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Fig. 1: This study examined EDA practices via mixed methods. Think-aloud and interaction data from EDA sessions were collected and 
quantifed using metrics and formal descriptions. The resulting dataset facilitated analysis of EDA behaviors and strategies. 

Abstract—Interactive visualizations are powerful tools for Exploratory Data Analysis (EDA), but how do they affect the observations 
analysts make about their data? We conducted a qualitative experiment with 13 professional data scientists analyzing two datasets 
with Jupyter notebooks, collecting a rich dataset of interaction traces and think-aloud utterances. By qualitatively coding participant 
utterances, we introduce a formalism that describes EDA as a sequence of analysis states, where each state is comprised of either a 
representation an analyst constructs (e.g., the output of a data frame, an interactive visualization, etc.) or an observation the analyst 
makes (e.g., about missing data, the relationship between variables, etc.). By applying our formalism to our dataset, we identify 
that interactive visualizations, on average, lead to earlier and more complex insights about relationships between dataset attributes 
compared to static visualizations. Moreover, by calculating metrics such as revisit count and representational diversity, we uncover that 
some representations serve more as "planning aids" during EDA rather than tools strictly for hypothesis-answering. We show how 
these measures help identify other patterns of analysis behavior, such as the "80-20 rule", where a small subset of representations 
drove the majority of observations. Based on these fndings, we offer design guidelines for interactive exploratory analysis tooling and 
refect on future directions for studying the role that visualizations play in EDA. 

Index Terms—Interaction Design, Methodologies, HumanQual, HumanQuant. 

1 INTRODUCTION 

The research literature widely considers interaction to play a central role 
in effective visualization for exploratory data analysis (EDA) [19, 51] 
because it supports a “dialogue between the analyst and the data” [50]. 
Recent empirical results, however, suggest a less clear picture. Stud-
ies have found no signifcant improvements in accuracy or error rates 
when using interactive visualizations for specifc tasks such as bayesian 
reasoning or uncertainty communication [33, 49]. Furthermore, a con-
textual inquiry with professional data scientists revealed that interactive 
visualizations are primarily used for communicating results rather than 
as a medium for conducting the analysis itself [5]. These fndings sug-
gest a gap between the theoretical benefts of interactive visualizations 
and their practical application in EDA. 

We hypothesize two diagnoses for these discordant bodies of results. 
First, much of the work demonstrating the value of interactive visual-
ization in EDA is conducted within systems purpose-built to support 
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this activity (e.g., Tableau [6], Voyager [54], VisTrails [8], among oth-
ers [24]). As a result, participants cannot “opt out” of the modality 
and conduct their analysis through other means (e.g., via code). Sec-
ond, although existing approaches largely recognize that analysis is 
a situated activity — that is, it involves human analysts working in a 
particular context, making observations with various representations of 
data — thus far, these methods often focus on one aspect of this behav-
ior rather than synthesizing across it. For instance, thematic analyses 
have been used to identify patterns of analytic behaviors [24], but it 
can be diffcult to describe how these patterns manifest with particular 
interactive representations. On the other hand, quantitative approaches 
(e.g., interaction telemetry and provenance [36, 54]) capture detailed 
information about how analysts use particular representations. But with-
out the context of qualitative insights, they can struggle to disambiguate 
observations. For instance, does hovering over a visualization indicate 
hesitation, gesticulation, or hypothesis testing? Recent “insight”-based 
approaches [7] have come perhaps the closest to capturing the richness 
of analytic activity, but are presently focused on a narrow band of 
activity: quantitative insights described as data transformations. 

To study how choices of data representation (including interactive 
and static visualizations) affect EDA, we aim to understand not only 
the what of exploratory analysis (i.e., the insights gained) but also the 
how (i.e., the evolving process and the use of different representations). 
To this end, we pose two research questions: 
RQ1: How do analysts’ observations evolve over an EDA session? 

RQ2: How do interactive and static data representations infuence the 
processes and outcomes of EDA? 
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To address these questions, we conducted a qualitative experi-
ment [42] involving 13 data science professionals using Jupyter note-
books. Participants were asked to complete two analysis tasks: the frst 
with a lightweight library for authoring static visualizations, followed 
by a second with an extended library including interactive visualiza-
tions. Given their widespread use, Jupyter notebooks afford a more 
real-world context to study analytic behavior and, critically, do not 
presuppose the value of interactive visualization. Thus participants 
were free to forego visualization and interaction altogether, and simply 
author Python code using any third-party libraries they wished. 

To capture the full spectrum of analytic behavior, we recorded par-
ticipants’ verbal utterances and telemetry, merging these data streams 
through a content analysis [21] to create a unifed dataset of analytic 
activity. To analyze this dataset, we developed a novel formalism that 
models EDA sessions as a sequence of analysis states. Each analysis 
state is either the representation an analyst constructed (e.g., the output 
of a dataframe, or an interactive visualization), or an observation they 
made (i.e., an utterance about one or more representations). 

To address RQ1, we leverage our formalism to code and track ana-
lyst observations over time. We identify 15 distinct types of utterances, 
grouped into four categories: utterances about dataset size or orienta-
tion, or whether there was any missing data; utterances about variable 
distribution or outliers; relationship utterances that expressed concepts 
including strength, directionality, and clustering; and process utterances 
that described intended analysis steps, or meta characteristics about a 
representation. Our analysis of these observations shows they follow 
distinct temporal patterns during EDA (§ 5). Analysts tend to address 
dataset-level metadata early on, while variable distributions and rela-
tionship insights occur throughout the analysis. Notably, interactive 
visualization accelerate relationship utterances, with these statements 
occurring 15% earlier than under the static condition. 

To investigate RQ2, we leverage our formalism to combine repre-
sentational telemetry with analyst observations, enabling us to explore 
the co-occurrence of representation use and analytical insights. We 
introduce a series of quantitative metrics including revisit count, or 
the total number of times a participant hovered over a representation; 
output velocity, or the number of representation instances created per 
unit time; and, representational diversity, or the number of unique 
representation types created during an analysis. We use these metrics 
to investigate patterns of exploration, revealing how some participants 
achieved broad coverage during their EDA (§ 6.4). Furthermore our for-
malism uncovers patterns in representation usage. Notably, we observe 
an 80-20 rule of representation use (§ 6.2.1) and the propensity to use 
all-attribute representations as aids to plan analyses (§ 6.2.2). Taken 
together, our work contributes to calls for "deepening [the] theoretical 
foundation" of exploratory data analysis [22]. 

2 RELATED WORK 

Our work continues a tradition of studying EDA through technical and 
empirical approaches. In these section, we review these prior studies — 
organized by their methodological choices — and contrast their results 
with our objectives. 

