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Fig. 1: COMPRESS AND COMPARE helps ML practitioners analyze and compare compression experiments. The (A) Model Map displays 
an overview of the compressed models and the experimental operations used to create them. Users can compare models’ top-level 
metrics in the (B) Model Scatterplot and their operational differences in the (C) Selection Details view. To compare models’ behaviors 
and internal layer characteristics, users can visit the (D) Performance Comparison views shown in Fig. 5. 

Abstract—To deploy machine learning models on-device, practitioners use compression algorithms to shrink and speed up models 
while maintaining their high-quality output. A critical aspect of compression in practice is model comparison, including tracking many 
compression experiments, identifying subtle changes in model behavior, and negotiating complex accuracy-efficiency trade-offs. 
However, existing compression tools poorly support comparison, leading to tedious and, sometimes, incomplete analyses spread 
across disjoint tools. To support real-world comparative workflows, we develop an interactive visual system called COMPRESS AND 

COMPARE. Within a single interface, COMPRESS AND COMPARE surfaces promising compression strategies by visualizing provenance 
relationships between compressed models and reveals compression-induced behavior changes by comparing models’ predictions, 
weights, and activations. We demonstrate how COMPRESS AND COMPARE supports common compression analysis tasks through two 
case studies, debugging failed compression on generative language models and identifying compression artifacts in image classification 
models. We further evaluate COMPRESS AND COMPARE in a user study with eight compression experts, illustrating its potential to 
provide structure to compression workflows, help practitioners build intuition about compression, and encourage thorough analysis of 
compression’s effect on model behavior. Through these evaluations, we identify compression-specific challenges that future visual 
analytics tools should consider and COMPRESS AND COMPARE visualizations that may generalize to broader model comparison tasks. 
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Machine learning (ML) models have dramatically increased in scale 
over the past several years, with published models rising from 1 billion 
parameters in 2018 to over 100 billion parameters as of 2024 [17, 59]. 
This trend has produced models with exciting emergent capabilities 
that have enabled new user experiences, like real-time translation [44] 
and code generation [13]. However, this scale also incurs greater 
technical, financial, and environmental costs to integrate these models 
into everyday use [4]. As a result, model compression has emerged 
as an essential family of techniques to make large models viable for 
practical usecases, particularly in domains where models must run on 
end-user devices to lower latency or access private user data [24]. 
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ML practitioners apply compression with the intent to maintain the 
accuracy of a large model while reducing the space required to store it 
and the time required to perform inference. However, which compres-
sion technique or combination of techniques will achieve this balance 
remains task- and model-specific [24]. The ML literature has proposed 
various compression techniques for different model architectures and 
user priorities, such as low space consumption, low latency, or fast 
execution on optimized hardware [11, 12, 16, 66]. Nevertheless, iden-
tifying the right compression strategy can require anywhere from a 
few to several dozen experiments [24], taking time that is often not 
accounted for in accuracy-focused model development timelines. It can 
also be challenging to communicate experimental results within and 
across teams, particularly those with varying ML expertise. Even when 
these efforts are successful, compression can alter model behavior in 
subtle and unexpected ways, creating new errors or biased outputs [27] 
that are hard to capture with a single metric. 

Although compression is increasingly used in research and indus-
try domains, there has been little work using visualization to make 
compression techniques more interpretable and comprehensible. Initial 
work on compression visualization has focused on specific compres-
sion techniques, like neural network pruning [32, 53] or profiling a 
single model’s power and performance characteristics on specific hard-
ware [25]. While these methods begin to demonstrate the value of 
visual tools for compression tasks, ML practitioners often need to take 
a broader approach to experimentation. As they mix and match multi-
ple techniques in different orderings, the number of experiments and 
models they produce quickly expands, creating visualization challenges 
that are not well-supported by available tools for either interactive 
compression or model comparison [19, 40, 41]. 

In this work, we explore how to address model compression chal-
lenges using interactive visualization. We first identify four model 
compression challenges by synthesizing prior qualitative findings on 
how ML practitioners use compression [24] with insights from the ML 
literature. In response to these challenges, we introduce COMPRESS 
AND COMPARE, an interactive visualization system for comparing the 
performance and behavior of a suite of compressed models. Through an 
overview visualization called the Model Map, our system helps users 
track their compression experiments and how they relate to one another. 
Users can select subsets of models to automatically visualize differ-
ences in their accuracy, efficiency, and provenance. To deeply inspect 
a smaller set of models, the system provides detailed comparisons of 
instance-level behaviors and internal activations. Through case studies 
and user studies, we demonstrate how COMPRESS AND COMPARE can 
lead to insights throughout model compression and how it expands 
the design space of interactive ML development tools to account for 
challenges made salient by compression. We contribute: 

• Four identified compression challenges ML practitioners face 
when developing and selecting model compression strategies. 

• COMPRESS AND COMPARE, an interactive visualization system 
enabling comparative analysis over many compressed models. 

