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Fig. 1: The interface of ParetoTracker contains five visualization components: (A) quality line charts, (B) stacked bars for generation
statistics, (C) decision and objective space scatterplots for selected generations, (D) the lineage view, and (E) the evolutionary operator
view.

Abstract—Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful tools for solving complex optimization problems
characterized by multiple, often conflicting, objectives. While advancements have been made in computational efficiency as well as
diversity and convergence of solutions, a critical challenge persists: the internal evolutionary mechanisms are opaque to human users.
Drawing upon the successes of explainable AI in explaining complex algorithms and models, we argue that the need to understand the
underlying evolutionary operators and population dynamics within MOEAs aligns well with a visual analytics paradigm. This paper
introduces ParetoTracker, a visual analytics framework designed to support the comprehension and inspection of population dynamics
in the evolutionary processes of MOEAs. Informed by preliminary literature review and expert interviews, the framework establishes a
multi-level analysis scheme, which caters to user engagement and exploration ranging from examining overall trends in performance
metrics to conducting fine-grained inspections of evolutionary operations. In contrast to conventional practices that require manual
plotting of solutions for each generation, ParetoTracker facilitates the examination of temporal trends and dynamics across consecutive
generations in an integrated visual interface. The effectiveness of the framework is demonstrated through case studies and expert
interviews focused on widely adopted benchmark optimization problems.
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Multi-objective optimization problems frequently emerge in various
decision-making scenarios such as engineering design [42], environ-
mental planning [3], and artificial intelligence [65]. Unlike single-
objective optimization where the goal is to optimize a single criterion,
multi-objective optimization considers more than one objectives simul-
taneously. Since the multiple objectives are often conflicting, improving
the performance of one objective might adversely affect others. Conse-
quently, the solution to these problems is not a single optimal point but
a set of feasible solutions, termed a Pareto front. On this front, each so-
lution is non-dominated, indicating that no single solution outperforms
others across all objectives consistently.



To address this complexity, the development of multi-objective evolu-
tionary algorithms (MOEAs) has been instrumental. These algorithms
leverage evolutionary computation techniques to mediate among the
varying objectives [49]. MOEAs have emerged as a pivotal approach
for solving multi-objective problems over the past decades, especially
noted for their capability to manage complex objective functions and
to produce a diverse set of solutions in a single algorithm run. The
essential mechanism of MOEAs draws inspiration from natural evolu-
tion, where only the fittest solutions in terms of optimization objective
functions are preserved [60]. In each generation of the evolutionary
process, a population of parent individuals1 are selected to generate off-
spring individuals through crossover/mutation operations. Thereafter,
an environmental selection step filters these individuals, retaining only
those with the highest optimization fitness for the next generation.

Despite the efficacy of MOEAs in resolving complex optimization
challenges, their operations often remain opaque, which functions as
black-boxes to human users [55]. In the realms of evolutionary comput-
ing and visualization, efforts have been made to uncover patterns within
optimal solution sets [17]. Nonetheless, facilitating user engagement
and understanding of the dynamics in evolutionary processes remains
largely unexplored, particularly considering the complex evolution
strategies employed by various MOEAs [54, 56]. Conventional meth-
ods of reflecting solution characteristics across generations typically
involve numerical quality indicators [30], yet a detailed explanation of
the evolutionary operations across generations is essential for a com-
prehensive understanding of how solutions are evolved towards optima.
Such insights could empower algorithm developers and practitioners to
identify the operational successes or failures of an algorithm as well as
gain insights that cannot be gleaned solely through aggregated quality
indicators.

The last decade has seen the visualization community successfully
apply the visual analytics paradigms to explain complex algorithmic
processes, thereby enhancing model transparency [20, 28, 58, 62]. We
posit that this paradigm is equally applicable to elucidating the evolu-
tionary dynamics within MOEAs. In this paper, we introduce a visual
analytics framework, ParetoTracker, designed to facilitate the under-
standing and inspection of population dynamics in the evolutionary
processes of MOEAs. Drawing from an extensive review of relevant
literature and collaboration with domain experts in evolutionary com-
putation, we have derived analytical tasks that inform the visualization
and interaction design in a hierarchical manner. By employing the
“overview+detail” scheme, ParetoTracker utilizes a multi-level design
that exposes the evolutionary progress across generations from three
perspectives: the aggregate measures and statistics of solution sets,
cross-generational tracking of individuals and their lineages, and in-
depth analysis of evolutionary operations between successive genera-
tions. The effectiveness of ParetoTracker is demonstrated with case
studies and expert interviews on benchmark problems commonly uti-
lized in the MOEA field.

In summary, our contributions include:
• A visual analytics framework, ParetoTracker, for comprehending

and inspecting the dynamics of individuals among generations in the
evolutionary processes of MOEAs;

• A suite of visual inspection and exploration methods as well as
designs to highlight salient evolutionary patterns among generations;

• Case studies and expert interviews on established test problems to
demonstrate effectiveness of the framework.

2 RELATED WORK

Our research addresses the challenges involved in examining and inves-
tigating the evolutionary processes in MOEAs. This section provides
a review of existing literature on the application of visualization tech-
niques in evolutionary multi-objective optimization algorithms as well
as explainable AI.

1To facilitate the explanation in this paper, the terms “individuals” and
“solutions” are used interchangeably when discussing evolutionary processes in
the context of MOEAs.

2.1 Visualization in Evolutionary Multi-objective Optimiza-
tion

Visualization is critical in evolutionary multi-objective optimization
due to the complexity of decision and objective spaces, typically ex-
ceeding two dimensions. High-dimensional visualization techniques
are required to represent decision and objective vectors associated with
solutions, such as projection techniques [25, 37, 52], parallel coordi-
nates plots [24] (PCPs), and scatterplot matrices [4]. Smedberg and
Bandaru [45] propose an interactive visualization environment using
linked scatterplot and PCP as the central representation for solutions.
Tušar and Filipič’s study [50] on high-dimensional visualization meth-
ods highlights their pattern preservation capabilities. They found that
projection techniques can support large-scale solution sets and allow
simultaneous comparison of multiple sets. However, these techniques
may not directly reflect distribution patterns due to potential distortions
and two-dimensional result information loss.

The optimization community has also developed specialized tech-
niques for solution set visualization. He and Yen [19] introduce a 2-D
radial system for objective vectors. The iSOM method [41, 61] im-
proves interpretability of self-organizing maps. 3D-RadVis [23] shows
solution distributions and Pareto front convergence within a single visu-
alization. PalleteViz [47] and PaletteStarViz [46] highlight geometric
properties and constraint boundaries closeness in solution sets.

In additional to the static visualization of algorithm outputs, recent
efforts have encompassed the visualization of the evolutionary pro-
cesses to illustrate the dynamics of the algorithms. De Lorenzo et
al. [10] and Walter et al. [54, 56] employ multi-dimensional scaling
(MDS) to visualize the search trajectory within the decision space for
single- and multi-objective optimization problems, respectively, which
enables the exploration of complex decision space landscape. In the vi-
sual analytics community, VisEvol [8] illustrates the internal crossover
and mutation mechanisms in evolutionary algorithms in the context of
optimizing machine learning parameters. Huang et al. [22] propose a
comparative analysis framework that utilizes timelines and proximity
graphs to investigate the similarities between different algorithm runs.