Attribute Methods: Attribute-based methods have provided valu-
able insights into how analysts explore data features during EDA. These 
approaches operationalize EDA by quantifying the number and com-
binations of attributes that analysts examine, using metrics such as 
attribute-set counts [2,44,54] or search trees structure [6]. These metrics 
facilitate comparing different analysis sessions, enabling researchers 
to assess how various interventions affect the breadth and depth of 
attribute exploration during EDA. Moreover, they reveal structural ele-
ments of the exploration process. For instance, Battle & Heer’s study 
of analysts using Tableau identifed key “analysis-states” — particular 
attribute combinations that played pivotal roles in participants’ explo-
rations [6]. Notably, their study fnds that analysts using Tableau often 
prefer depth-oriented exploration, thoroughly investigating specifc 
attribute relationships, rather than employing a breadth-oriented ap-
proach that surveys a wide range of different attribute sets. Our work 
extends these results by describing how particular representations shape 
attribute exploration. For example, we fnd analysts engage in attribute 

addition when using interactive visualizations (§6.3) alongside other 
strategies used to broadly cover data attributes (§6.4). 

Insight Methods: Insight methods focus on identifying and charac-
terizing the analytical knowledge generated during EDA [39]. These 
methods typically employ think-aloud processes [9, 39] or elicit in-
sights through open-ended responses [37]. Researchers then code these 
insights based on their semantic content, such as Generalization or 
Hypothesis [30], and analyze additional qualities like whether insights 
are broadening or deepening [44] or their factual correctness [58]. 
These coded utterances are often aggregated to compute metrics like 
time-to-frst insight and total number of insights [9, 17, 30, 39, 58]. 

We differentiate our approach from previous insight methods through 
the use of qualitative content analysis to record both what is said and 
what representations were used to make such utterance. By explicitly 
linking the insight to the representation, our work investigates how 
different representations co-occur with particular insights. As a result, 
we compute aggregated information about insights during analysis 
conditions (§5) but also investigate how insights are formed using 
particular representations (§6.1). This approach lets us understand the 
impact of visualizations on the EDA process, such as analysts deriving 
80% of their insights from just 20% of their representations (§6.2.1). 
Furthermore, our qualitative content analysis captures a wider range 
of insights, demonstrating how specifc visualizations correspond to 
particular types of observations (Fig. 7). 

Interaction Traces: Interaction traces provide rich quantitative data 
to describe analyst activity, offering insights into specifc measurable 
behaviors during EDA. These traces range from simple actions like 
chart hovers [44, 54] to complex action sequences within interactive 
visualizations [36]. Researchers have leveraged these logs to create 
metrics assessing exploratory behavior and to reveal how user charac-
teristics infuence exploration patterns [13]. However, a key limitation 
of interaction traces is their inability to capture the meaning behind 
interactions. A hover over a chart could represent an insight being 
made or analyst confusion. To address this, researchers often combine 
interaction traces with other characterization strategies. In attribute-
based methods, for example, they help demonstrate when a particular 
set of attributes is "considered," from hovering over visualizations [54] 
to creating them in Tableau [6]. In our work, we link interaction traces 
to utterances, revealing how specifc interaction patterns can indicate 
different analysis strategies. For instance, we calculate a revisit count 
for each representation based on hover frequency, and used this met-
ric to identify that a subset of highly revisited charts are frequently 
associated with analysis planning behaviors (§6.2.2). 

Modeling Notebook Corpora: Recent research has explored mod-
eling notebooks and their histories, primarily focusing on predicting 
future analyst actions given the current notebook state. For instance, 
Auto-Suggest [57] uses a recurrent neural network trained on notebook 
corpora to generate future data transformation operations. Similarly, 
EDA Assistant [29] ranks slices of programs from similar notebooks 
and provides frequently used next steps. Other approaches have fo-
cused on generating entire EDA sessions rather than snippets of code. 
For example, Bar et al. [4] formulate EDA as a control problem where 
they use a reward signal based on the novelty and diversity of insights 
to automatically generate entire EDA sessions. While these systems 
develop useful tools to facilitate EDA, they primarily aim to predict 
the analyst’s next action rather than providing insights into broader 
patterns of analytic behavior during EDA. In contrast, our work seeks 
to understand the cognitive processes and decision-making patterns that 
underlie analysts’ interactions. Future systems-building work could 
use the results of our analyses to better model analyst activity and 
recommend next steps. 

Interviews and Surveys: Interview and survey studies provide cru-
cial insights into the real-world practices of data scientists, shaping our 
understanding of EDA workfows. Kandel et al. conducted founda-
tional work understanding the stages of data science work [25]. They 
interviewed data scientists across various enterprise organizations out-
lining fve key job responsibilities: discovery, profling, data wrangling, 
modeling, and reporting. These elements are central to data science 
activities. Further refning this understanding, Wongsuphasawat et al. 



conducted interviews that revealed a more detailed set of 16 analytic 
behaviors, such as converting data formats and examining bivariate 
plots [53]. Interviews also enable researchers to investigate attitudes 
towards particular EDA tools, such as Batch et al.’s [5] work to under-
stand the “Interactive Visualization Gap” in EDA. Furthermore, when 
conducting empirical studies, surveys are often administered following 
an exploratory analysis session [15, 44, 56]. Most commonly, surveys 
include questionnaires like the NASA-TLX [18] for understanding sub-
jective workload during a task [15] or Likert scale questions to elicit 
preferences when using a tool [44, 56]. Our work builds on these fnd-
ings by examining how analysts use different representations during 
EDA (§6.1), providing a more nuanced understanding of when and why 
certain visualizations are used — an approach that allows us to bridge 
the gap between reported practices and actual behavior. 

Thematic Analysis: Thematic analysis seeks to identify occurrences 
of broad behavioral patterns or themes [9, 24, 41]. These approaches 
typically involve participants thinking aloud in order interpret the mean-
ings of behaviors given their context. For example, Kale et al. [24] 
investigated the effect of a tool that enables model-checking through a 
within subjects comparison. Using thematic analysis, they characterize 
how the patterns of analysis shifted when the model-checking function-
ality was introduced, revealing that this tool "structure[d] participants’ 
thinking around one or two long chains of operations". In contrast to 
our study, thematic analysis does not seek to characterize the content 
of entire analysis session, choosing instead to focus on larger themes 
that were observed during exploration. 

3 METHODS 

Our research questions aim to describe the temporal progression of 
analysts’ observations and inferences (RQ1), while also comparing 
how these behaviors unfold with static vs. interactive visualizations 
(RQ2). These research questions are both descriptive and comparative 
in nature. To address these questions comprehensively, we adopted 
a hybrid design that combines task observation and semi-structured 
interviews within the framework of a repeated-measures experiment. 
This approach, described in the mixed methods literature as a qualita-
tive experiment [42], allows us to capture rich, contextual data about 
analysts’ thought processes and actions while also enabling systematic 
comparisons between static and interactive visualization conditions. 