• Case studies on two common compression tasks demonstrating 
how COMPRESS AND COMPARE can help debug failed compres-
sion experiments and identify compression-induced bias. 

• A user study with eight compression practitioners illustrating 
how COMPRESS AND COMPARE help users build intuition by 
providing structure to their compression workflows. 

2 BACKGROUND AND RELATED WORK 

2.1 Techniques for Model Compression 

Model compression encompasses various techniques that reduce the 
storage space, memory, power, or time required to run an ML model 
while preserving its original behavior as much as possible [7, 8, 10, 38, 
57]. Compression is increasingly essential for running ML models, 
both in resource-constrained settings such as mobile devices and for 
extremely large models (e.g., generative language models). 

Most compression techniques fall into one of three classes: (1) 
quantization and palettization reduce the space required to store each 

individual parameter, (2) pruning removes parameters while optionally 
adjusting the others to compensate, and (3) factorization and distillation 
find a different set of parameters that mimic the behavior of the original 
model [8]. The most straightforward instantiations of these techniques 
are quantization (converting high-precision formats like 32-bit floats to 
lower-precision formats like 8-bit integers) and unstructured magnitude 
pruning (zero-ing out weights with the smallest absolute values). These 
foundational techniques form the starting point for many real-world 
compression strategies because they perform well in practice, are easy 
to understand, and are straightforward to compute [24, 37]. Additional 
routines often employed to tune the resulting compressed model in-
clude fine-tuning (training the model on a data subset) and calibration 
(adjusting model parameters to compensate for compression). 

In cases where off-the-shelf techniques are insufficient, task-specific 
techniques have been developed to achieve better efficiency trade-
offs [14, 15, 22, 31, 65, 70]. These methods vary by which aspects 
of model efficiency they target, how computationally expensive apply-
ing the compression is, and whether or not they depend on additional 
training or calibration data. For example, some methods utilize random 
data samples to decide which parameters can most easily be pruned 
or restore intermediate activations [2, 12, 39], while others are data-
agnostic [20, 49] and can optionally be followed by a retraining step. 
Individual weights can be modified independently [12, 49], or compres-
sion can be performed in a structured manner at the level of neurons 
or layers [55]. These algorithmic choices give rise to a large space of 
possible compression strategies, each of which has different overall 
performance characteristics in terms of space consumption, inference 
time, and accuracy preservation. Helping ML practitioners navigate this 
space is a key design opportunity addressed in our work (see Sec. 3). 

2.2 Pitfalls in Evaluating Compressed Models 

While compression techniques are designed to improve model effi-
ciency while preserving accuracy, they have been known to substan-
tially alter model behavior even while maintaining similar top-level 
metrics. For example, Hooker et al. [27] find that pruning image 
classification models has negligible effects on overall accuracy but 
disproportionately impacts the accuracy of rare subgroups. Similarly, 
Liebenwein et al. [34] find that pruning image models often results in 
poor generalization on distribution-shifted inputs. 

Since these behavior changes do not always impact top-level metrics, 
they can be hard to identify in advance without conducting bespoke 
analyses dedicated to finding them. For example, a prior interview 
study with ML practitioners [24] described a situation where an object 
detection model produced jittered outputs after quantization, a phe-
nomenon that was not uncovered until the model was tested on-device 
in a demo setting. While tools for model comparison are applicable 
to this task, compression poses additional analytical challenges, such 
as comparing more than two models at once and understanding how 
models are derived from one another. Our work aims to address these 
challenges by providing practitioners with visual tools to inspect the 
behavior of several compressed models during development. 

2.3 Visualization for Model Understanding and Comparison 

Visualization has been essential in building generalizable knowledge 
about ML architectures [23, 60, 67] and helping practitioners make 
sense of specific models [1, 28, 50, 56, 62, 63]. Many tools use com-
parison to make insights about model behavior and internals more 
meaningful, e.g., by jointly visualizing embedding spaces to distinguish 
meaningful data clusters from spurious ones [5, 54]. Other compara-
tive approaches extend analysis subtasks to multiple models, including 
comparing model errors [41], instance-level outputs [19,64], or internal 
representations [40]. Tools have been developed to help practitioners 
select from a wide array of models using comparisons of top-level 
metrics [52, 68]. In our work, we use comparative visualization to help 
users identify promising strategies and filter out unviable experiments. 

Generating and evaluating compressed ML models is a more nascent 
area in VIS4ML — most prior work for this task is limited to either 
specific compression techniques or profiling efficiency metrics without 
considering behavior. For example, CNNPruner [32] uses a Taylor 



Fig. 2: Hovering over a Model Map model displays a tooltip containing 
the models’ top-level metrics, including latency, size, sparsity, accuracy, 
and compression operation. Here, the selected model has been 50% 
pruned, improving its latency and size but reducing its accuracy. 

expansion criterion to prune filters in convolutional networks, while 
ViNNPruner [53] supports a wider variety of architectures but uses 
an interactive pruning scheme that is difficult to scale to large models. 
Meanwhile, Talaria [25] helps users estimate the effects of compression 
on the efficiency of any model, but it requires accuracy to be evaluated 
separately. Unlike these prior works, our system aims to support more 
general, iterative compression workflows that may involve dozens of 
models with different sets of techniques applied. 