As such, a large body of research has been dedicated to visualizing
solution sets and the dynamics of generations. Nonetheless, a limitation
among these methods is their static nature, which offers minimal interac-
tive capabilities. Moreover, these approaches often fall short in offering
comprehensive tools for detailed analysis of evolutionary processes
at varying levels of granularity. To address this gap, our framework
enhances analytical capabilities, enabling evaluations from aggregated
metrics down to detailed, fine-grained evolutionary operations.

2.2 Visual Analytics in Explainable AI
Over the last decade, a number of surveys [20, 28, 58, 62] have sum-
marized advancements in visual analytics applied to machine learning
models. Specifically, the visualization community has proposed various
techniques and frameworks for “opening the black box” of machine
learning models [2, 15]. Work from Muhlbacher et al. [39] summarizes
the strategies for presenting information and integrating user controls
in black-box models. Kim et al. [27] introduce the per-iteration visual-
ization environment (PIVE) to provide insights and enable interactive
control in the intermediate iterations. In addition to general method-
ologies, certain studies have concentrated on providing explanations
for white-box models, including tree models [33, 34, 51, 66], rule-based
representations [38], and linear models [14, 35, 59].

With the evolution of large-scale models such as neural networks,
there is a growing necessity to illustrate their training and prediction
processes. Usually, the training progress is depicted through statistical
charts on a per-iteration basis, which shows key performance metrics
like loss or accuracy values [7,32,36,43,57]. Moreover, there is a body
of work dedicated to examining these evolutions through model- or
task-specific visualizations, such as DeepTracker [31] for convolutional
neural networks, DQNViz [57] for deep reinforcement learning, and
GAN Lab [26] for deep generative models.

In summary, the field of explainable AI has witnessed significant
research efforts in elucidating the internal mechanisms of complex
models. Drawing inspiration from the paradigm of opening black box
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Fig. 2: (A) An example of multi-objective optimization problem. (B) The
general evolutionary computing pipeline.

models characterized by their opaque behaviors, our work focuses
on the MOEA domain where the evolutionary processes are difficult
to comprehend by human analysts. We tend to uncover the complex
evolutionary behaviors hidden in their low-level operations, which
provides a more detailed perspective to complement the commonly-
used aggregated quality indicators [30].

3 BACKGROUND

This section presents a preliminary overview of MOEAs to establish
a foundational understanding of the terminology and key components
employed in the algorithms.

Multi-objective Optimization. The multi-objective optimization prob-
lem can be formulated as minimizing a series of objective functions:

min f(x) = ( f1(x), f2(x), . . . , fm(x)) (1)

where x is an n-dimensional decision vector x = (x1,x2, . . . ,xn) in the
decision space in Rn, and the function evaluation of x on m objective
functions compose the objective vector in the objective space in Rm,
denoted as f(x), Fig. 2 (A). Given that the objectives often show con-
flicts, e.g., adjusting x to minimize the value on f1(x) may increase
the outcome on f2(x), it is unfeasible to find a single solution that
simultaneously minimizes all objectives.

For two solutions x1 and x2, x1 is said to dominate x2 (termed
x1 ≻ x2) if and only if f(x1) is no worse than f(x2) on all objectives
and strictly better in at least one objective. A solution x is deemed
Pareto optimal if there is no other solution in the objective space that
dominates x. The set of all Pareto optimal solutions forms the Pareto
Set, while the corresponding objective vectors of these solutions create
the Pareto Front. Given such definitions, the primary goal of solving
multi-objective optimization problems is to obtain the Pareto.

It should be noted that for benchmarking purpose, some artificial test
problems offer reference sets that contain numerous objective vectors
sampled near the Pareto fronts, Fig. 2 (A). This allows comparisons of
solutions from certain algorithms with the reference set to assess the
performance of the algorithms.

Multi-objective Evolutionary Algorithms. Among the various strate-
gies for solving multi-objective optimization problems, evolutionary
algorithms stand out as one of the most efficient representatives to
harvest a solution set in a single run while preserving diversity and
convergence [29]. Starting from a random sample set drawn from
the decision space, the MOEAs feature multiple major iterative loops,
referred to as generations. A loop comprises a fixed number of evo-
lutionary steps, called operators, to drive a population of candidate
individuals towards the Pareto front. In the context of MOEAs, each
individual corresponds to a solution that encompasses a decision vector.

Shown on the right side of Fig. 2 (B), a typical pipeline of an
evolutionary algorithm starts from an initialized population P(1) =
{p1, p2, . . . , pµ} of size µ , where the i-th individual pi = (xpi , fpi) is
composed of the decision vector and the corresponding objective vec-
tor of the solution. In the iterative evolutions, the k-th generation
produces a new population of solutions, denoted as P(k), as the evolu-
tion outcome. The pipeline inside generation k involves the following
operators:

• Mating. To begin with, the individuals in P(k−1) are firstly divided
into two sets: a mating pool MP(k) and a reserved set R(k). Those
individuals in MP(k) are then paired into various mating pairs:

M(k) = {(pi, p j) | pi, p j ∈ MP(k), i ̸= j} (2)

where pi and p j are parents for evolution in the following steps. The
number of pairs is denoted as λ . Note that those reserved individuals
in R(k) will not join the crossover and mutation operations.

• Crossover. In this step, each mating pair (pi, p j) generates two off-
springs by combining characteristics of the parents’ decision vectors,
namely, xpi and xp j . All the 2λ new offsprings form an offspring set

O(k) = {oi|1 ≤ i ≤ 2λ} (3)

where oi = (xoi , f(xoi)) represents the corresponding decision and
objective vectors of the offspring.

• Mutation. A random subset O′(k) of the offspring set O(k), O′(k)⊆
O(k), is selected, and all individuals in O′(k) will be mutated by
applying perturbation operations to the decision vectors, resulting
in a mutated offspring set Õ′(k). In other words, the remaining
offsprings O(k)−O′(k) are not mutated.

• Environmental Selection. To determine the optimal individual solu-
tions, a large joint population Q(k) is constructed by joining various
population sets from previous steps:

Q(k) = R(k)∪MP(k)∪ Õ′(k)∪ (O(k)−O′(k)) (4)

This implies that all the parental individuals (either reserved or se-
lected for mating) from the previous generation, along with their
crossover and mutated offsprings, are subject to a competition against
one another based on certain selection criteria. Such criteria usually
involve measures established on individuals’ objective vectors to
assess their dominance and diversity [19,29]. Individuals demonstrat-
ing a higher contribution to the overall population through optimized
objective values or enhancement of the Pareto front coverage will
be prioritized. Consequently, the best µ individuals that prevail in
this selection process form the population P(k) as the output of the
current generation k.