3.1 Study Design, Procedure, and Participants 

Our independent variable is representation interactivity with two 
levels: static and interactive. We use a repeated-measures (i.e. within-
subjects) structure where we measure participant behavior in two tasks 
(static, interactive), and with two datasets that are counterbalanced in 
their assignment across the two tasks. Note that we did not counter-
balance static/interactive task order because the interactive features 
necessarily built upon knowledge of the static visualizations. Partici-
pants engaged in a 90-minute video-conference divided into four parts: 
introductions/informed consent, two EDA sessions, and an interview. 

Each EDA Session began with an introduction to the (static/interac-
tive) features of the visualization library (Features Intro), followed by 
an opportunity for the participant to explore the new APIs via sample 
code (Features Tutorial). Next, participants were given a notebook with 
a dataset and scenario for an Analysis Task, and asked to complete an 
exploratory analysis in approximately 25 minutes while thinking aloud. 
Throughout this process, their interactions with the notebook – running 
code cells, brushing on charts, and scrolling – were recorded as interac-
tion telemetry. The structure of the static task was identical, with the 
dataset counterbalanced across participants. Each session concluded 
with a semi-structured interview and debrief. 

We recruited 16 participants through social media, personal net-
works, and crowdwork platforms. Two participants were involved in 
pilot studies to refne data collection procedures. Of the 16 participants 
who completed the study, three were excluded due to either incom-
prehensible think-aloud responses or an insuffcient level of Python 
profciency. Our resultant pool comprised 13 participants: 4 women, 
8 men, and one person who identifed as non-binary; participant ages 
ranged between 27 and 41 years (average age 31). All participants 

regularly conducted EDA using Jupyter notebooks as part of their 
occupation. Their most common job title was Data Scientist (5), fol-
lowed by PhD Candidate (3), Software Developer (2), Data Analyst (1), 
Economist (1), and Statistician (1). 

3.2 Controlling for Library Expertise with Altair Express 

To facilitate comparisons between participants’ behaviors, it was es-
sential that they used the same visualization library. However, this 
introduces a confound: participants’ existing expertise with visualiza-
tion packages. To control for this, we developed a new visualization 
package to establish a common baseline of relative novelty for all 
participants. 

Our library, called Altair Express (ALX),1 is a Python-based visu-
alization package that offers a high-level declarative API for spec-
ifying interactive visualizations. In contrast to the composable ap-
proach of the existing Altair visualization package (and its underly-
ing grammar Vega-Lite [45]), ALX instead provides a typology of 
visualizations and interaction techniques — an approach we chose to 
reduce specifcation friction analysts might face during EDA. We 
surveyed existing Python-based chart typologies (e.g., Plotly Ex-
press, Seaborn, etc.) and implemented the set of statistical charts 
we hypothesized to be most relevant to EDA including: barplot, 
countplot, hist, jointplot, lineplot, heatmap, pairplot, 
profile, scatterplot, and stripplot. 

The interaction typology in ALX is defned by effect-action 
pairs: an effect is the change that occurs when a user per-
forms an interaction (e.g., showing a tooltip, zooming into a 
region, etc.), and an action is the event that triggers the in-
teraction (e.g., clicking, brushing, etc.). Thus, the typology 
comprises: highlight_brush, filter_brush, tooltip_hover, 
pan_zoom, filter_slider, filter_type, highlight_color, and 
highlight_point. 

Using the + operator, visualization and interaction types can 
be composed together. For instance, alx.highlight_brush() + 
alx.scatterplot(data, x=’Weight’, y=’Horsepower’) pro-
duces a scatterplot of the Weight and Horsepower of cars; users can 
brush the scatterplot highlighting selected points in blue and dimming 
the rest to gray. Using +, users can add multiple interaction techniques 
to a single visualization, or concatenate multiple static and/or inter-
active visualizations together to produce a custom dashboard. ALX 
implements these interactive visualizations via Vega-Lite [45]. 

Finally, in addition to its specifcation language, ALX implements 
a handful of features designed to address limitations researchers have 
identifed of using interactive visualizations in computational note-
books [5, 56]. For example, with ALX, analysts can use a “copy-and-
paste” in order to extract an underlying data selection. When a selection 
is made — for instance, by clicking on a point, dragging a slider, or 
brushing — the analyst can press control + c to copy the pandas 
query necessary to select the data. This query can then be pasted into 
the subsequent cells in the notebook to flter down to the selected data 
for further investigation or charting. 

3.3 Data Analysis Procedure 

We applied an inductive content analysis [21, 32] to the rich stream 
of video and think-aloud data our participants produced. We split 
transcripts of the video recordings into discretized units of meaning we 
call utterances. And, using participants’ screenshare, mouse gestures, 
and linguistic prosody, we coded what representations participants used 
in the process of making a particular utterance. We limited the scope 
of our coding to only include the Analysis Tasks — thus, we excluded 
utterances participants made when they were familiarizing themselves 
with ALX’s features, debugging, or during the post-interview. 

The frst and second authors followed an inductive process consis-
tent with the application of grounded theory in HCI [21, 34] to develop 
a codebook for categorizing participants’ utterances. This processes 
involved eight iterations of independent coding centered on: (1) devel-
oping structure, (2) aligning criteria, and (3) reconciling discrepancies. 

1The name was chosen to mirror the relationship between Plotly and Plotly 
Express. That is, Altair : Altair Express :: Plotly : Plotly Express. 



Fig. 2: A formal defnition of EDA sessions in terms of analysis states that 
comprise either a representation alone (e.g., a visualization, dataframe 
output, etc.) or an observation made with one or more representations. 
Italics indicates terminal symbols. 

In the fnal round of reconciliation, the frst and second authors inde-
pendently coded a random sample of 100 utterances, to calculate an 
Inter-Rater Reliability (IRR) measure of Krippendorf’s α = 0.85.2 

4 A FORMAL DESCRIPTION OF EDA SESSIONS 

We express the results of our mixed-methods analysis through the 
formal description shown in Figure 2. We fnd an EDA Session pro-
gresses through a sequence of analysis States. Each State can either 
be a standalone Representation (e.g., a visualization, dataframe 
printout, etc.) or be a verbal Observation that an analyst makes. 
For each representation, we collect a variety of Telemetry data, but 
our analysis focuses only on HoverWindows (i.e., time spans of when 
a participant hovered over a given representation) — we leave other 
abstractions that can be derived from telemetry data to future work. 
Observations associate verbal Utterances with any 

Representations used to make them, as indicated through 
RepresentationUsage. We distinguish these observations into 
those made with interactive features (such as brushing or tooltips, 
coded as InteractionUsed) from those on interactive charts that 
did not utilize interactivity. We use the term Utterance rather than 
insight or inference to indicate that, even with the context of the 
participant’s screenshare, mouse gestures, and linguistic prosody, we 
cannot precisely determine the participant’s state of knowledge. Thus, 
we work to interpret as much of each utterance’s semantic content as 
possible via our qualitative coding procedure. 

