72], conventional filtering approaches that sample data in
the pre-trained feature space lead to inhomogeneity in these attributes.
Additionally, most existing datasets lack detailed annotations beyond
coarse-grained chart types (e.g., bar, line, and pie), posing challenges
for stratified sampling. To mitigate this issue, we construct classifiers to
learn those attributes in a supervised manner and then perform stratified
sampling based on the labels predicted by the classifiers.

5.1.1 Image Classifier
As shown in Figure 5 , we build probing classifiers (i.e., two-layer
perceptron) based on the frozen ConvNeXt [71] backbone to accurately
assess the distribution of these fine-grained chart types and attributes.
We collect training data sourced from [72] alongside a manually col-
lected subset. To mitigate the issue of lacking some attribute annota-
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Fig. 5: Illustration of the data filtering process, encompassing classification and sampling. Classification aims to investigate the distribution of existing
datasets across key categorical attributes, including chart types, layout, trend, number annotations, and data grouping. Subsequently, we conduct
sampling based on the fine category.

tions, we manually labeled each image for missing attributes. Due to
the unbalanced nature of chart type and attribute distribution (e.g., num-
ber annotations), we choose to use focal loss [41] as the loss function,
designed to focus on unbalanced image type. Focal loss is defined as:

LFL (pt) =−αt (1− pt)
γ log(pt) ,

where pt ∈ [0,1] represents the estimated probability of class t,αt
represents the scaling factor, and γ represents the modulating factor.
Among them, αt is set by inverse class frequency. Thus, learning
parameters tend to contribute to classes with fewer samples, and γ

assists in up-weighting the loss assigned to poorly-classified examples,
avoiding the possibility that the amount of well-classified samples
dominates the training process. We empirically compare several design
alternatives of backbone models (e.g., CLIP-Vit [61] and ResNet50
[25]) and trainable modules (e.g., linear probe [61]) in Table 5.

Note that not all chart types possess the same set of fine-grained
attributes. For instance, pie charts do not exhibit a trend attribute, so
the trend classifier training will not consider pie charts. We leverage the
trained classifiers to label our collected existing data, providing clear
inspections of the chart attributes and laying the foundation for data
balancing in the subsequent sampling.

5.1.2 Image Sampling and Instruction Data Sampling
Figure 5 illustrates the image sampling process. We employ the
CLIP-Vit [61] and a color extractor [1] to extract the overall feature and
color feature of each image and then concatenate the two feature vectors
to formulate a joint embedding space. Inspired by Bunny [26] and
SemDeDup [2], we cluster images into k clusters via k-means within
the joint embedding space, aiming to group charts with similar features.
To ensure chart attribute balancing, we incorporate stratified sampling
within each cluster. Specifically, we create strata within each cluster
according to predicted chart attributes and further perform sampling
in each stratum. We identify duplicates by constructing an undirected
graph, where edges connect image pairs with cosine similarity above a
specified threshold ε , indicating high feature similarity. We streamline
the process by directly retaining only the image with the lowest cosine
similarity to the stratum’s centroid from each set of semantic duplicates,
thereby effectively reducing dataset size while preserving diversity.
Finally, we manually adjust ε to obtain approximately 69K charts,
ensuring an appropriate training cost.

For instruction data, Sect. 4.2 summarizes the effects of different
components of existing datasets. Drawing on the insights from the
empirical study, we keep the table data of all sampled images for
Chart2Table task and further sample numerical and visual reasoning
questions in their attached QA pairs.

5.2 Data Generation
This module is designed to generate a dataset encompassing real-world
chart types and QA tasks, thus alleviating the distribution bias issue of
existing datasets. Specifically, we refer to the chart-task space types
summarized in visualization literacy research [36] (see Table 4).

With collected tables, former works have explored generating charts
and QA pairs using LLMs [24, 57]. However, they overlook potential

quality distortions arising from the instability inherent in language
model outputs, nor has it considered guiding the generative process
through an informed understanding of the chart space. We harness
LLMs’ in-context learning ability to follow the visualization reference
process [9], ensuring the variety of the resulting charts and thus cov-
ering the chart space. Figure 6 outlines our chart generation pipeline,
which encompasses two phases: Retrieval-Augmented Chart Genera-
tion and Visualization-Referenced Encoding Augmentation. Templates
of prompts constructed for LLM input in this section can be found in
Supplementary Section S1.