Overall, these prior systems have focused on either model com-
pression or model comparison alone without taking into account 
how the two tasks are often intertwined during a model development 
pipeline [24]. Evaluating the potential of interactive tools to help at the 
intersection of these two challenges is the primary focus of our work. 

3 DESIGN CHALLENGES FOR COMPRESSION 

To identify key compression challenges and motivate the design of 
interactive tools for compression, we synthesized insights from ML and 
HCI literature. Recently, Hohman et al. [24] explored ML practitioners’ 
needs and perspectives on model compression via an interview study 
with 30 compression experts. This work describes how compression 
experts experiment with different compression techniques to satisfy effi-
ciency and accuracy constraints within multidisciplinary teams. While 
their focus was providing a broad overview of compression experts’ 
tacit knowledge, we distill specific findings from their study that are 
relevant to the design of compression tools and supplement them with 
recent insights from ML literature to synthesize key challenges for our 
system to address. 

C1. Identifying the optimal compression strategy is time-consuming 
and task-specific. A one-size-fits-all strategy for model compression 
does not exist. Even compression experts do not know how to achieve 
the best balance of efficiency and accuracy a priori and often exper-
iment with multiple compression algorithms for each new task and 
model [24, 25]. However, existing compression tools focus on explor-
ing the results of a single compression experiment [43, 52, 61] instead 
of assessing the design space of all possible experiments. As a result, 
compression experts in our evaluation study (Sec. 6) had complex and 
time-consuming comparison workflows, such as flipping between the 
same tool loaded with different models and maintaining large spread-
sheets of model results. Compression tools should support practitioners 
in comparing compressed models based on their performance, effi-
ciency, behavior, and provenance to identify promising strategies. 

C2. Compression requires human trade-offs across multiple metrics. 
Practitioners often discuss model compression as an effort to meet 
resource targets on memory, time, and accuracy [24]. These budgets are 
often negotiated, set, and adjusted based on how models would affect 
the user experience. For example, a model that could run overnight 

Fig. 3: The Filter view allows users to define hard budgets using metrics, 
like accuracy, model size, or latency. The user can add several filters, 
see the distribution of values for the selected metrics, and brush on the 
histograms to disable models with metric values outside of the range. 

while a device is charging would be granted more memory and time 
since it would be unlikely to disrupt the user. Similar decisions take 
place around accuracy; a model that errs more on sensitive or critical 
subgroups would not be deployed, while one that makes reasonable or 
recoverable errors could be viable [24]. As a result, practitioners need 
tools to quickly assess model variants and make trade-offs between 
their metrics to help them satisfy these multifaceted constraints. 

C3. Top-level metrics can obscure important differences between com-
pressed models. Although compression can achieve comparable per-
formance to the original model, it can alter the model’s behavior by 
introducing new errors or biases. In some cases, these differences are 
random or imperceptible, but in others, they can be problematic, such 
as reducing the quality of model predictions [24], changing model 
explanations [34], or increasing bias [27]. Unfortunately, behavioral 
changes do not always correspond to a change in evaluation metrics, so 
humans must be involved in the evaluation process to catch dangerous 
behaviors. While various visualization techniques compare the behav-
iors of pairs of models [5, 40, 54], there remain opportunities to help 
practitioners compare many compressed models’ behavioral changes. 

C4. Compression can have unintended, hard-to-debug effects on model 
internals. Practitioners often have a set of heuristics they expect com-
pression algorithms to follow, such as not compressing early layers and 
compressing layers proportional to their number of parameters. How-
ever, when compression algorithms do not follow these expectations, it 
can be difficult for practitioners to determine why [24]. For example, 
a network’s outputs may change significantly because a layer ceased 
to produce meaningful output or because its activations had a different 
distribution that caused downstream layers’ outputs to change as well. 
To ensure compression only impacts the desired portions of the model, 
practitioners often go layer-by-layer to find errors and bottlenecks. Par-
ticularly for deep networks with hundreds of layers and billions of 
intermediate outputs, parameter-wise model comparison becomes a 
challenging task and an opportunity for visualization tooling. 

4 DESIGN OF COMPRESS AND COMPARE 

We developed an interactive interface called COMPRESS AND COM-
PARE to address the four compression design challenges (Sec. 3). The 
tool consists of two main views: the Compression Overview supports 
high-level comparison and model selection from large-scale compres-
sion experiments (C1 and C2), and the Performance Comparison 
view enables fine-grained inspection of model behaviors and internals 
for a small number of candidate models (C3 and C4). 
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Fig. 4: The Selection Details view automatically generates meaningful comparisons between selected Model Map models, such as comparing 
successive operations by selecting the descendants of a model (A) or comparing multiple compression algorithms by selecting multiple subtrees (B). 
If a direct comparison does not exist, the interface prompts the user to refine the comparison to the attributes they are interested in visualizing (C). 