As Figure 3 shows, this procedure yielded 16 UtteranceTypes 
spread across four categories: utterances about the overall Dataset 

2Krippendorf’s alpha is the recommended IRR metric for multi-code struc-
tures where more than one can can be applied to one observation. Using a more 
generous alternative we calculate reliability of (Observed Agreement=0.87). In 
both cases our IRR passes normative thresholds of reliability [31]. 

Fig. 3: Utterances are structured as a 2-level hierarchy, with the highest 
level codes (Dataset, Variable, Relationship, Process) describing the 
general topic of an utterance, and lower level detail codes delineating 
the utterance’s content more precisely. 

including its size, orientation, quality, provenance, and metadata; utter-
ances about individual Variables including about the distribution of 
data values (e.g., min, max, outliers) and the shape of this distribution; 
utterances about Relationships between variables including whether 
any relationship exists and, if so, what form, strength, and direction 
this relationship takes; and, fnally, utterances about the overall analytic 
Process including statements about intended next steps or remarks 
about representations that are not about depicted data. 

We fnd this formalism offers unique insights into EDA activity, 
illustrated by the following vignette inspired by participant behavior: 

Ada, a data analyst at an e-commerce company, is tasked with 
investigating a customer purchase behavior dataset that includes 
customer age, product categories, shipping speed, and customer 
satisfaction ratings. Ada begins by creating a data profle 1 , a 
multiview visualization with concatenated univariate histograms 
for each variable. While examining the distributions, she notices 
an unusual pattern in the satisfaction ratings 2 - there’s a con-
cerning spike at 1-star ratings, contrary to the company’s belief 
that customer satisfaction was generally high. Intrigued, Ada uses 
a crossflter interaction to brush over the 1-star ratings, and ob-
serves a shift in the age distribution in the profle, noting that these 
dissatisfed customers tend to be younger 3 . 



Fig. 4: Example of Ada’s analysis session encoded in our formalism. For 
clarity, we have omitted some levels of nesting for the formal descrip-
tion of this example. Colors are associated with the corresponding for-
malism construct: Output (non-visualization outputs), Visualizations, 
Observations, and Representation Usage. 

To investigate further, Ada creates a scatterplot of satisfaction rat-
ings vs. customer age 4 . The scatterplot confrms a cluster of 
younger customers with low satisfaction ratings 5 . Ada isolates 
this cluster using a brush selection tool and examines the associ-
ated customer details in a table view 6 . Digging deeper into the 
table, Ada discovers that a signifcant portion of these customers’ 
purchases are from the "Gifts" category, and their shipping speed 
is often listed as "expedited" 7 , suggesting young buyers might 
be using the platform primarily for last-minute gift purchases, re-
sulting in higher stress and lower satisfaction when issues arise. 

Using attribute-based metrics [6, 54], we might view Ada’s EDA as 
a three-step process: analyzing all attributes (with the profle); then 
analyzing age and rating; and fnally, returning to all attributes (with 
the data table). This approach makes it diffcult to identify that Ada did 
not ever actually analyze particular attributes (e.g., purchase history) 
despite their inclusion in certain representations (i.e., the profle and 
data table). Moreover, by being representation-agnostic, attribute-
centric metrics treat the profle and data table as equivalent and, as a 
result, miss the different ways Ada used these two views — for instance, 
that she brushed the profle view to reveal a relationship between age 
and satisfaction versus examining the table in a more record-by-record 
fashion. These issues are compounded when applying attribute-centric 
metrics to analyze interactive visualization as the space of possible 
observations is greatly expanded [23]. 

Task and insight-based methods often do not account for represen-
tation either. As a result, they ignore analytic expressions that are not 
verbalized and instead latently conveyed via the representation — that 
is, the act of making a chart is intrinsically an inquiry, even if it is not 
used to make an observation out loud. Moreover, depending on the 
granularity of task/insight codes, these methods may miss important 
nuance in Ada’s activity. For instance, with the protocol followed by 
Zgraggen et al. [58], one might label Ada’s analysis as a Distribution 
Shape insight followed by two Correlation insights — a strategy that 
collapses insights about “clusters” and “correlations” together. More 
recent insight-based approaches, such as the formalism developed by 
Battle & Ottley [7], begin to address many of these shortcomings — for 
instance, they formalize an AnalyticKnowledgeNode to encompass 
data relationships and transformations. While this method would be 
able to capture much of Ada’s activity (e.g., interactive brushing as 
issuing a series of data queries), it is focused only on describing the 
quantitative insights a participant might make about a dataset. 

In contrast, our formalism separately records the representations Ada 
constructed, the utterances she verbalized, and links the two together 
as a series of observations (Fig. 4). This description better refects the 
situated nature of EDA — that observations occur with representations, 
and that non-verbalized representations can play important roles in an 
analysis session. In the subsequent sections, we demonstrate how to 
apply the formalism to investigate behaviors during EDA. 

5 CHARACTERIZING ANALYST UTTERANCES 

In this section, we analyze participant Observations to investigate 
the semantic content of analyst EDAs and how they evolve over time 

Fig. 5: Occurrence of utterances categories throughout analyses. 

(RQ1). We examine the temporal patterns of different types of observa-
tions throughout EDA sessions (§5.1), comparing how these patterns 
manifest in static versus interactive conditions. Additionally, we ex-
plore the transitions between different types of observations, extending 
our understanding of exploratory behaviors beyond the previously iden-
tifed touring motifs [24] (§5.2). This analysis provides insights into 
the structure of EDA processes and how they are infuenced by the 
availability of interactive visualizations. 

5.1 Temporal Patterns 

As the area charts in Figure 5 show, we fnd that while analysts’ 
processes align in aggregate with traditional, linear EDA models 
(from individual variable analysis and then relationship exploration 
[25]), the analysis process is both more fuid and sensitive to in-
teractivity than rigid interpretations of those models would suggest. 
To examine analyst processes, we calculated the median moment 
through the analysis session (expressed as a percentage) in which 
analysts made Observations across our four UtteranceTypes: 
Dataset (13.43%), Variable (25.60%), Relationship (56.86%), 
and Process (40.18%). 