5.2.1 Collection and Expansion of Seed Charts

Generating charts begins with aggregating a diverse and high-quality
set of seed examples that cover a wide representation of styles and chart
types. These examples are table-code pairs collected from a variety of
authoritative chart libraries, such as Vega-Lite2, Matplotlib3, Seaborn4,
and ECharts5. Moreover, we collect high-quality table-code pairs from
previous studies [34] and handpick select examples from the web. To
further expand our seed examples, we also gather high-quality table
data from various sources [53,75]. Notably, charts filtered from existing
datasets are not used here, as most of them are not in code format.

As depicted in Figure 6 (left), the expansion process employs the
retrieval-augmented generation (RAG) method [37], which enhances
the accuracy and quality of the generated charts by providing LLMs
with contextually relevant examples during the generation process. To
implement this, we first extract table features to identify and match each
collected table with the most similar tables among existing table-code
pairs. Specifically, following visualization recommendation research
[29, 39, 69], we extract 30 cross-column data features that capture the
relationships between columns and 81 single-column data features that
quantify the properties of each column. These features allow us to
represent the table features of the seed examples in a vector space,
enabling the retrieval of nearest neighbors based on cosine similarity.
When constructing prompts for seed chart expansion, the corresponding
codes of these matched seed examples serve as few-shot examples
alongside the new tables.

5.2.2 Enhancement Through Visual Mapping Variations

To broaden the collection of seed examples, we leverage the LLM to
introduce variations in the visual mappings or encodings of charts. This
phase follows the visualization reference process [9] and is crucial to
encompass a broader array of possible chart presentations and to align
with the diverse distributions of real-world data. We guide the LLM
by specifying which visual mappings each chart type can adopt and
incorporating instances featuring diverse visual encodings in the input
context for reference. For instance, as illustrated in Figure 6 (right), the
LLM is instructed to modify chart elements like number annotations,
groupings, and bar widths and to truncate or invert axes in bar charts.

2https://vega.github.io/vega-lite/examples
3https://matplotlib.org/stable/gallery
4https://seaborn.pydata.org/examples
5https://echarts.apache.org/examples

https://vega.github.io/vega-lite/examples
https://matplotlib.org/stable/gallery
https://seaborn.pydata.org/examples
https://echarts.apache.org/examples
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This approach facilitates generating a richer collection of table-code
pairs by varying data-related encodings, such as the height of bars. The
modified data tables are correspondingly recorded.

5.2.3 Generation of Question and Answer Pairs

We further generate QA pairs based on the enriched set of table-code
pairs, which are expected to be accurate and cover the chart-task space.
Specifically, for each type of chart, we employ the LLM to generate
Q&A pairs by prompting it with tables for numerical information,
code for encoded visual information, and the corresponding chart-task
space as context. We also require the LLM to classify generated Q&A
pairs with category labels following the chart-task taxonomy (e.g., data
retrieval and find extremum), balancing the distribution of different
tasks. During the generation process, we randomly select some QA
pairs for manual checking and ensure they are as accurate as expected.
Reasoning process. Recent studies show that unnecessary step-by-
step training annotation leads to downgraded generalizability and
instruction-following ability. For simple questions (e.g., data retrieval
of bar charts), the reasoning process does not provide useful infor-
mation compared to single-word answers. We only attach reasoning
processes to questions that need numerical calculations and visual ref-
erences. For visual references, we mainly consider visual channels that
are less used in former work, such as the point area of the bubble chart
and the truncated or inverted axis of line charts.