4.1 Compression Overview 

In COMPRESS AND COMPARE, experiments are represented as a set of 
trees, where each node is a model and edge is an operation performed 
on a parent model to produce a child model. This structural choice 
helps address one of the main visualization challenges of tracking 
compression experiments (C1): simultaneously depicting the variation 
in metrics across models along with dependencies in how the models 
were generated. The Model Map (Fig. 1A) addresses this using a node-
link tree diagram, where nodes are positioned using a custom algorithm 
that vertically aligns nodes based on either the operations used to 
produce them or their step in the compression experiment. Models are 
rendered as circles whose color and size encode performance properties, 
commonly accuracy and model size. To emphasize the sequential nature 
of compression experimentation, the color and width of the edges 
smoothly interpolate between the parent and child nodes. Hovering 
over a model displays a tooltip with the model’s top-level metrics 
(Fig. 2), such as latency, size, sparsity, accuracy, and the operation that 
created this new model from its parent. 

While the Model Map’s layout prioritizes understanding model de-
pendencies, the Model Scatterplot (Fig. 1B) visualizes model metrics 
along the spatial axes, helping direct the user to viable models and 
find natural model groupings. For example, the classic Pareto curve 
often used by compression experts [24] can easily be recreated by set-
ting model size or latency on the x-axis and accuracy on the y-axis. 
Node color and size are consistent between the Model Scatterplot and 
Model Map, and the two visualizations are connected via brushing 
and linking [3]. The Filter view also depicts model metrics through 
customizable histograms that can be brushed to filter the Model Map 
and Model Scatterplot. When the user specifies a filter, models that 
do not meet the filter criteria become semitransparent and unselectable. 
This allows users to narrow down the set of viable models by expressing 
their project’s space and performance budgets (C2). 

When one or more models are selected, the user can view informa-
tion about the models’ metrics in the Selection Details view (Fig. 1C). 
While displaying metrics for multiple models in a table would be 
straightforward, it would obscure the dependency structure between the 
models, making it harder to reason about the effects of different com-
pression operations. Therefore, we develop a technique to automatically 
create a grouped bar chart from a subset of the model dependency tree. 
Our algorithm traverses the tree recursively to identify a minimum-
cost set of “variables” that compactly explain the selected models’ 
differences. Variables include operation parameter values, presence or 

absence of an operation, and type of operation applied. The algorithm 
attempts to fit multiple alternative variable types at each stage of the 
tree traversal and chooses the assignment that results in the shortest and 
simplest set of variables (e.g., a variable for an operation’s parameters is 
considered simpler than a variable for operation type). This ensures that 
similar operations are mapped to each other. For example, the models 
resulting from Prune → Quantize and Prune → Calibrate → Quantize 
can be explained by Calibrate = true or false. 

If the models can be represented using two variables or fewer, we 
generate a bar chart by mapping the x-axis and color encodings to the 
two variables. If more variables are required, the algorithm attempts 
to iteratively simplify the variable set by identifying conditional de-
pendencies and cumulative relationships between pairs of variables. 
As shown in Fig. 4A and B, this simplification allows us to visualize 
several successive operations as a single x-axis encoding or combine 
multiple variables that are related to the same operation. When the list 
of variables needed to describe the selection cannot be simplified to 
two encodings, a Refine Comparison view allows the user to generate 
bar charts for subsets of the selection that can be compared (Fig. 4C). 

4.2 Performance Comparison 

While the Compression Overview visualizes trends across large sets 
of models, the Performance Comparison view enables a deeper com-
parison of a smaller group of models’ Behaviors and Layers. We use 
a combination of juxtaposition and explicit encodings [18] to enable 
comparisons of multiple models at a time. Comparison is performed 
with respect to a base model, which is user-customizable but defaults 
to the selected model closest to the tree’s root node. 

The Behaviors tab (Fig. 5, left) presents the results of evaluating 
each selected model on a validation dataset. Each model is a column in 
a table, where rows represent either class-level comparisons or individ-
ual instances. When configuring their data, users can define comparison 
metrics that operate on the model outputs, enabling comparisons like 
differences in top-1 predictions or the KL divergence of the softmax 
probabilities. These comparison metrics are summarized in the table 
headers and are depicted as sparkline bar charts in each row. Notably, 
the interface supports both absolute per-model values and relative val-
ues compared to the base model. Users can sort and filter by absolute 
or relative metrics for any model, allowing them to quickly identify 
classes or instances impacted the most by compression (C3). 

The final and lowest-level component of the interface is the Layers 
tab (Fig. 5, right), which exposes the internals of the selected models. 