In particular, interactive EDA sessions prompted earlier observa-
tions about Relationships in the data (IQR 28%–75% through a 
session) compared to static EDAs (IQR 43%–85%). We hypothesize 
that the use of interactive profles, featuring cross-flterable univariate 
histograms, encouraged analysts to explore relationships sooner. Our 
subsequent fndings of analysts switching from static to interactive 
proflers (§ 6.3) support this: many participants shifted from Variable 
to Relationship utterances almost immediately upon encountering 
the interactive profle. This fnding opens questions about whether the 
affordances (or presence) of interactive profles enables bypassing dis-
tribution analysis, and whether we can articulate the tradeoffs of such 
process changes. More broadly, the presence of relationship utterances 
across both static and interactive EDA sessions suggests that analysts 
are willing, perhaps even eager, to explore Relationships before 
fully developing a mental model of individual Variables. 

5.2 Sequential Transitions 

During their analyses, participants made seven different types of ut-
terances on average. Looking at the sequential transitions between 
utterances reveals a number of common analysis motifs [24]. 

Tour-Driven Exploration Fig 6 1 : Frequent self-transitions be-
tween similar utterance types (e.g., multiple consecutive utterances 
focused on Relationship strength) suggest that analysts often adopt 
a systematic “touring” approach during EDA. This fnding aligns with 
concepts of univariate and bivariate tours [24, 27], where analysts me-
thodically explore specifc aspects of individual Variables and their 
Relationships. However, we observed self-transitions extending 
beyond Relationship analysis to include utterances about Missing 
Data and Variable Metadata. This suggests that “touring” behav-
iors are broader than previously described [24]. 

Column- vs. Row-Centric Missingness Fig 6 2 : The most com-
mon transition between utterance types was moving from Missing 



Fig. 6: (left) A transition matrix of sequential utterances. (right) The 
transition matrices showing the "Variable Gap" in transitions between 
Interactive and Static analyses on the happiness dataset. 

Data to Distribution Shape. This often occurred early on in analy-
ses through use of profle visualizations. The design of profle presents 
missing data alongside the column’s distribution, subtly promoting a 
column-centric view of missingness. However, as a counter-example, 
P10 investigated missingness as a characteristic of individual data 
records (rows), skipping the profle entirely. Visualizing the missing-
ness per record on a scatterplot, he commented “... most of the rows 
have no missing columns, and then they progressively have more and 
more. So I guess, depending on what the analysis we’re gonna do is, we 
may or may not exclude data points.” This approach highlights different 
potential causes for missingness and raises a design question: how can 
profle encourage analysis of column- and row-level missingness? 

The “Variable Gap” and Interactive Profles Fig 6 3 : In the hap-
piness dataset, many participants skipped characterizing Variables 
altogether, instead immediately focusing on Relationships. This 
caused a Variable Gap between conditions, visible in the transition ma-
trices (right). This shift often coincided with the use of an interactive 
profle—a tool comprising univariate distribution visualizations that 
supports cross-fltering. For example, participant P5 initially followed 
a variable-frst pattern in her static analysis, narrating out 6 distribu-
tional utterances about her variables using the profle. Upon beginning 
her interactive analysis, she immediately began making relationship 
utterances by cross fltering on the profle view (see § 6.3 for more 
information). 

6 CHARACTERIZING REPRESENTATIONS AND USAGE 

Guided by RQ2, we explore the link between Representations and 
Observations. We fnd that analysts heavily rely on a small subset 
of representations for conducting their analyses (§6.2.1), and employ 
certain representations to plan and navigate subsequent steps of their 
analysis (§6.2.2). We also observe a shift in analysis content, with 
interaction drawing analysts towards relationship observations (§6.3). 
Additionally, we investigate the analysts who achieve the broadest cov-
erage in their EDAs and describe the analysis strategies they employed 
to do so (§6.4). 

6.1 Temporality, Diversity, and Velocity 

Across all Sessions our participants constructed a total of 1169 
Outputs, with an individual analyst averaging 44 outputs per analysis. 
Python code executions were most common, especially at the beginning 
and end of sessions, typically for checks on central tendencies. Visual-
izations began to dominate about 15% into each session, becoming the 
foundation for most subsequent observations (Fig. 7 (left)). Based on 
this data, we introduced two metrics: representationDiversity, 
the count of unique representations constructed during a session, and 

Fig. 7: (left) The count of representation created over time. (right) A 
heatmap of the number of times different Visualizations were used to 
make an Observation, according to UtteranceType. 

Fig. 8: (left) A scatterplot of representationDiversity and 
representationalVelocity for each analysis session (§ 6.4). (right) 
A jittered strip plot showing average revisitCount and count of Plan 
of Action utterances by Representation. Representations are colored 
by whether or not it is an all-attribute representation. Representations 
to the bottom are typically one-off question-answering tools whereas 
representations to the top are frequently revisited when deciding analysis 
paths (§ 6.2) 

representationVelocity, measuring the rate at which these repre-
sentations were created. As Figure 7 shows, these metrics are mod-
erately correlated (Pearson’s r = 0.47); we discuss their role within 
analysis sessions in a subsequent section (§ 6.4). 

Our analysis of the intersection of ChartTypes and Observations 
(Fig. 7 (right)) reveals both expected and surprising usage pat-
terns. For example, unsurprisingly, scatterplots frequently facilitated 
Relationships utterances, while profle views were used in making 
Variable utterances. However, as Figure 7 shows, participants would 
frequently use charts beyond their intended purposes or in ways that 
break with best practice. For instance, Variable utterances consti-
tuted only 42% of observations made with profle views — even though, 
ostensibly, this is the core purpose of a columnar distribution of data 
values. Similarly, in contrast to visualization theory and recommender 
systems, which emphasize perceptual effectiveness, participant P9, a 
data science instructor, specifcally created a representation she called 
a “spaghetti plot” — a line chart with 180 different series overplotted. 
Ahead of creating the chart she commented “It’s going to be a bad 
idea”, but persisted precisely because she wanted to ensure that the 



plot itself was ineffective, as a gut check. 

6.2 Hover Patterns and Observations 

Hover patterns, captured through per-representation metrics such as 
revisitCount and hoverTime, indicate the frequency and duration 
of analysts’ engagement with different representations. These metrics 
help uncover aspects of visualization usage and attention distribution 
that are not apparent from code execution histories alone. We combine 
these metrics with the Observations analysts made to reveal how 
telemetry correlates with analysis behavior. 
6.2.1 The ’80-20 Rule’: Why Some Visualizations Matter More 
Our analysis reveals a 80-20 pattern in how participants use represen-
tations during EDA. The top 20% of most frequently hovered repre-
sentations (top-20) accounted for 79% of total hoverTime and 75% 
of observations. Representations in the top-20 had hover durations of 
at least 30 seconds and an average of 2.8 Observations each, indicat-
ing deep engagement. In contrast, the bottom 80% of representations 
(bottom-80) saw signifcantly less use, with an average of just 0.2 ob-
servations per representation. We identify two key differences between 
these two sets that sheds light on analyst preferences: the ability to 
encode multiple attributes simultaneously, and the role of interactivity. 