The iterative process stops when a predefined termination criterion
is satisfied, such as reaching a maximum number of generations. While
MOEAs share the abovementioned pipeline for population evolution,
they diverge in their specific implementations of selection, crossover,
mutation, and environmental selection operators. This divergence in
design choices constitutes a primary area of research and development
in the evolutionary computation community.

4 DESIGN OVERVIEW

Leveraging the core principles of MOEAs, we propose a visual analytics
framework designed to inspect and explain the evolutionary processes
at play within these algorithms. This section outlines the requirements
drawn from literature review and collaborative efforts with domain
experts in evolutionary computing. Analytical tasks supported by the
framework are then derived based on these established requirements.

4.1 Requirement Analysis
To accurately identify the requirements from the MOEA domain per-
spective, we reviewed various surveys [16, 21, 29, 49, 67] and method-
ological studies [1, 10, 17, 54–56] focused on evolutionary process
dynamics and visualization in MOEA. This review helped identify
potential research gaps. To validate and deepen our understanding,



we interviewed two evolutionary computing domain experts, E1 and
E2. E1 has over a decade of research experience in MOEAs and their
engineering design applications, while E2, a senior PhD student spe-
cializing in multi-objective optimization and reinforcement learning,
extensively uses evolutionary algorithms. The interviews began with
discussions about their MOEAs application practices and experiences
with using visualizations to evaluate solution sets. We then discussed
the challenges they faced with existing visualization tools and refined
the open research questions identified during the literature review. The
identified gaps are primarily in two areas:

• Limited Native Visualization for Processes. While widely-used
MOEA toolkits [6, 48] incorporate a range of axis- or projection-
based visualization techniques for corresponding solution sets from
single generations, the process of manually plotting each generation
involved in the evolutionary processes proves to be tedious. More-
over, it does not facilitate the examination of dynamics of individual
solutions or the trends in populations across iterations due to difficul-
ties in generation-wise comparison.

• Lack of Inspection Support for Evolutionary Operators. Another
significant limitation in existing toolkits is the absence of visualiza-
tions that delve into the level of evolutionary operators. For a detailed
analysis of the algorithms, it is essential to explore the mutation and
selection operations of specific individuals as well as links to their
corresponding parents.

Beyond the two practice gaps, we discussed challenges that hinder
the development of tools to bridge these gaps. These challenges fall
into three main categories. First, the massive number of individuals
involved in the entire evolutionary process can lead to severe visual
clutter when using standard visualization techniques. Second, juxtapos-
ing plots from all generations does not assist in identifying temporal
patterns or insights due to the typically lengthy iterative process involv-
ing hundreds or thousands of generations. The complexity increases
when multiple levels of data abstraction, such as the overall statistical
level [30], generation level, and individual level, are involved simulta-
neously. Additionally, the varied mechanisms of evolutionary operators
among different algorithms make developing unified approaches to
assess detailed computation processes difficult. Designing different
visualizations for each algorithm can be unrealistic and impractical.

The discussions of gaps and challenges mentioned above yielded
essential requirements that our framework should address, ensuring it
effectively caters to the needs of researchers and practitioners in the
evolutionary computation domain:

• R1: Adopt Quality Measures as an Entrance Point. Using aggre-
gated quality measures as a means to comprehend the performance
of MOEAs forms a fundamental basis for algorithm assessment [30].
E1 suggested that these measures could serve as high-level indicators
of potential issues within the populations, thereby prompting a more
in-depth analysis.

• R2: Utilize Multiple Levels of Data Granularity. Various lev-
els of data granularity, including measure-level, generation-level,
solution-level, and operator-level, coexist in the assessment of evolu-
tionary processes. Integrating different levels of granularity into the
same environment can facilitate a more comprehensive inspection,
encompassing coarse-grained numerical indicators and fine-grained
evolutionary operations.

• R3: Locate and Connect Critical Evolution Behaviors. Building
upon the second requirement, the experts emphasized the signifi-
cance of identifying representative trends and notable changes across
generations. E2 noted the potential for linking observed patterns at
the higher level to corresponding detailed evidence at a more granular
level, enhancing the depth of analysis.

• R4: Provide Adequate Abstraction of Operators. In addition to
the challenge of inspecting evolutionary operators, it is crucial to
address the need for visualizing diverse implementations of opera-
tors. Since MOEAs can vary significantly in their operator design,
particularly regarding environmental selection, developing a versatile

visualization protocol that accommodates various operator designs is
essential for broad applicability.

4.2 Analytical Tasks

Building on the identified research gaps and requirements, we have
distilled the following analytical tasks to guide the framework design:

T1: Understand Overall Quality Measures. Quality measures serve
as the primary and most frequently-used indicators for experts and prac-
titioners, which provide a coarse-grained overview of the distribution
and performance of solutions in the objective space. This involves:
• Assessing the solution set quality in a specific generation; (R1, R2)
• Identifying trends within these measures as well as salient changes.

(R1, R3)

T2: Explore Dynamics of Individuals among Generations. At a
more granular level, it is essential to uncover the quality of individual
solutions and their inheritance relationships across generations:
• Examining the distribution of solutions across generations and the

quality of individual solutions; (R1, R2)
• Tracing the lineage of individuals through multiple generations. (R3)

T3: Inspect Detailed Evolutionary Operations. At the most detailed
level of analysis, there is an interest in understanding the specific actions
of evolutionary operations, including:

• Analyzing the behaviors of evolutionary operators; (R3, R4)
• Investigating how an individual from an older generation evolves in

the subsequent generation. (R3, R4)

5 VISUAL ANALYTICS FRAMEWORK

Based on the identified research challenges, requirements, and analyt-
ical tasks, we introduce ParetoTracker, a visual analytics framework
designed to illustrate the dynamics of population generations within
evolutionary processes of MOEAs with three main components:

Performance Overview and Generation Statistics (T1). As the ini-
tial phase of the visual exploration pipeline, this component provides
visual representations of algorithm performance alongside statistics of
individuals across all generations, Fig. 1 (A, B). Such design enables
analysts to gain a comprehensive understanding of the evolutionary pro-
cess, identify trends, and discover significant patterns in the measures,
thereby guiding further detailed analysis in the following components.

Visual Exploration of Individuals among Generations (T2). After
identifying notable sequences of generations in the overviews, detailed
information regarding decision and objective vectors is presented in the
main workspace of the interface, Fig. 1 (C). This area facilitates lin-
eage tracing and comparative analysis, supported by an accompanying
lineage view shown in Fig. 1 (D).

In-depth Visual Inspection of Operators (T3). Analysts are allowed
to expand the details between two consecutive generations. An evolu-
tionary operator view, Fig. 1 (E), is provided to depict the intricacies
of mating, crossover, mutation, and environmental selection operations
on a per-individual basis, thereby offering a nuanced perspective on the
evolutionary mechanisms at play.

5.1 Performance Overview and Generation Statistics

In this component, a suite of quality measures, along with correspond-
ing visualization modules, is utilized to enable a comprehensive analy-
sis of the generations (T1, R1). Additionally, statistics regarding the
type of evolutionary operations are provided to offer insights into the
evolutionary processes occurring in each generation.