Fig. 5: The Performance Comparison view provides an in-depth comparison of two or more models. The Behaviors tab (left) displays differences 
between models’ predictions, distributions of comparison metrics, and a breakdown of the selected comparison metric at the class or instance level. 
Meanwhile, the Layers tab (right) compares the sparsity, weights, and activations across layers in the models using a file tree structure. 

Like the Behaviors tab, this view comprises a table where each column 
contains information about a model relative to the base; however, here, 
each row represents a module in the nested hierarchy of modules that 
makes up each network. Within this structure, the user can choose 
from visualizing the proportion of zero weights in each module, the 
distribution of the weight values, and the distribution of the activations 
(intermediate outputs) on a random data sample. Weight values and 
activations are depicted as stacked histograms so that the height of the 
bars forms the overall value distribution while the color indicates the 
degree of change relative to the base. This highlights parameters and 
models that have changed more than others, which can reveal bugs such 
as over-pruned layers or outlier activations (C4). 

4.3 Setup and Implementation Details 

We designed COMPRESS AND COMPARE for a highly customizable 
user workflow. To begin visualizing models, users write a simple 
Python script that invokes the COMPRESS AND COMPARE backend 
server and provides information about the models. Users specify mod-
els as a JSON object that details the operations used to produce each 
model and their performance across a set of user-defined metrics. Users 
can easily integrate specification creation into their existing model 
training procedures by updating the JSON file each time they train 
and evaluate a new model or evaluate against a new metric. To access 
information about the model’s behaviors and layers, users write Python 
callbacks to retrieve instance-level outputs and layer activations, both of 
which can be either pre-computed or evaluated in real-time. This flexi-
bility allows COMPRESS AND COMPARE to support any Python-based 
ML toolchain and accommodate very large models. Additionally, the 
COMPRESS AND COMPARE Python package provides helper functions 
to accelerate setup with common frameworks such as PyTorch and 
HuggingFace. The model servers for the use cases in this paper require 
around 200 lines of code, mostly consisting of boilerplate code that 
would already have been written in the course of experimentation. 

The COMPRESS AND COMPARE frontend, implemented in Svel-
teKit1 , is static and can be hosted publicly. Visualizations are de-
veloped using D3.js2 and LayerCake3 . Code is available at: https: 
//github.com/apple/ml-compress-and-compare. 

5 CASE STUDIES OF COMMON COMPRESSION TASKS 

We illustrate how COMPRESS AND COMPARE supports real-world 
compression workflows via two case studies. 

5.1 Repairing Models Broken By Compression 

A previously accurate model can “break” when compression is applied 
too heavily or broadly, resulting in low performance and nonsensical 

1https://kit.svelte.dev 
2https://d3js.org 
3https://layercake.graphics 

outputs. However, it can be challenging for users to determine which 
components of a model are causing its performance to degrade after 
compression (Sec. 6.2.2). We demonstrate how COMPRESS AND COM-
PARE can help practitioners identify and resolve breakages (C4) in the 
context of a generative language model for question answering. 

We use an off-the-shelf T5-Large model [46] that achieves an 
F1 score of 90.5% on the Stanford Question Answering dataset [47] 
(Fig. 6A). The model’s original performance is competitive with hu-
mans’, but since the model is large (775 million parameters), we’d like 
to compress it to improve its speed and space utilization. Following 
common compression workflows from our participants (Sec. 6.2) and 
the literature (Sec. 2), we apply magnitude pruning across all of the 
model’s parameters. However, this causes steep performance drops 
even at low levels of compression (e.g., 4% F1 after pruning only 10% 
of parameters). Looking at the top changes in predicted answers in the 
Behaviors view (Fig. 6B), we see that magnitude pruning has broken 
the model’s generation. The 10% pruned model repeats words from the 
context paragraph (e.g., “Super Bowl LII LII LII ...”), and the 
30% pruned model’s output is meaningless (“a a ...”). 

COMPRESS AND COMPARE can help us understand why magnitude 
pruning has negatively affected the model. There are many possible 
reasons this compression strategy could have failed — the model may 
have low compressibility, essential weights may have been inadvertently 
pruned, or magnitude pruning may not be well-suited to this task. Since 
it is challenging to determine the cause using performance alone, we 
use the Layers view to inspect parts of the model that have been 
pruned. Sorting the models’ layers by how much their weights have 
changed, we see that the most changed layers are all normalization 
layers (Fig. 6C). Normalization layers ensure a consistent activation 
distribution throughout the model, so over-pruning them can lead to 
unexpected behavior. However, since the model has relatively few 
normalization weights, we would not necessarily expect magnitude 
pruning to have pruned them so aggressively. To test if pruning the 
normalization layers caused the performance drop, we design a follow-
up experiment that restores the normalization layers in the pruned 
models to match the original model, effectively unpruning them. This 
leads to a full recovery in F1 for the 10% and 30% pruned models, 
indicating that pruning the normalization layers was a substantial issue 
in our original compression experiment. 