Representations displaying information about multiple variables si-
multaneously (e.g., profles, correlation heatmaps, pairplots) were more 
common within the top-20. These all-attribute representations made 
up only 2% of the bottom-80 but constituted 22% of the top-20, an 
11-fold increase. Analysts frequently engaged with these visualizations 
a “touring” process, previously described in § 5.2. This involved sys-
tematically exploring the visualizations and commenting on different 
variable combinations approximately every 5-15 seconds. The promi-
nence of this behavior is refected in the extended average hover times 
for all-attribute visualizations, with profles at 67 seconds, heatmaps at 
75 seconds, and pairplots at 169 seconds. In contrast, we see a marked 
decrease in hoverTime with Code Cells used for quick statistical 
checks (from 48% of the bottom-80 to 9% of top-20, averaging 4.9 
seconds of hovering per representation). 

Interactive visualizations were more prevalent within the top-20 
(24% of the top-20 vs. 16% of the bottom-80). Analysts particu-
larly favored the highlight_brush as it enabled cross-linking data 
subsets across multiple charts. This technique was used in over 56% 
of interactive representations in the top-20, compared to 37% in the 
bottom-80. Similarly, the filter_brush technique, which flters out 
all non-selected data marks from view, was used in 30% of the interac-
tive scatterplots found within the bottom-80. However, filter_brush 
went to 2% in the top-20, a likely side effect of fltering obscuring 
important context in standalone charts. 

Finally, pan_zoom interactions were prevalent in the bottom-80 
(31% of interactive representations) but declined to 18% in the top-
20. Analysts consistently struggled to fnd effective use for pan-zoom 
interactions, suggesting a lack of intuition for its analytical value. Out 
of the 16 instances in which pan-zoom was used, we observed only one 
instance where it successfully uncovered an insight that would have 
been diffcult to obtain otherwise. In this case, participant P10 zoomed 
into a dense, overplotted region of a scatterplot to gain more resolution, 
and was able to reveal a pattern in the depicted data. However, even 
this success story was marred by discomfort — P10 added pan-zoom 
to a set of horizontally arranged scatterplots that shared a common 
y-axis; thus, the coordinated scrolling of all scatterplots made him feel 
disoriented, prompting him to request “can we turn that off?” 

6.2.2 All-Attribute Visualizations Aid Planning 
Representations with high revisitCounts (over 10 times) often serve 
as process planning tools, helping analysts orient themselves and pre-
pare their next actions (Fig. 8 (right)). A prime example of this is 
participant P6’s use of a correlation heatmap. She created this visu-
alization to identify the most strongly correlated attributes within her 
dataset and frequently returned to it as a guide for selecting specifc 
attributes for further investigation. As she noted, “let’s look at the 
one that is most positively correlated, which seems to be log GDP 
per capita. So I’ll start with that variable”. This led her to further 

Fig. 9: (left) A barchart showing the number of utterances per attribute 
count, faceted by whether the utterance was made using static or interac-
tive profler and scatterplot visualizations. (right) A slope chart comparing 
utterance type counts between static and interactive visualizations. 

investigate highly correlated variable sets through custom dashboards 
for deeper exploration, ultimately leading to an exceptional 23 observa-
tions (§ 6.4). Notably, heatmaps appeared to be particularly effective 
in this role, averaging 3 times as many Process utterances as other 
representations. 

Such action-planning is not restricted to only visual all-attribute 
representations — participants frequently revisited data frame outputs 
(including df.describe, df.info, and the tabular output) to formu-
late their plans. For instance, P11 read through the individual values of 
a dataframe printout, commenting: “Of course, we cannot say for the 
whole thing [based on just the shown rows]. So my strategy will be like 
going through each of the variables here, and do the summary statistic.” 
Looking across all Observations tuples in our dataset, all-attribute 
representations are associated with Plan of Action utterances at a 
rate of 5 times higher than other representations. 

6.3 An Interactive Draw Towards Complexity 

We observed correlations between the use of interactive visualizations 
and changes in the types and number of attributes analysts considered. 
When using interactive visualizations, an attribute addition pattern 
emerged, where analysts’ explorations moved from univariate distribu-
tions to bivariate relationships or multivariate analyses. For example, 
participant P6 used a static profle visualization to analyze the uni-
variate distributions of her columns, making 6 utterances about their 
distributions. At the beginning of the interactive session, she created 
an interactive version of the profle, and immediately began using it 
to analyze relationships — brushing on the chart to examine a target 
population and generating 6 new utterances about that population’s 
relationship to other variables. This pattern of behavior persisted across 
datasets for other participants (Fig. 9 (left)). Analysts consistently 
leveraged interactivity to deepen their exploration, sometimes even 
skipping over distributional analyses to instead analyze more complex 
data relationships (§ 5.2). 

We also observed shifts in behavior prompted by fltering interac-
tions in scatterplots (Fig. 9 (right)). Prior to the interactive session, we 
observed participants discussing bivariate relationships using scatter-
plots; however, when interaction was added, their utterances tended 
to focus on the multivariate relationships. Multiple participants used 
brushes to extract subsets from data clusters and pursued analysis paths 
to differentiate that cluster from the rest of the data. Another case of 
this was the use of the filter_slider, an interaction technique which 
flters the chart to only the data value present in a particular value on a 
slider query widget. The shift we observe between these interactive and 
static charts presents the allure of interactive representations, seemingly 
pulling analysts towards investigating more complicated relationships 
even when those interactions are not actively being used. 

However, attribute addition behavior was not observed equally across 
data types. Our participants often used interactive visualizations for 
multivariate (frequently all continuous variables) and continuous x con-



Fig. 10: (top) A stripplot of percent of total unique Observations visited 
per analysis session, broken down by high level type and colored by 
Analysis Condition (Interactive or Static). (bottom) Heatmaps represent-
ing attribute co-occurrences when participants made observations about 
relationships between variables. 

tinuous bivariate relationships (Fig. 9 (right)). However we note the 
overall patterns are most salient at the aggregate level and the partic-
ipant level contains sparsity in the utterances made for a given data 
type. Thus while we chose to report the results to fully describe the 
behavior that we saw, such descriptions warrant additional investiga-
tions to understand the role that interaction may play in drawing analyst 
hypotheses towards more multivariate and complex relationships and if 
such patterns exist during longer EDA sessions. 