5.3 Visualization-referenced Dataset and Benchmark

Overview of Dataset. Our generated dataset comprises 11 chart types
and 8 task categories, as outlined in visual literacy research [21, 36, 60].
Table 4 illustrates the chart-task space. The generated dataset includes
10,385 table-chart pairs and 51,245 chart-QA pairs. By integrating
the generated dataset with the filtered dataset (shown in Table 3), we
ultimately produce a dataset of 199K, which includes 80K table-chart
pairs and 119K chart-QA pairs. In contrast to earlier datasets that relied
on single sources or template-driven designs, our approach effectively
combines our generated dataset with existing datasets derived from
a wide range of real-world and synthetic sources. This integration
features a diverse array of visual encodings, referencing real-world
charts from multiple sources. We have made deliberate efforts to ensure
an equitable distribution of chart types and QA pairs, with a particular
emphasis on underrepresented chart types and question types in current
datasets, such as range determination and distribution characterization,
to provide a more comprehensive and balanced resource. Detailed chart
and QA examples can be found in Supplementary Section S2.
Benchmark. To establish a benchmark covering the chart-task space,
we meticulously curated an additional 368 table-chart pairs and 736
chart-QA pairs highly representative of our dataset. We focus on
achieving diversity within each chart category, selecting charts with
various visual encodings, and maintaining coverage into chart sub-types.
Additionally, we consider the complexity of the question, aiming for

a wide representation in both the number of entities and the range of
quantities presented.
Metrics. Our dataset is designed to reflect authentic scenarios encoun-
tered in chart-based question answering, and for that purpose, we have
chosen to utilize the GPT for evaluation [49]. This manner is suitable
for our benchmark as it can accommodate a wide range of answer
formats, including ambiguous or long texts. The GPT accuracy metric
compares textual responses to a standard expected answer, ensuring a
match based on semantic equivalence. For numerical responses, we al-
low a tolerance level of 5%, which is consistent with former works [54].
However, this error margin is subject to adjustment in specific scenar-
ios where it is inappropriate. For instance, in cases involving years or
countable quantities, precision is crucial, and as such, absolute accuracy
is demanded, with no error margin permitted.

6 MODEL

To enhance MLLMs’ chart comprehension in real-world contexts, we
consider two design improvements in both the model architecture and
its training. Particularly, we adopt a mixture-of-resolution adapta-
tion strategy [52] for enhanced fine-grained recognition (Sect. 6.1).
Moreover, for a better representation of the chart’s visual feature, we
unfreeze the vision encoder during training and utilize the visualization-
referenced dataset described in Sect. 5 for training (Sect. 6.2).

6.1 Model Architecture

Trainable
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South Africa in 2014?

Fig. 7: Architecture of the MLLM adopted in our work. High-resolution
and normal-resolution features of the input image are fused to facilitate
the efficient recognition of fine-grained features. During the training
phase, vision encoders are unfreezed to enable the adaptation to chart
characteristics.

Base model. We use LLaVA-1.5 [48] as the base model architecture,
which employs CLIP-Vit-334px as the vision encoder, two-layer MLP
as the projector, and the Vicuna-13B [77] as the LLM.



Table 4: The chart-task space of our dataset, which is summarized by the visual literacy research VLAT [36].

Visualization Visualization Task Note of X†

Data
Retrieval

Find
Extremum

Determine
Range

Characterize
Distribution

Find
Anomalies

Find
Clusters

Find
Correlations/

Trends

Make
Comparisons ETC

Line Chart X X X X X
Bar Chart X† X X X

Stacked Bar Chart X† X X X† † Both Absolute Value
and Relative Value

100% Stacked Bar Chart X† X† X† † Only Relative Value
Pie Chart X† X† X† † Only Relative Value

Histogram X† X† X X† Identify the
Characteristic of Bins † Only Derived Value

Scatterplot X X X X X X X X
Area Chart X X X X X

Stacked Area Chart X† X X X X† † Both Absolute Value
and Relative Value

Bubble Chart X X X X X X X X

Treemap X† X† X† Identify the Hierarchical
Structure of Dataset † Only Relative Value