We can also use COMPRESS AND COMPARE to understand if the 
repaired models can be pruned any further. To do so, we browse 
model activations in the Layers view for the original model, the 30% 
pruned model with restored normalization layers (the fixed model), and 
the 50% pruned model with restored normalization layers (a broken 
model). We observe that the outputs of the self-attention module have 
changed significantly during pruning, even in the working model, which 
may signify that the model is robust to changes in these modules. By 
pruning additional parameters from the attention modules, we can 
reduce the model size by roughly 30% while achieving 83% F1 score. 
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... 

Base model T5-Large (770M parameters) achieves good performance 
on SQuAD question answering tasks (F1 = 90.5). 

Generative Question-AnsweringA 

Even low levels of global magnitude pruning 
breaks the model’s generative capabilities. 

Initial EvaluationB 
Layer-specific pruning excluding normalization 
layers better preserves model behavior. 

Repaired Sparse ModelsD 

Sorting the pruned model’s modules by how much their 
weights have changed reveals excessive change to the 
normalization layers. 

Analyzing Weight ChangesC 

Fig. 6: COMPRESS AND COMPARE helps debug compression experiments. On a generative question-answering task (A), the Behaviors view reveals 
that global magnitude pruning severely deteriorates generation quality (B), whereas layer-specific pruning matches the original model’s behavior (C). 

Further, reviewing these models’ predictions relative to the base in 
the Behaviors view (Fig. 6D) confirms that their generative abilities 
are preserved. Here, COMPRESS AND COMPARE helped us debug 
our compressed model’s low performance and design compression 
modifications that result in efficient, high-performing models. 

5.2 Discovering Compression Artifacts 

Compression artifacts — changes in model behavior caused by compres-
sion — can subtly affect model quality, decrease edge case performance, 
and increase bias without reducing overall accuracy, making them diffi-
cult to detect yet crucial to address. To demonstrate COMPRESS AND 
COMPARE’s ability to identify compression artifacts (C3), we apply 
it to study known compression-induced biases in face classification 
models [27,36]. Following Hooker et al. [27], we train a ResNet18 [21] 
on CelebA [36] to predict whether each image has the attribute blond. 
Then, we iteratively train and compress seven ResNet18 [21] models 
on the same binary classification task using global magnitude prun-
ing [70] at 10%, 30%, 50%, 70%, 90%, 95%, and 99% final sparsity 
(see Supplementary Material Sec. S3). Each resulting model achieves 
similar accuracy on the test set, ranging from 87.4% to 94.4%. 

To identify potential sources of bias, we use COMPRESS AND COM-
PARE to understand how the models’ small drops in performance are 
distributed over the images. In the CelebA dataset [36], male and not 
young are underrepresented attributes. If compression is introducing 
bias by forgetting rare classes, it will have a disparate impact on these 
images. To inspect this, we compare the relative accuracy of the pruned 
models to the uncompressed model in the Behaviors tab (Fig. 7B). This 
view immediately surfaces that compression has disproportionately im-
pacted the performance of rare classes. While the 99%-pruned model 
makes 64.9% more errors for not male and 72.3% more for young, in 
the rare classes, it makes 145.5% more errors for male and 96.5% for 
not young. This is concerning since performance on underrepresented 
and difficult instances is a primary reason that ML practitioners start 
with a large model [33, 34]. This may signal the need for further model 
development, compression experiments, and bias mitigation before we 
are comfortable using these models. Previously, we would have needed 
to compute model performance on each attribute and interpret a table 
of relative percentages (such as in Hooker et al. [27]); however, using 
the visual affordances of COMPRESS AND COMPARE, we are able to 
quickly identify bias without additional computation. 

While COMPRESS AND COMPARE supports bias identification using 
traditional error metrics, it can also audit bias in settings where we do 
not have access to data with sensitive attribute labels. In this setting, we 
use COMPRESS AND COMPARE to identify a subset of images that may 

Table 1: We evaluate COMPRESS AND COMPARE with 8 compression 
practitioners. While each participant uses compression in their work, 
they have diverse roles, ML applications, and compression workflows. 

ID Role ML Application Compression Workflow 

P1 ML Engineer Efficient ML algorithms Compresses existing models 
P2 ML Manager Efficient ML tooling Compresses existing models 
P3 Research Scientist Efficient ML tooling Compresses existing models 
P4 ML Manager 3D computer vision Develops efficient models 
P5 ML Manager 3D computer vision Develops efficient models 
P6 Research Scientist Efficient ML algorithms Develops efficient models 
P7 Research Scientist Multi-modal ML Develops efficient models 
P8 Software Engineer Efficient ML tooling Builds compression tools 

merit additional inspection or human-in-the-loop annotation, similar 
to Compression Identified Exemplars [26, 27]. We begin by loading 
the compressed and uncompressed models into the Behaviors tab and 
sorting all images by the change in error rate between the uncompressed 
and 99% compressed models (Fig. 7C). Many images are classified 
differently between the original model and the compressed models, in-
dicating that these images are most sensitive to compression. Looking 
closely at these images, we see they are often challenging images (e.g., 
people with silver hair or hair occluded by headwear), confirming prior 
analysis [26, 27] that images sensitive to compression are often chal-
lenging to classify. In this way, COMPRESS AND COMPARE supports 
data auditing to help users uncover instances sensitive to compression 
that may warrant further data cleaning and quality control. 