6.4 Patterns of Broad Observation Space Exploration 

Previous studies have characterized EDAs based on the number of 
attributes analysts considered [6, 54]. We build on this approach, apply-
ing it to our more comprehensive defnition of Observations, which 
encompasses both what was learned (UtteranceType) and which data 
Attributes were considered. Adapting Battle et al.’s method [6], 
we created binary histograms representing whether participants made 
a specifc utterance type on an attribute set (e.g., observed the rela-
tionship between happiness and GDP). By calculating the percentage 
of total possible states each participant explored, we can rank partici-
pants by their breadth of exploration and investigate the ways in which 
Representations changed the analysis Session. For example, par-
ticipant P9, a data science instructor, made the most extensive Dataset 
observations across both static and interactive conditions (Fig. 10 1 ). 
These observations occurred as P9 began each of her analysis sessions 
with a variable metadata tour: systematically going through each at-
tribute in the data dictionary, spending time discussing what the variable 
meant and her opinions on its usefulness. Similarly, we observe the 5 
participants who made the most Variable utterances (Fig. 10 2 ) did 
so in the static condition using profle visualizations. 

In contrast, approaches for exploring a broad set of Relationship 
observations (Fig. 10 3 ) reveals a diverse set of strategies. To inves-
tigate these patterns of exploration, we created attribute co-occurance 
heatmaps (Fig. 10) to “fngerprint” and explain these strategies: 

P8: Parameterized Search. Driven by a clear goal and an aversion 
to “mindless” exploration, P8 adopted a systematic, iterative approach 
reminiscent of a parameterized search through Representations and 
Encodings. She cycled through which attributes were mapped to en-
codings (e.g., scatterplot(y=happiness, x=column[index])), 
methodically investigating potential relationships between each at-
tribute and the outcome variable. When she encountered specifc 
patterns of interest, she then modifed her scatterplot, adding inter-
actions such as brushes and tooltips to investigate outliers and subsets. 
The resultant fngerprint visualization depicts a focused analysis cen-
tered on the outcome variable, with some targeted off-diagonal probes 

into the country, investigated using tooltips and brushes. 
P3: Iterative Deepening. P3’s approach was guided by emergent 

patterns in the data, resembling an iterative deepening search. He 
generated scatterplots based on his intuition for interesting relation-
ships, largely ignoring the outcome variable. This is refected in his 
focus on variables other than happinessScore (bottom row and right 
column). Upon noticing clusters, he investigated their characteristics, 
iterating through interactions and encodings (adding tooltips, brushes 
and color encodings) to identify potential explanatory variables. This 
behavior is captured in his high representationalVelocity and 
representationDiversity as shown in Figure 8 (left), suggesting 
he wasn’t wedded to a single visualization type but explored various 
options to fnd insights. This iterative deepening process ultimately led 
to a scattered thumbprint refecting his serendipitous journey through 
attribute space, driven by unexpected fndings. 

P6: Heuristic-Guided Best First Search. P6’s approach combined 
a methodical foundation with responsive, opportunistic elements char-
acteristic of best-frst search [40]. This strategy prioritizes exploring 
the most promising nodes within a search space based on a pre-defned 
heuristic. P6’s analysis mirrored this approach by selecting attributes 
to plot based on their correlation with her outcome variable. After 
analyzing these attribute sets in a custom dashboard, she would return 
to her correlation matrix to choose her next attribute set, effectively 
"touring" through her correlation matrix. She revisited this matrix 35 
times during her analysis, demonstrating a high revisitCount for 
this visualization. This strategy produced a cohesive analysis that inves-
tigated both direct predictors and potential confounds of the outcome 
variable, evident in her targeted analysis along the bottom row and 
off-diagonal of her thumbprint visualization. 
6.5 Thinking in the Language of Interaction 

In interaction design, perceived affordances [38] signal the operations 
a user believes are possible within an interface. Well-designed affor-
dances establish interaction dynamics — the rules governing how users 
interact with the interface. Our study revealed that data scientists rea-
soned about these dynamics to generate new analytical hypotheses. In 
other words, they translated “the language of interaction” into novel 
analytical questions. As participant P8 described: “My thought of in-
tersecting High GDP and High Life-Expectancy [countries] happened 
precisely because there was interaction... I was thinking, ’Oh I wonder 
if multi-select works’... That is actually what led me to think, ’Oh this 
would also be interesting on an analytical level.”’. Later she com-
mented that such an insight “would not have occurred to me if not for 
the fact I was working with an interactive visualization.” 

Participant P6’s insights emerged from a similar process of experi-
mentation. Having successfully used ALX’s copy-and-paste technique 
to paste flters between charts, he began to consider the broader possi-
bilities this interaction technique offered. While browsing other charts, 
he stumbled upon a bar plot showing the count of records over time. 
Intrigued, he initially tested if the copy-and-paste would function in 
this context. However, a spark ignited: rather than a simple test of 
function, he realized it would be more insightful to flter on the most 
recent years of data. This act of guided experimentation, prompted by 
the affordances of an interaction design (rather than performing the 
interaction itself and observing any updates), led him to discover an 
unexpected trend in life expectancy over time. 

These examples suggest that interactive features play a more gen-
erative role in analysis than typically acknowledged. While existing 
literature often focuses on interactions as tools for completing specifc 
tasks, our observations reveal that the rules of the interaction design can 
inform emerging hypotheses and shape analytical reasoning. This in-
sight has two key implications. First, there’s an opportunity to critically 
examine how we articulate and implement the constraints and rules of 
interaction dynamics. Different designs may substantially impact how 
analysts reason about these rules and, consequently, how they approach 
their analysis. Second, beyond investigating how visual cues infuence 
interaction usage [10], future studies should explore how various cues 
shape analysts’ conceptualization and potential application of inter-
action techniques. By recognizing the interplay between interaction 
mechanics and analytical cognition, we can pave the way for tools that 



more effectively partner with the analyst during the discovery process. 

7 DISCUSSION AND FUTURE WORK 

In this paper, we conducted a qualitative experiment to richly character-
ize the situated nature of EDA in computational notebooks. Through 
mixed-methods analysis of utterances and telemetry, we developed 
a formal description of EDA sessions and applied it to analyze 26 
sessions by 13 data science professionals. In response to RQ1, we 
uncovered distinct temporal patterns in analysts’ Observations, re-
vealing how different types of insights evolve throughout an EDA 
session. We identifed phenomena such as attribute-addition and rea-
soning in the language of interaction, which shed light on the cognitive 
processes underlying EDA in computational notebooks. Addressing 
RQ2, our analysis uncovered substantial differences in how analysts 
use interactive versus static visualizations. Interactive visualizations of-
ten led to earlier discoveries of relationships between dataset attributes. 
Analysts also tended to rely heavily on a small subset of represen-
tations, with interactive visualizations comprising a sizeable portion 
of this subset. Finally, we introduce metrics such as revisitCount, 
representationalDiversity, and representationalVelocity 
to quantify broad coverage in EDA. Our work contributes to calls for in-
vestigating the theoretical foundation of EDA [22] and offers principles 
for designing more analyst-aligned EDA tools. 