Generation-level Quality Measures. Drawing from established lit-
erature on the quality assessment of solution sets in multi-objective
optimization [30], the following four quality measures have been se-
lected to evaluate generations. These measures fall into two categories:
aggregated measures, which assess multiple aspects of quality simulta-
neously, and specialized measures, which focus on a specific aspect.



• Inverted Generational Distance (IGD) and Hypervolume (HV): IGD
and HV are among the most frequently-used aggregated measures in
the MOEA literature by simultaneously evaluating both convergence
and diversity. IGD calculates the average distance from the solutions
in the population to the points in the reference set in the objective
space, whereas HV quantifies the volume of the region dominated by
the population relative to a predefined point in the objective space. A
lower IGD or a higher HV value signifies a population with superior
convergence and diversity.

• Spacing (SP) and Maximum Spread (MS): In contrast to the aggre-
gated quality indicators, SP and MS focus on specific aspects of the
quality of solution sets. SP computes the uniformity of the solutions
by measuring the variance in distances between them, with a larger
SP value indicating a less uniform distribution of solutions. MS
evaluates the extent of the solutions across each objective, with a
larger MS value denoting a broader spread of solutions.

As depicted in Fig. 1 (A), the selected quality measures are visualized
using four separate quality line charts in the quality line chart view,
each corresponding to one measure. The horizontal axis, aligned across
all line charts, denotes the sequence of generations, while the vertical
axis represents the corresponding measure values. A semantic zoom
feature is implemented on the horizontal axis for detailed examination
of specific generation ranges, and the zoom ratios are synchronized to
support alignment and comparison across all line charts.
Statistics of Populations. Understanding the origins of individuals
concerning evolutionary operations is vital for analyzing population
dynamics. Specifically, analysts need to discern whether an individual
in a given generation is a directly inherited parent from the previous
generation or a mutated offspring evolved from a parental pair. To
address this, we employ a stacked bar design visualization to depict
individual proportions based on their origins. As shown in Fig. 1
(B), the ordinal indices of generations are placed on the stacked bars’
left side. Inside the bar for the k-th generation, a series of segments
represent the proportions of the following four types of origins:
1) Individuals reserved from the previous generation, R(k);
2) Individuals in the mating pool, MP(k);
3) Crossover offsprings based on their parental pairs, O(k)−O′(k);
4) Mutated offspring, Õ′(k).

A categorical color scheme is employed to facilitate distinction
among the four origins, where light blue is for reserved individuals,
green for individuals from the mating pool, purple for crossover off-
spring, and yellow for mutated offspring. It is worth-noting that this
color mapping is consistently applied in the entire framework. Addi-
tionally, bar segments featuring striped patterns indicate the proportions
of individuals that did not survive the environmental selection process.

5.2 Population Analysis of Generation Sequences
Delving into the specifics of solutions, including decision and objective
vectors of individuals across all generations, facilitates a granular un-
derstanding of evolutionary dynamics beyond mere aggregate measures
and statistics (T2, R3). This component leverages an abstraction of
individuals and their lineages, displayed in the main workspace of the
interface, alongside a lineage view, Fig. 1 (C, D).
Decision and Objective Space Analysis. When notable patterns like
salient increases or decreases in quality measure values are discovered,
analysts can select a range of generations by brushing along the hor-
izontal axis or clicking on any data point in quality line charts. The
detailed information for the selected generations is then depicted in a
juxtaposed manner in the main workspace, Fig. 1 (C). Following R4 for
providing appropriate data abstraction at each analytical level, solutions
are abstracted as two sets of vectors, i.e., decision and objective vectors,
and are visualized in two vertically-stacked scatterplots, with the top
one for the objective space and the bottom one the decision space.
Layout: It is common for the dimensions of decision and objective
spaces to exceed two, sometimes reaching beyond ten. To address this,
projection techniques are employed, utilizing PCA for the objective
space and t-SNE [52] for the decision space. To ensure comparability,
we address the alignment of projection results within the same space:

• For the objective space, the PCA projection matrix is fit using the ref-
erence set and subsequently applied across all scatterplots, enabling
clear observation of solution distributions relative to the ground-truth
reference points.

• For the decision space, t-SNE parameters are trained based on the
union of all decision vectors present in the selected generations, with
these parameters consistently applied across all selected generations.

It should be noted that the choice of the projection techniques is
based on the typical configuration in multi-objective optimization prob-
lems, where the count of objective functions generally does not exceed
10, often hovering around 4. Conversely, the dimensionality of deci-
sion space can span from tens to thousands [49]. Given this disparity,
linear projection techniques may fall short in adequately unveiling the
complex distributions and patterns in the decision space.

Visual Encoding: The dot colors are mapped to the origins of evolution-
ary operations based on the abovementioned categorical color scheme
in Sec. 5.1. To highlight the quality of individuals, analysts can assign
dot sizes to the values of two individual-level quality measures: 1) the
distance to the nearest reference point [53], and 2) the distance to the
nearest solution in the objective space. The former size mapping serves
as a visual cue for the convergence of solutions towards the Pareto
front, i.e., the accuracy of the solutions, and the latter one illustrates
the uniformity of distributions, with smaller dot sizes implying shorter
distances. If clusters of small-sized dots are observed, it strongly sug-
gests that the corresponding regions may contain a considerable number
of duplicated solutions. On the other hand, large and scattered dots
indicate regions that are relatively sparse. Besides the objective space,
the decision space scatterplots incorporate an additional size mapping
mode by utilizing the distance to the nearest solution within the decision
space, which further reveals the spatial relationships among solutions
in the decision space. To illustrate the outcomes of the environmental
selection process for each generation, individuals that do not survive
are distinctly marked as crosses instead of dots in the scatterplots and
will not appear in successive generations.

For test problems with reference sets, a straightforward visualization
approach is to plot the corresponding objective vectors of reference
points in the objective space scatterplot. However, this can lead to
significant visual clutter due to the high number of sampled reference
points typically involved [19, 22]. To address this, we adopt a density
map to illustrate the distribution of the reference points. The density
map is positioned beneath all marks representing individuals to provide
an unobstructed view, effectively enabling comparisons between the
current population spread and the desired Pareto front.

Interaction: When hovering the mouse pointer over a dot, a tooltip
can be activated to display critical attributes about the solution. The
information includes the generation order, individual ID, the origin
of evolutionary operator, the distance to the nearest reference point
distance, the values on all objectives, and the survival status after the
environmental selection process in the corresponding generation.

Lineage Analysis. Beyond simply placing scatterplots of all selected
generations side by side, our framework also facilitates a detailed
depiction of the parental relationships between generations. Selecting
any dot in a scatterplot triggers the display of connecting curves that
link the individual either to its parents (or back to itself if it is a direct
inheritance from the preceding generation), Fig. 1 (C). These parental
links extend all the way to the initial generation in the chosen range. The
color of the curves corresponds to the offspring’s origin of evolutionary
operation, while the curve thickness illustrates the objective space
distance between the offspring and the linked parent. Enable the lineage
connections for multiple individuals simultaneously is also supported.