6 USER STUDY WITH ML PRACTITIONERS 

To evaluate COMPRESS AND COMPARE, we conducted a user study 
with eight ML practitioners who work on model compression. Partici-
pants included research scientists developing new compression tech-
niques, ML engineers compressing models for deployment, and soft-
ware engineers building compression tools (Table 1). The goal of the 
study was to understand how participants would use COMPRESS AND 
COMPARE to make sense of compression experiments, build intuition 
about compression strategies, and explore compressed model behavior. 

6.1 Study Methods 

Each study session was conducted via video chat and lasted 45 minutes– 
1 hour. We began by discussing the participant’s current compression 
workflows and introducing them to COMPRESS AND COMPARE. Then, 
we asked participants to imagine they were part of a team compressing 
an existing image classification model and to think aloud as they used 



magnitudepruning95 magnitudepruning99magnitudepruning90 

Magnitude pruning preserves 
accuracy even at 99% sparsity. 

Blond Classification A 

All levels of pruning disproportionately increase the error rate 
for underrepresented groups (male and non young). 

Identifying Amplified BiasB 

Images whose predictions change across many compressed models are challenging 
images that may warrant additional data auditing. 

Uncovering Images Sensitive to CompressionC 

Fig. 7: COMPRESS AND COMPARE can help identify compression induced bias and perform data auditing. The Behaviors view reveals that 
compressing image classification models (A) disproportionately impacts rare classes (B) by forgetting hard-to-classify images (C). 

COMPRESS AND COMPARE to complete two tasks: 

T1. First, we showed participants a ResNet50 image classification 
model [9, 21, 45] and 19 of its compressed variants, including 8-bit 
quantization, global gradient and magnitude pruning at various sparsity 
levels, and post-pruning fine-tuning and calibration. We asked partici-
pants to identify successful experiments, explain why some experiments 
failed, and suggest future experiments. 

T2. Next, we updated the interface to display all 52 models, includ-
ing the 20 models from T1, a MobileNet V2 model [51] with global 
magnitude pruning, iteratively pruned and fine-tuned models, and mod-
els with combined compression techniques. We asked participants to 
evaluate the latency, size, accuracy, and behavior of these models and 
select the model(s) they felt confident deploying. 

To analyze the results of the study, two authors reviewed the video-
recorded sessions. They performed open coding to identify participants’ 
insights during the tasks and their broader perspectives on compres-
sion and COMPRESS AND COMPARE. Using the resulting 357 codes, 
they conducted an iterative affinity diagramming and thematic analysis 
process to identify progressively higher-level themes. This process 
generated 17 final themes that we use to structure Sec. 6.2. 

6.2 Study Results 

Overall, participants reported that COMPRESS AND COMPARE pro-
vided a structured compression workflow, enabling them to perform 
analyses that would have been challenging and time-consuming with 
existing tools, build intuition about compression techniques that inspire 
new compression experiments, and identify subtle but problematic 
model behaviors introduced during compression. 

6.2.1 Unifying Disjoint Compression Workflows 

Our user study participants reported needing multiple tools to execute 
their current compression tasks, leading to tedious back-and-forth anal-
ysis across tools that made it challenging to understand the overall 
impact of their compression experiments. While each participant was 
knowledgeable about compression (average 3.5 on a self-reported 1–5 
scale of compression experience) and used compression regularly (5/8 
use compression in every project), there was not a standard set of tools 
used by all participants. This inconsistency was often due to a lack of 
compression-specific tooling that supported the breadth of participants’ 
tasks, including training and compressing models (P1–P8), evaluat-
ing their performance and behavior (P4, P6, P7), and ensuring they 
meet specified efficiency budgets (P1–P8). As a result, participants 
often created custom tools, such as Jupyter Notebook charts for per-
formance analyses (P1, P6, P8) and spreadsheets for model tracking 
(P3, P5), or they repurposed existing general model analysis tools to 
understand the performance of a compressed model (P1–P4). When 
compression-specific tools existed, participants found them invaluable 
to their analysis (P3, P4). However, these tools were often still specific 

to a particular aspect of compression analysis (e.g., hardware perfor-
mance [25]). As a result, participants found it challenging to perform 
comprehensive analysis and lamented that existing tools did not sup-
port many of their most critical tasks, like budgeting (P2), layer-wise 
analysis (P1), and compression-specific comparison (P2, P3, P4). 