7.1 Limitations 

Although our approach yielded useful insights about how data science 
professionals analyze data, we note that studying EDA in a laboratory 
context poses some inherent limitations. For example, think-aloud 
protocols may artifcially structure thought processes that are more 
fuid in unobserved settings (e.g., participants may prioritize tasks 
that are easier to articulate) [11]. However, in comparison to post 
hoc refections, thinking aloud provided in situ insights that captured 
important nuance, and aligns with approaches used in other studies [3]. 

Our study’s sample (N=13) may not fully represent the diversity of 
approaches to EDA. However, this size aligns with qualitative research 
practices that prioritize depth over breadth [1]. Thematic saturation 
observed in our data also suggests that the identifed themes provide 
robust insights into the EDA process. 

The 25-minute time limit per analysis may have also constrained the 
range of analyses participants engaged in. This time limit, consistent 
with prior visualization studies [6,54,56], balances the need to maintain 
participant engagement without requiring extended time commitments. 
Research shows that analysts often encounter time-sensitive tasks in 
their work [53], and in practice, we did not abruptly cut participants off. 
Thus, on average, participants took 29 minutes to complete an analysis. 

Finally, using a new visualization library inevitably presents chal-
lenges to analysts and may introduce novelty effects, especially for 
those accustomed to static visualizations. We sought to mitigate these 
effects in two ways. First, we allocated 20-minutes to demonstrations 
and tutorials of the library. Second, ALX was intentionally designed as 
a visualization and interaction typology (as opposed to a more compos-
able grammar) to minimize specifcation diffculty — with the terms 
of the two typologies designed to mirror common visualization and 
interaction design patterns. More importantly, introducing a new library 
allowed us to control for participant expertise, as analysts did not have 
prior tool-specifc habits that could have confounded our comparison of 
analysis sessions. These sessions, therefore, refect a "frst-use study," 
which is common in studies of EDA activity [24, 54, 56, 58]. 

7.2 Implications for EDA Tool Design 

Our results suggest several opportunities for interactive visualization 
tooling to better support EDA. For instance, several of our participants 
engaged touring to systematically explore the data (§ 5.2). Yet, existing 
tools provide poor support for such activity, largely leaving analysts to 
drive interactions based on their priors and hypotheses they may wish 
to answer. Akin to visualization recommender systems [26], novel EDA 
tooling might instead leverage nascent grammars [48] to systematically 
enumerate the space of hypotheses that can be interactively reached 
with a given visualization, and proactively suggest particular analysis 

paths. By leveraging information scent [52], such tools could help 
analysts think more deeply in the language of interaction (§ 6.5) — that 
is, even if an analyst did not adopt a suggestion for an interactive path, 
the suggestion itself may prompt them to think in different ways. 

Relatedly, we found our participants’ use of visualizations as action 
planning aids (§ 6.2.2) striking. In computational notebooks, where 
visualizations are linearly presented, several participants were willing 
to pay a “scrolling tax” to reach these representations. While some 
research systems have explored mechanisms for making such repre-
sentations more readily available (e.g., B2 stitches a visual analytics 
dashboard alongside a linear notebook [56]), our results suggest a wider 
opportunity. For instance, although research has identifed the merit 
of overview+detail or focus+context techniques, few visualization li-
braries support them out-of-the-box. When they do, these techniques 
are supported in relatively limited ways (e.g., when panning/zooming a 
scatterplot or map). Our results suggest the need for more generalized 
support for wayfnding — especially to coordinate multiple separate 
visualizations. Here, we fnd the interaction snapshots [55] and EDA 
assistant [29] particularly promising for displaying the range of plausi-
ble next actions, and enabling quick probing of the analysis space. 

The prevalance of Process utterances during analysis sessions illus-
trates that participants engage in a level of metacognition — thinking 
about their own thinking. How might visual analysis tools better sup-
port process refections across visualization creation, interaction design, 
code, and statistical output? Drawing on research in distributed cogni-
tion [20], we envision that displays of analysis histories could foster 
valuable self-refection. Systems like Lumos [29,35] are already explor-
ing this, highlighting a rich research space. For example, what marks a 
signifcant point in the analytical journey? While our formalism points 
to Observations and Representation creation as key moments, 
analysts may have different views when refecting on their own activity. 

7.3 Studying Interactive Analysis as Situated Activity 

Our work was motivated by a desire to study interaction as situated 
activity — that is, involving human analysts working in a particular 
context, externalizing their cognition through visual representations, 
and interactively making observations with them. While valuable, we 
believe this paper takes only an initial step towards this approach. To 
complement recent work that looks to scale-up our ability to study 
interaction (e.g., through benchmarks [16] and novel systems [12, 36]), 
we advocate for methods that allow us to study it more closely. 

We fnd methods from sociolinguistics and linguistic anthropology 
used to analyze interpersonal interaction particularly compelling. For 
instance, discourse and conversational analysis [43] involves a metic-
ulous examination of conversation transcripts, and has been used by 
researchers to make fundamental linguistic discoveries such as turn-
taking [43]. While visualization researchers are beginning to draw on 
such linguistic theories to inform interaction design guidelines [46, 47], 
we believe there is a ripe opportunity to adapt them for analyzing inter-
active behavior as well. For instance, the development of a specialized 
notation system was particularly crucial to the success of conversational 
analysis — allowing researchers to annotate linguistic features such as 
prosody, tone, pitch, pauses, and gaze. What would an equivalent 
notation for analyzing interaction look like? Similarly, systems for 
conversational analysis enable fexible defnitions of analytic units and 
abstractions. In contrast, existing interaction provenance systems [28] 
largely follow a dichotomy of either low-level event logs (e.g., mouse 
movements, clicks, etc.) or high-level semantically meaningful events 
(e.g., flter, explore, etc.) — future systems must grapple with how to 
support more fuid analysis between these levels. Finally, as our study 
demonstrates, to “closely read” interactive behavior requires capturing 
a rich multimodal data streams. Simply concatenating and visually 
linking these streams together risks introducing ambiguities in under-
stand the precise sequences and potential causal relationships between 
measures. Rather, akin to systems like ChronoViz [14], we envision 
future systems offering richer juxtapositions of this multimodal data. 
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