Analysts might be curious about a group of individuals to determine
their long-term evolutions as well as whether they evolved from a com-
mon set of ancestors. However, visualizing lineage trees in scatterplots
across a considerable amount of generations may lead to visual clutter,
especially when comparing multiple trees for several individuals. To ad-
dress this, a dedicated lineage view is designed to clarify the illustration
of multiple lineages, Fig. 1 (D) and Fig. 3, with two panels:



Individual generated at this generation

Individual died at 
this generation
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between two individuals

Fig. 3: Lineage view. (Left Panel) A timeline of the selected individuals.
(Right Panel) A scatterplot depicting the orders of ancestors with arrows.

Left Panel: The horizontal axis represents the sequential order of gener-
ations, with each lineage-enabled individual represented as a timeline
in a row. The timeline highlights the originating generation of the
individual and the point at which it no longer passes the environmental
selection process. For illustrating common ancestors among individu-
als, cross-row curved links are used for showing the generation where
a closest common ancestor is identified. Note that the range of gener-
ations covered by the horizontal axis only spans the necessary range
of the selected individuals instead of depicting all generations in the
evolutionary process. The axis starts from the earlist generation where
a common ancestor appears or an individual is born, and it ends with
the final survived generation among all selected individuals.
Right Panel: In addition to the temporal comparisons, this panel visual-
izes the distribution of the selected individual and its lineage across the
generations on the two scatterplots for decision and objective vectors,
respectively. Arrows pointing from parents to offsprings are rendered
in gradient shades where lighter tones indicate earlier generations. This
assist in examining the decision and objective vector distributions of
all related individuals on the lineage tree collectively.

5.3 In-depth Inspection of Evolutionary Operations
At the most detailed level of analysis, this component offers insights
into the specific operations executed on the population within one gener-
ation to create the subsequent generation. When a range of generations
is selected in the main workspace, clicking on the “plus” sign between
the scatterplots of two consecutive generations unfolds an evolutionary
operator view which shows the intricate steps of each evolutionary
operation. Drawing from the foundational principles of evolutionary
computing outlined in Sec. 3, we specify these operations within the
multi-objective optimization context, aiming to provide data abstraction
that aligns with analysts’ requirements as suggested in R4.
Data Abstraction for Operators in MOEAs. Through discussions
with domain experts and an examination of prevalent MOEA tools like
PlatEMO [48] and Pymoo [6], we have identified detailed abstractions
for mating, crossover, mutation, and environmental selection operations,
encompassing a broad spectrum of MOEAs.
Mating and Crossover: The common mating protocol used in MOEAs
is the same as how M(k) is constructed in Sec. 3. For crossover, we
focus on the Simulated Binary Crossover (SBX) operator [12], tailored
for real-valued recombination operations. Given a pair of individu-
als (pi, p j) with their decision vectors xpi and xp j , SBX yields two
offsprings oi and o j with decision vectors calculated as follows:

xoi = 0.5
[
(1+β )xpi +(1−β )xp j

]
(5)

xo j = 0.5
[
(1−β )xpi +(1+β )xp j

]
(6)

where β is a spread factor derived from a specific probability distri-
bution. In a more intuitive explanation, this approach linearly combines
the parents’ decision vectors with symmetric random perturbations,
and all four vectors are along the same line in decision space. No-
tably, some implementations [6] introduce an additional post-crossover
random perturbation to enhance the genetic diversity of the offsprings.
Mutation: Alongside SBX, polynomial mutation is frequently em-
ployed. For each selected offspring in O′(k) undergoing mutation, a
random perturbation vector δ ∈ Rn is generated in a defined range to
avoid excessive and unrealistic modifications.
Environmental Selection: At a high level, this process involves labeling
candidate individuals as “survived” or “died”. Yet, this abstraction

(a) Mating & 
Crossover

parents

offsprings

offspring mutated result
(b) Mutation

Fig. 4: Examples of the glyphs for (a) the mating and crossover panel
and (b) the mutation panel.

may not fully capture the nuanced selection mechanisms inherent in
MOEAs. After exploring various search and selection strategies of
algorithms [60], we suggest a more intricate two-level abstraction:
grouping and fitness scoring.
• Candidates are initially sorted into groups based on specific criteria.

Strategies like non-dominated sorting [11] prioritize groups so that
individuals in lower-priority groups are dominated by at least one
individual in higher tiers. Conversely, methods like uniform space
partitioning [9] treat all groups as equal in priority.

• Within these groups, individuals receive a fitness score that dictates
their competitive standing for survival. As mentioned in Sec. 3 on
environmental selection operators, such a fitness score reflects an indi-
vidual’s contribution to the population in terms of its proximity to the
Pareto front and its coverage on the Pareto front. For instance, NSGA-
II [11] uses crowding distances to eliminate duplicated solutions in
densely populated regions while favoring solutions in less crowded
areas, thereby enhancing population diversity. MOEA/D [64] ranks
solutions using a weighted-sum method over objective values in their
corresponding objective vectors. However, the exact method for
computing fitness scores can differ across various MOEAs, leading
to our design choice of using numerical scores rather than illustrat-
ing the detailed computation process. Note that in the prioritized
grouping settings, the primary determinant is group rank, followed
by individual fitness scores. For non-prioritized groupings, quotas
for survival are assigned in each group based on fitness scores.

Visualization and Interaction. The evolutionary operator view is
divided into three distinct panels, each corresponding to one of the
evolutionary operations previously discussed. The basic layout for
these panels includes a list of individuals alongside a pair of scatterplots
for the decision and objective spaces. However, each panel features a
tailored design to effectively represent the details of different operators.

Mating and Crossover Panel: This panel displays each pair of par-
ents from the previous generation and their offsprings in a list format
where a glyph design, Fig. 4, is employed to illustrate the relation-
ships between parents and offsprings. In the glyph, two green dots
represent the parents, and two tiny purple dots represent the offspring.
The connecting line’s length between the two parent dots signifies the
Euclidean distance between the parent individuals in the decision space.
A Gaussian-blurred halo around the purple offspring dots indicates
the degree of post-hoc random perturbations applied to the offspring
before mutation, with a larger halo showing a greater perturbation.
Dashed concentric circles around the dots denote the quality of the
individuals, indicating whether the crossover operation has produced
offsprings superior to the parents. The radii of these circles are propor-
tional to the distance to the nearest reference point, which is the same
individual-level quality measure utilized in Sec. 5.2. The scatterplots
for decision and objective spaces display the spatial distributions of the
parents, the reserved individuals from the previous generation, and the
offspring within these two spaces. The rows in the list can be sorted by
parent-parent or parent-offspring distances.