High-resolution input by mixing vision encoders with tokens com-
pression. The employed two-layer MLP effectively connects the fea-
ture space of vision encoders and LLMs but results in visual tokens
that positively correlate with the image resolution. For instance, CLIP-
Vit-L-14 results in 5,329 tokens for a 1,022×1,022 resolution image, as
each token corresponds to a 14×14 image patch [52], which is compu-
tationally expensive for MLLMs. The popular query-based strategy for
implementing high-resolution input, QFormer [40], requires large-scale
pre-training to achieve vision-language alignments, which is impracti-
cal for visualization scenarios as high-quality data is scarce. Therefore,
we adopt a resolution-adaptation strategy [52] to improve the reso-
lution while supporting training on normal scale data. The strategy
embeds high-resolution features into the low-resolution features via
adapters, thus reducing visual feature tokens. Specifically, following
the settings of LLaVA-HR [52], we integrate CLIP-ViT-L [61] and
CLIP-ConvNeXt [50] as a mixture of vision encoders and then mix
their features with an adaptation strategy, thus maintaining control over
the length of the visual token sequence. The resolutions of ViT and
CNN are set to 448×448 and 1,024×1,024, respectively.

6.2 Training Settings
Unfreezing the vision encoders. Former works [24, 45, 48] choose to
freeze the vision encoder in the whole training process as the pre-trained
CLIP is already good at capturing features of natural images. Their
MLLM training target is aligning the features extracted by CLIP to the
LLM embedding space by tuning the projector and LLM. However,
former research [72] has found that CLIP performs much worse in visu-
alization images, as its pre-training corpus has a relatively small amount
of charts with coarse annotation, leading to limited chart recognition
ability without further tuning. Unfreezing CLIP’s parameters enables
better adaptation to chart features and improves the overall performance
of MLLM’s chart understanding for improved chart recognition ability.
Training data. We skip the pre-training process and directly leverage
the initial projector weight of LLaVA-HR [52] to conduct instruction
tuning. Our study aims to improve general MLLM’s chart compre-
hension ability. Therefore, our training data consists of two parts: the
665K original instruction tuning data of LLaVA-1.5 and the 199K
chart-related data described in Sect. 5.3.
Hyperparameters settings. AdamW [33] is used as the optimizer,
and the learning rate (LR) and the global batch size are set to 2e-5 and
128, respectively. The training epoch is set to 1. The LR scheduler is
cosine decay, with a warmup ratio of 0.03. The training is running on
16×NVIDIA A800 for approximately 19 hours.

7 EVALUATION

We first present the accuracy of our classifier to show its effectiveness
in measuring the chart distribution. Then, we compare our model with
previous works in traditional benchmarks and our benchmark. Also,
we provide a group of ablation studies to show the effectiveness of our
data engine.

Table 5: Test classification performance of our proposed model on the
dataset, comparing design choices about backbone models and loss
functions. Bold numbers indicate the highest metric value.

Models Chart
Type

Number
Annotation

Data
Grouping Trend Layout

ResNet50+Linear Probe 90.4 86.8 85.8 75.2 95.1
ResNet50+Focal Loss 90.6 84.3 87.0 72.9 94.1
CLIP-Vit+Linear Probe 93.0 87.6 92.7 70.8 94.4
CLIP-Vit+Focal Loss 92.7 89.7 93.8 72.2 95.3
ConvNeXt+Linear Probe 93.7 90.6 89.2 75.9 96.2
ConvNeXt+Focal Loss 94.3 92.4 91.3 75.8 97.7

7.1 Chart Attributes Classification
We compare the performance of classifiers with different backbones
(i.e., ResNet50 [25], ConvNeXt [50], and CLIP-Vit [61]) and trainable
modules (linear probe [61] and two-layer MLP with focal loss [41]).
Table 5 lists each attribute’s macro F1 score, showing that ConvNeXt
consistently outperforms other backbones. Therefore, we adopt the
ConvNeXt designated focal loss, which consistently performs well.