Mutation Panel: A similar glyph design is used to list all mutated
offsprings, Fig. 4 (b), where purple and yellow dots represent the
crossover offsprings and its mutated counterparts, respectively. The
linkage length between dots illustrates the Euclidean distance the off-
spring has mutated in the decision space. The same dashed concentric
circles around the dots convey the individual’s quality, specifically its
convergence to the Pareto front. To illustrate the direction of muta-
tions in the decision space, a bar chart is utilized for each mutation to
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Fig. 5: The evolutionary operator view for the 59th generation.

display the values of all dimensions in the mutation direction vector,
represented as xmutation −xoffspring in Rn. The values along the same
dimension are subjected to min-max normalization to [0, 1], facilitating
a straightforward comparison across different mutations and dimen-
sions. List sorting is supported based on different criteria, including
distances between offsprings and corresponding mutated results as well
as dimensions of the mutation direction vectors.
Environmental Selection Panel: Individuals entering the environmen-
tal selection process are initially sorted into groups, with each group
displayed in the list according to their priority. Individual IDs, evo-
lutionary operation origins (indicated by the background color), and
fitness scores are depicted in small rectangles within each group. The in-
dividuals in groups are further organized by fitness scores, highlighting
the top-performing individual. The origin proportions of evolutionary
operations within each group are represented as stacked bars, consistent
with the design for generation statistics in Sec. 5.1. The total length of
the stack bars across all groups is normalized based on the number of
individuals in the groups, with the total and survived individual counts
displayed at the group’s header.

Interactions. The evolutionary operator view facilitates rich interac-
tions. Clicking on any list row or scatterplot dot highlights correspond-
ing individuals across the entire view; in addition, linking lines between
dots are displayed simultaneously to visualize relationships, including
parental links in the mating and crossover panel and the connection
between offspring and their mutations. Toggle button in the group
headers enables simultaneous highlighting of all individuals in a group.
The tooltip feature for dots of individuals, as discussed in Sec. 5.2, is
also applied across the scatterplots in the panels.

6 EVALUATION

In this section, we discuss the results from case studies and expert
interviews to demonstrate the effectiveness of ParetoTracker on bench-
marking and real-world multi-objective optimization problems. Pareto-
Tracker is implemented with a browser-server architecture by employ-
ing Python Flask for the server-side logic as well as Vue3 and D3.js for
the client side. Pymoo [6] is used for running MOEAs on test problems.

6.1 Case Study 1: SMS-EMOA on DDMOP2 Problem
In the first case study, we employ the DDMOP2 test problem from the
DDMOP test suite [18], where the problems are devised from scenar-
ios encountered in real-world applications. The DDMOP2 problem
comprises five decision variables which represent the reinforcing com-
ponents of automobile frontal structures while aiming to minimize three
objectives. The SMS-EMOA algorithm [5] is selected for this task due

to its prominence among indicator-based MOEAs. SMS-EMOA priori-
tizes individuals based on their contribution to the Hypervolume (HV)
measure, which is indicative of an individual’s importance in the envi-
ronmental selection process, and such approach is known for ensuring
good coverage and uniformity along the Pareto front. The population
size is set to 100, and the algorithm run lasts 500 generations.

Quality Measures and Generation Statistics (T1). After the data is
loaded, an initial review of quality line charts and generation stacked
bars provides an overview of the evolutionary process, Fig. 1 (a.1). The
two measures, HV and IGD, show relatively monotonic trends towards
their desired optimality, which is characterized by increasing HV and
decreasing IGD values. Meanwhile, SP and MS display fluctuations
in the early evolutionary stages (up to the 40th generation) before sta-
bilizing. Typically, changes in SP and MS are strong indicators that
the coverage and spread of the population on the Pareto front are still
expanding, a phenomenon primarily triggered by mutated individu-
als. Following the 40th generation, these measures begin to stabilize,
suggesting that little to no effective mutations are occurring, and the
solution distribution is starting to reach a steady state. Such stabilized
status can be confirmed by the stacked bars, which show a decreasing
number of survived mutated individuals after the 40th generation, Fig. 1
(b.1, b.2). Notably, in the quality line charts, a small increase in MS
is observed between the 58th and 87th generations, accompanied by
a similar value rise in SP, indicating noteworthy variations in solution
distributions that requires closer examination, Fig. 1 (a.2).

Generation-level Analysis (T2). Triggered by the notable increase in
MS and SP, a detailed examination of solution distributions is conducted
by activating the scatterplot series around the 58th generation. After
clicking on the point representing the 58th generation in the MS line
chart, scatterplots for three consecutive generations both prior to and
following the 58th generation can be displayed in the main workspace,
Fig. 1 (C). In the results, an important observation between the 58th and
59th generations is the emergence of a mutated individual (ID #5856) in
the 59th generation, which broadens the solution set coverage in the top
left corner of the objective space scatterplot relative to the blue density
map of reference points, Fig. 1 (c.1). This mutation contributes to the
MS increase by expanding the range of the solution set with respect to
values covered in the objective space. Additionally, by employing the
dot size mapping based on nearest neighbor distances in the objective
space, it can be observed that the dot size of #5856 is significantly
larger than most other individuals, suggesting its role in contributing to
the increase of SP value observed in the line chart.

Upon further investigation by clicking on the dot of #5856, lineage
connections displayed in the preceding scatterplots reveal that #5856



emerged from a mutation involving a pair of parents, one of which,
#5680 from the 58th generation, is extremely close to the offspring
#5856 in the objective space (Fig. 1 (c.2)). The timeline in the lineage
view indicates that #5856 does not persist beyond the 71st generation,
Fig. 1 (d.1). Nonetheless, the MS and SP measures remain elevated
until the 87th generation. This observation implies that other solutions
in the vicinity of #5856 may have taken over its role in the solution
space. This hypothesis is validated by examining scatterplots around
the 71st generation, where another individual, #7054, appears in nearly
the identical location as #5856, Fig. 1 (d.2, d.3).

Evolutionary Details between Genrations (T3). To conduct a fine-
grained analysis, we delve into the specifics of how #5856 emerged
in the 59th generation and the circumstances leading to the demise of
#7054 in the 87th generation. By activating the evolutionary opera-
tor view for the 59th generation and selecting #5856 in the objective
scatterplot in the environmental selection panel, all elements related to
#5856 are highlighted for analysis, Fig. 5.

In the mating and crossover panel, the offspring from the crossover
operation does not initially occupy the position of #5856, Fig. 5 (a). In-
stead, it is the subsequent mutation operation that propels the offspring
towards the top left part of the cluster, thus shaping the distinctive char-
acteristics of #5856, Fig. 5 (b). In the grouped list of the environmental
selection panel, #5856 ranks second in fitness score in the first group,
Fig. 5 (c), reflecting its significant contribution to the HV indicator
in SMS-EMOA and, by extension, to the overall solution set quality.
This observation extends to other mutated individuals like #5877 and
#5849, Fig. 5 (d), who exhibit a similar expansion in solution set cov-
erage at critical cornering locations. Such patterns suggest a possible
algorithmic preference for individuals enhancing Pareto front coverage.

Turning to evolutionary operator view of the 87th generation, Fig. 1
(e.1), the environmental selection panel reveals that #7054 falls in the
second group where all members did not survive. This situation results
from the non-dominated sorting mechanism in SMS-EMOA, where
#7054 is outperformed and thus dominated by at least one individ-
ual from the prioritized first group. A closer inspection of objective
vector values in Fig. 1 (e.2) indicates that #7054 is dominated on all
objectives by a mutated individual, #8605, leading to its elimination
from the evolutionary process. This analysis reveals the dynamic inter-
play of evolutionary operators and selection pressures that shape the
development and eventual pruning of solutions in MOEAs.

6.2 Case Study 2: NSGA-II on DTLZ3 Problem
The second case study explores the DTLZ3 problem from the widely-
used DTLZ benchmark suite for multi-objective optimization [13],
which features 10 decision variables and 3 objectives. The NSGA-
II [11] algorithm is selected for this analysis. We adopt the same
population and generation settings as in the first case study.

Quality Measures and Generation Statistics (T1). Observations
from the quality line chart and generation stacked bars, Fig. 6 (A),
highlight a notable uptick in the HV measure at the 371st generation,
alongside an accompanying drop in IGD pointing towards an optimal
trend. This pattern strongly suggests that the population may have
begun converging on the Pareto front after an extensive exploration
phase where the measures do not vary too much; prior to the population
converging on the Pareto front, it is likely that it remains considerably
distant from the target Pareto front.

Generation-level Analysis (T2). The notable shifts observed in the
HV and IGD metrics necessitate a closer examination of the scatterplot
series around the 371st generation, Fig. 6 (B.1). Prior to the 371st
generation, a cluster of individuals is situated near the bottom-left part
of the reference point density map. A critical transition occurs in the
371st generation, where the majority of these individuals do not survive
the environmental selection process, leaving behind only one mutated
survivor, #37085. From the 372nd generation onwards, the emergence
of new crossover and mutated individuals is noted in this region.

When switching the dot size mapping to the nearest reference point
distances in the enabled scatterplots, Fig. 6 (B.2), an abundance of yel-
low crosses in the decision space scatterplots have appeared, with their
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Fig. 6: The result of NSGA-II on DTLZ3. (A) The HV measure starts to
increase from the 371st generation. (B.1) Individual #37085 in the 371st
generation has dominated a considerable amount of nearby individuals.
(B.2) The distributions of decision and objective vectors exhibit a large
incoherence. (C) The details of how #37085 dominates other individuals
are illustrated.

counterparts rarely visible in the objective space scatterplots. Panning
the viewport of the objective space scatterplots uncovers these crosses
positioned far from the reference density map area. This observed phe-
nomenon contrasts sharply with the distribution patterns in the t-SNE
projection results in the decision space scatterplots, where individuals
appear to be relatively uniformly distributed. Such uniformity can
further be confirmed when applying dot size mapping to the nearest
solution distances in the decision space, where the dot sizes have very
few variations. The discrepancy between the uniform distribution in
the decision space and the varied distribution in the objective space
underscores the high sensitivity of the objective functions to the input
decision vectors. In other words, small changes in the decision space
can lead to significant differences in the objective space, which suggests
high complexity of the decision space landscape [40].



Evolutionary Details between Genrations (T3). Further examination
is directed towards #37085 in the 371st generation to understand its
survival, Fig. 6 (C). Highlighting #37085 in the environmental selection
panel for this generation reveals its placement in the first group based
on the non-dominated sorting mechanism in NSGA-II. Examination
of the nearest reference point distances via tooltips shows that #37085
exhibits significantly lower values, with its objective vector values
also lower across all objectives compared to surrounding non-surviving
individuals. These insights confirm #37085’s superiority over its nearby
counterparts, ensuring its preservation within the population.

6.3 Expert Interview
The visual analytics framework was further evaluated through inter-
views with four domain experts, including those two from the prelimi-
nary interviews (E1 and E2) and two additional experts, denoted as E3
and E4, respectively. E3, a senior researcher, has extensive experience
in developing optimization algorithms for real-world applications. E4, a
graduate student, concentrates on multi-objective optimization research.
The interview process began with an introduction to the framework and
a demonstration of its analytical features. Then, we encouraged the
experts to freely explore the system using pre-loaded data correspond-
ing to the two case studies. They were also guided to go through the
analysis processes that led to the results presented in the case studies.
Feedback was collected on findings in case studies, functionality for
data analysis, and visualization design of the framework. Interviews
lasted between 30 minutes to 1.5 hours.

Experts’ Comments on Case Studies. The experts provided several
pieces of feedback regarding the observed evolutionary processes in the
case studies. For the DDMOP2 problem, where a mutated individual
#5856 initiated an exploration in the objective space to enhance the pop-
ulation’s coverage but ultimately failed, experts posited two possible
explanations. First, the algorithm’s characteristics may align perfectly
with the nature of the test problem, leading to the population converging
to the Pareto front around the 40th generation and stabilizing. In this
scenario, mutations like #5856 are unnecessary. However, the experts
emphasized that this conclusion should be assessed by comparing runs
from different algorithms to further evaluate the convergence. Second,
the algorithm may discourage mutations that increase diversity and
consistently generate individuals with higher accuracy, even if they are
duplicates in certain local areas. The experts suggested that improve-
ments could be made by adjusting environmental selection strategies in
the next step to see results under different mutation tolerances.

Conversely, mutation #37085 in the DTLZ3 problem illustrates
a successful exploration towards the Pareto front, which results in
the ultimate success of convergence despite being continually poor
according to the quality line charts (starting to converge only after the
371st generation). The experts noted that it could be an interesting topic
to further investigate the underlying factors that generate successful
mutations, as this could inform future algorithm design.

Overall Analysis Pipeline. The experts expressed enthusiasm for
the incorporation of interactive visualization techniques to examine
evolutionary processes in MOEAs. They commended the capacity of
the framework to represent generations and individuals across various
aspects, including quality measures, generation statistics, and detailed
process views. E1 highlighted the advantage of ParetoTracker’s multi-
faceted design over traditional systems that rely on static visualization,
noting its facilitation of interactive exploration and pattern discovery
across generations. E4 recognized the potential of ParetoTracker for
integrating into daily research workflows, praising its adaptability for
comprehensive analysis of different algorithms. “The proposed data
abstraction method accommodates a majority of MOEA algorithms. By
adapting the logging mechanisms of evolutionary computing processes,
ParetoTracker could be seamlessly connected to computational tools
once the output meets the data protocol,” remarked E4.

Visualization and Interaction. The interactive visualization design
received positive feedback for its efficacy in depicting various measures,
solution distributions, and the environmental selection process across
generations. E2 mentioned that patterns identified at higher analytical

levels could serve as cues for subsequent detailed investigations, thereby
enriching the insights obtained. E3 emphasized the value of a detailed
view of evolutionary operations, stating, “Sometimes the algorithm
gets stuck in suboptimal conditions as indicated by quality measures.
The individual-level visualization, which illustrates the creation and
disappearance of individuals, can help identify pivotal evolutionary
events that either enhance or hinder optimization efforts.”

Suggestions on Improving the Current Framework. The experts
offered suggestions for potential future improvements to the framework.
E4 suggested extending the data abstraction protocol for evolutionary
operations to include mechanisms for introducing new, randomly se-
lected individuals into the population, thereby increasing diversity. E3
recommended incorporating contextual information or visualizations re-
lated to the specific application domains of test problems, which could
enhance the applicability of the framework in particular scenarios.