7.2 Comparison to the State of the Art
7.2.1 Benchmarks
ChartQA. The dataset information, the relaxed accuracy metric, and
the prompt for short answers have been illustrated in Sect. 4.1.2.
ChartQA’s training set is included in our training data.
Chart-to-table. For evaluating MLLM’s recognition ability towards
chart, we follow the evaluation framework of DePlot [43] and report
the F1 scores of chart-to-table data extraction, which measures the
similarity of tables by comparing their structure and values but is
invariant to column/row permutations.
Our benchmark. For evaluating MLLM’s performance across real-
world charts and task distribution, we adopt the benchmark and its
corresponding metric established in Sect. 5.3.

7.2.2 Baselines
We choose and organize MLLMs into two groups for our comparison
experiments. For traditional benchmarks, we benchmark our models
against traditional chart-specialized models, including Chart-T5 [54],
Donut [32], Matcha [44], Unichart [55], ChartLlama [24], and Char-
tAssistant [57]. For our benchmark, which tests for tasks not typically
included in previous chart-specific model training, we compare with
SOTA generic models, including LLaVA1.6-34b [46], GPT-4-vision-
preview [59], and Qwen-VL-Plus [5].

7.2.3 Results
Table 7 presents the results of our model’s performance against other
models. It demonstrates that our model consistently outperforms the
baseline across all tasks. Particularly, we surpass the current leading
models while utilizing significantly less data, showcasing our data



Table 6: Results on our benchmark. Bold and underlined numbers indicate the highest and second-highest metric values, respectively.

Models Data
Retrieval

Find
Extremum

Determine
Range

Characterize
Distribution

Find
Anomalies

Find
Clusters

Find
Correlations/

Trends

Make
Comparisons

LLaVA1.6-34b 37.69 35.83 3.85 20.00 21.43 27.27 51.95 48.84
GPT-4-vision-preview 56.92 60.96 30.77 36.67 42.86 36.36 68.83 56.40

Qwen-VL-Plus 43.08 21.39 11.54 10.00 7.14 13.64 41.56 34.30
Our model 46.15 53.48 35.57 30.00 42.86 36.36 64.94 58.14

Table 7: Results on traditional benchmarks (i.e., ChartQA and Chart-to-
table). We compare our work with the previous open-source models and
present results of ablations on data, training, and model design.

ChartQA
Model Aug. Human Average Chart-to-table

Chart-T5 74.4 31.8 52.95 37.5
Donut 78.1 29.8 53.95 38.2
Matcha 88.9 38.8 63.85 39.4

Unichart 87.8 43.9 65.85 91.1
ChartLLaMa 90.4 48.9 69.7 90.0

ChartAst-D (39.4M CQA data) 91.3 45.3 68.3 92.0
ChartAst-S (39.4M CQA data) 92.0 58.2 75.1 91.6
No Unfreezing vision encoder 77.4 47.1 62.3 44.6

No High Resolution 88.6 55.8 72.2 87.9
No Filtered Data 91.5 60.9 76.2 90.9

No Generation Data 92.6 62.7 77.65 91.2
Our model (199K CQA data) 93.6 63.6 78.6 91.8

filtering and generation effectiveness. Moreover, the ablation studies
present the effectiveness of unfreezing vision encoders and mixing
vision encoders for high-resolution.

Table 6 showcases comparative results on our benchmark, illustrat-
ing that our model outperforms baseline models in most tasks. These
results highlight our model’s strong performances, which are evident in
frequently encountered tasks like data retrieval and less common tasks
such as determine range and characterize distributions. Nevertheless,
current MLLMs, including our model, still exhibit subpar performance
in specific tasks. For instance, find anomalies and find clusters, associ-
ated with scatterplots and bubble charts, remain challenging. Both chart
types encode data using points, which necessitates extremely powerful
recognition capabilities to discern and correlate data-visual mappings
at a fine-grained level due to the small size of the visual "point." This
underscores the difficulty of certain CQA tasks that demand precise
recognition of small graphical elements, particularly when addressing
the challenge of just-noticeable-difference problems [23, 51]. In con-
trast, for tasks like find correlations/trends of scatterplots or line charts,
the answer space is limited (e.g., positive correlation and negative corre-
lation), and they can be inferred based on the overall feature of images
rather than specific small areas of images.