7 DISCUSSION AND CONCLUSION

We present ParetoTracker, a visual analytics framework illustrating the
evolutionary dynamics in multi-objective evolutionary algorithms. Its
multi-level design allows analysts to explore evolutionary processes
from different angles, including quality measures, generation statistics,
solution distributions across generations, and evolutionary operator
actions. This holistic approach enables analysts to go beyond conven-
tional single solution set analysis, promoting a deeper exploration into
the evolutionary operations of each generation.

Comparison with Existing Tools. Our framework is compared with
existing MOEA frameworks and toolkits [6, 48], focusing on evolution-
ary dynamics analysis support. These major computation toolkits offer
static visualization for quality measures and solution sets through non-
interactive charts and scatterplots, as identified in the research gaps in
Sec. 4.1. ParetoTracker enhances these functionalities by providing an
integrated visual analytics environment with detailed visualizations of
generation sequence and evolutionary operators. This facilitates more
effective inspection of individuals and operators across generations, a
feature not addressed by the computation toolkits. With the additional
design of rich interactions among multiple views, ParetoTracker en-
ables multi-level analysis from quality measures to operators, which
assists in identifying notable patterns in evolutionary processes and
correlating pattern influences at various granularity.

Scalability. Our current framework effectively manages data logging
for standard experimental setups, handling population sizes per gen-
eration up to several hundred. Yet, in large-scale optimization scenar-
ios [49] with significantly larger dimensionality and population sizes,
the log data volume for evolutionary processes can quickly grow. We
plan to incorporate advanced sampling strategies prioritizing critical
generation subsequences in future implementations. Additionally, the
risk of visual clutter in scatterplot-based visualizations requires scatter-
plot simplification methods [44, 63] to address this problem.

Generalizability. The data abstraction framework designed is adapt-
able to most MOEAs by offering ample detail and ensuring adaptability
for various environmental selection processes. However, applying it
to decomposition-based MOEAs is challenging due to their complex
selection mechanisms that resist straightforward abstraction. For these
MOEAs, our current strategy uses a higher-level abstraction that only
tracks individuals’ survival status. Future work will focus on creating
more specialized methods to better support such MOEAs.

Limitations and Future Work. Future enhancements could include
a plugin-based environment for easy integration of new evolutionary
operators. Additionally, incorporating application-specific information
could improve utility, particularly in multiple-criteria decision-making
applications without reference points, enabling relative comparison
between generations and different algorithm runs. This would allow
analysis without ground truth, enhancing the framework’s applicability
and real-world value. To extend to a broader audience, including
educational settings, we plan to assess ParetoTracker’s effectiveness
across diverse user groups with varying expertise levels.



SUPPLEMENTAL MATERIALS

The supplemental materials include a demo video of our framework
and the corresponding subtitle file of the video. An implementation is
released at https://github.com/VIS-SUSTech/ParetoTracker.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foun-
dation of China (No. 62202217), Guangdong Basic and Applied Basic
Research Foundation (No. 2023A1515012889), Guangdong Key Pro-
gram (No. 2021QN02X794), and Guangdong Natural Science Funds
for Distinguished Young Scholar (No. 2024B1515020019).

REFERENCES

[1] I. Alberto, C. A. Coello Coello, and P. M. Mateo. A comparative study
of variation operators used for evolutionary multi-objective optimization.
Information Sciences, 273:33–48, 2014. doi: 10.1016/j.ins.2014.03.042 3

[2] N. Andrienko, G. Andrienko, S. Miksch, H. Schumann, and S. Wrobel.
A theoretical model for pattern discovery in visual analytics. Visual
Informatics, 5(1):23–42, 2021. doi: 10.1016/j.visinf.2020.12.002 2

[3] R. Arbolino, R. Boffardi, L. De Simone, and G. Ioppolo. Multi-objective
optimization technique: A novel approach in tourism sustainability plan-
ning. Journal of Environmental Management, 285:112016, 2021. doi: 10.
1016/j.jenvman.2021.112016 1

[4] R. A. Becker and W. S. Cleveland. Brushing scatterplots. Technometrics,
29(2):127–142, 1987. doi: 10.1080/00401706.1987.10488204 2

[5] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective
selection based on dominated hypervolume. European Journal of Opera-
tional Research, 181(3):1653–1669, 2007. doi: 10.1016/j.ejor.2006.08.
008 7

[6] J. Blank and K. Deb. Pymoo: Multi-objective optimization in python.
IEEE Access, 8:89497–89509, 2020. doi: 10.1109/ACCESS.2020.
2990567 4, 6, 7, 9

[7] J. Chae, C. Steed, and G. D. Tourassi. Visualization for classification in
deep neural networks. In Proceedings of the Workshop on Visual Analytics
for Deep Learning, 2017. 2

[8] A. Chatzimparmpas, R. M. Martins, K. Kucher, and A. Kerren. VisEvol:
Visual analytics to support hyperparameter search through evolutionary
optimization. Computer Graphics Forum, 40(3):201–214, 2021. doi: 10.
1111/cgf.14300 2

[9] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. A reference vector guided
evolutionary algorithm for many-objective optimization. IEEE Trans-
actions on Evolutionary Computation, 20(5):773–791, 2016. doi: 10.
1109/TEVC.2016.2519378 6

[10] A. De Lorenzo, E. Medvet, T. Tušar, and A. Bartoli. An analysis of dimen-
sionality reduction techniques for visualizing evolution. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion, pp.
1864–1872, 2019. doi: 10.1145/3319619.3326868 2, 3

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolu-
tionary Computation, 6(2):182–197, 2002. doi: 10.1109/4235.996017 6,
8

[12] K. Deb, K. Sindhya, and T. Okabe. Self-adaptive simulated binary
crossover for real-parameter optimization. In Proceedings of the Ge-
netic and Evolutionary Computation Conference, pp. 1187–1194, 2007.
doi: 10.1145/1276958.1277190 6

[13] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective
optimization test problems. In Proceedings of the Congress on Evolu-
tionary Computation, vol. 1, pp. 825–830, 2002. doi: 10.1109/CEC.2002.
1007032 8

[14] A. Delaforge, J. Aze, S. Bringay, C. Mollevi, A. Sallaberry, and M. Ser-
vajean. EBBE-Text: Explaining neural networks by exploring text clas-
sification decision boundaries. IEEE Transactions on Visualization and
Computer Graphics, 29(10):4154–4171, 2023. doi: 10.1109/TVCG.2022.
3184247 2

[15] A. Endert, W. Ribarsky, C. Turkay, B. W. Wong, I. Nabney, I. D. Blanco,
and F. Rossi. The state of the art in integrating machine learning into
visual analytics. Computer Graphics Forum, 36(8):458–486, 2017. doi:
10.1111/cgf.13092 2

[16] J. G. Falcón-Cardona and C. A. C. Coello. Indicator-based multi-objective
evolutionary algorithms: A comprehensive survey. ACM Computing
Surveys, 53(2), 35 pages, 2020. doi: 10.1145/3376916 3
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