7.2.4 Cases
Figure 1 shows the comparison of state-of-the-art MLLMs (Qwen-VL-
Max [5] and GPT-4-vision-preview [59]) with our model on common
difficult chart questions requiring a fine-grained understanding of vi-
sual encodings. In the first example, the line chart has an inverted
y-axis, which confuses the other models. The second bar chart example
contains a truncated y-axis that introduces recognition difficulty. In
the third bubble chart example, other MLLMs cannot understand the
mapping between the bubble size and the number of employees. In the
last example, GPT-4-vision-preview and Qwen-VL-Max also misun-
derstand the meaning of the stacked area. In comparison, our model
can successfully cope with these questions because of its enhanced
understanding of visual encodings.

8 DISCUSSION

Visual encoder enhancement. Our research finds that unfreezing the
vision encoders substantially enhances the chart recognition capabili-
ties of MLLMs, showing the original CLIP-Vit’s under-performance in
chart images [72]. An intuitive alternative design is replacing CLIP-Vit

with an encoder pre-trained specifically on chart images. For example,
ChartInstruct-LLaMA [56] substitute the CLIP-Vit in LLaVA with the
UniChart vision encoder [55]. However, the researchers did not ob-
serve model performance improvements compared to Unichart. This
highlights the superiority of generic vision encoders, which learn robust
image interpreting capabilities (e.g., localization) from millions of nat-
ural images. Moreover, understanding some real-world charts requires
broad vision knowledge. For instance, infographics may incorporate
natural images to depict certain chart elements [73] vividly. Borrow-
ing LLaVA-Med’s lesson [38] in initializing CLIP-Vit, developing a
visualization-domain CLIP with enhanced basic chart interpretation
performance is a promising future work.
Better textual representation for chart understanding. Aligning the
language model with the vision encoder is crucial, and dense image
representations, such as high-quality captions, play an essential role
in this process. Typically, data tables are used for charts due to their
abundant information. However, the intrinsic limitation of the data
table is the loss of all visual information. While captions for charts
keep certain visual information, the numerical information is hard to
keep completely. Vistext [66] has explored the use of scene graphs
as a potential alternative to data tables. Despite this, the choice of
data format for a language model is a significant consideration, and it
remains to be thoroughly investigated whether the scene graph format
can effectively integrate within the context of MLLMs.
Insights on applying MLLMs to complex reasoning visualization
tasks. Our research finds that current MLLMs still face challenges in
analytical tasks (e.g., find anomalies and determine range). Recently,
referential question-answering [13, 76] has been shown to benefit the
comprehension of complex spatial relationships. It requires annotating
bounding boxes and arrows in images and referring to these elements
in questions. This task was not considered in our training data be-
cause of the lack of chart data with referential annotations. However,
referential QAs are common in real-world visual analytics and poten-
tially beneficial for tasks like find anomalies. For example, we can use
bounding boxes to label anomaly points or highlight a range of data
elements, boosting MLLMs’ understanding of relevant tasks. We place
the exploration of referential and other possible complex QA formats
tailored for charts in future work. Furthermore, end-to-end MLLM
outputs inherently pose uncertainty. Incorporating golden tables and
code of charts with MLLM for interaction applications may be robust
in complex visual analytics scenarios.

9 CONCLUSION

This study addresses significant challenges in advancing MLLMs’ per-
formances in CQA. An empirical study is conducted to investigate the
limitations of existing MLLMs and CQA datasets. We identify a critical
need for fine-grained consideration of visual encodings and QA tasks,
which current data collection and synthesis methods overlook, leading
to unbalanced data distribution and inconsistent data quality. With a
two-stage data engine of filtering-then-generation, we filter existing
datasets and enlarge them through LLM-based generation techniques,
ensuring a broader range of high-quality data that captures the charac-
teristics of charts. By incorporating a mixture-of-resolution adaptation
strategy and unfreezing the vision encoder during model training, we
significantly improve the performance of our MLLM on CQA tasks.
Experiments demonstrate that, even with a more compact dataset, our
model surpasses SOTA CQA models, highlighting the efficacy of our
methodology. We also contribute a benchmark for future advancements
in MLLMs for CQA tasks.
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