Unlike participants’ existing workflows, with COMPRESS AND COM-
PARE, critical compression tasks, like metric analysis and budgeting 
(C2), experiment comparison (C1), and layer-wise behavioral inspec-
tion (C3 and C4) are all in one place: 

“[In] a lot of my typical workflows [...] you have to have 10 
tabs in parallel in your browser and switch between them. 
I find that [COMPRESS AND COMPARE] is really bringing 
all the different aspects into a single view.” — P2 

For instance, an approach used by 4/8 participants was to identify can-
didate models that fit their performance budget via the Filter, hone into 
the one or two best-performing models using the Model Scatterplot 
metrics, and search for patterns in the best models’ compression recipes 
using the Model Map. Through this process, participants quickly iden-
tified “deployable” models that were small enough to fit on device 
while still maintaining task performance. P1, P5, P6, P7, and P8’s 
Compression Overview analysis quickly converged from 52 models to 
a single 8-bit quantized ResNet50 model that reduced latency and size 
while nearly maintaining the uncompressed model’s accuracy. Having 
a comprehensive overview of compressed model variants gave partici-
pants confidence to pitch this model to their teammates and use it to 
design new experiments that could result in even greater efficiency. 

The unified compression interface also sparked discussion about how 
COMPRESS AND COMPARE could integrate into collaborative compres-
sion settings. Participants regularly collaborate with team members to 
complete their compression tasks, such as sending compressed models 
to QA specialists for targeted evaluation (P4, P5), negotiating resource 
budgets with product managers (P6, P8), and mentoring model devel-
opers on compression methods (P2). However, it can be challenging 
to collaborate on a compressed model across various tools and with 
collaborators with varying skill sets. In participants’ current workflows, 
experimental results are distributed across tools, so participants were 
excited to use COMPRESS AND COMPARE as a centralized communi-
cation tool. P6 and P8 were interested in presenting their experiments 
to budget managers using COMPRESS AND COMPARE to advocate for 
budget increases by interactively demonstrating how best-case model 
performance improves as the budget relaxes. Participants also ex-
pressed interest in using COMPRESS AND COMPARE to collaboratively 
compress models, such as by flagging potential compression-induced 
issues in the Behaviors view for review by their QA teammates (P4, P5) 
and setting up experiments in the Model Map that demonstrate com-
pression pitfalls to less experienced engineers (P2). Whereas existing 
compression workflows tended to become ad hoc when experimenting 
with many different algorithms, techniques, and pipeline structures, 
participants were excited for COMPRESS AND COMPARE to provide 
structure to the collaborative search for an efficient and accurate model. 



6.2.2 Building Intuition about Model Compression 

Beyond simply selecting a desired compressed model, COMPRESS 
AND COMPARE’s visual and interactive components helped partici-
pants build intuition for how compression algorithms impact model 
performance and generate hypotheses about ways to improve future 
experiments. Participants found the combination of the Model Map 
and the Selection Details view to be an intuitive way to understand 
and reason about the space of compression experiments. Viewing the 
columns in the Model Map helped users understand the set of com-
pression algorithms that had been applied (P3, P4, P7) and identify 
patterns in how the best-performing models were generated (P2, P7). 
To dig into a particular pattern, participants would often run visual 
“experiments” by selecting a group of models within a region of the 
Model Map (e.g., all the magnitude pruned models) and comparing 
their metrics in the Selection Details view (P2, P4, P6, P8). These 
in-depth explorations influenced participants’ intuitions about how com-
pression techniques affected their models more broadly. For instance, 
by comparing the accuracy and efficiency of two quantized models, 
P4 identified that quantization preserved performance much better for 
a large ResNet50 (25.6M parameters) than for a smaller MobileNet 
V2 (3.5M parameters). While P4 regularly uses quantization, this dis-
crepancy in performance caused them to reflect that the success of 
quantization “is definitely dependent on the base model; if you want 
something to work for quantization, you have to start at the right place.” 
Finding the best compression technique is challenging (C1), so building 
intuition for the types of models that benefit from quantization can help 
P4 design more effective compression recipes moving forward, such as 
those that only apply quantization to large models. 

Building on their high-level understanding of the experimental space, 
participants used the Performance Comparison views to develop a 
deeper intuition about compression’s impact on models’ internal rep-
resentations. Using the Layers view, participants debugged subtle 
problems in compression experiments that led to poor model perfor-
mance. For example, P8 recognized that a particular model’s “batch 
norms had been absolutely flattened” by quantization. Batch normaliza-
tion layers can have a substantial impact on downstream performance 
because they set the output value ranges at each layer, so this finding 
led P8 to suggest “freezing all the batch norms” during quantization as 
a way to maintain model performance. By building intuition through 
their Layers exploration, participants ideated a range of subsequent 
experiments. These next steps included combining current compres-
sion techniques in new ways (e.g., combining magnitude and gradient 
pruning) and expanding the space of operations, such as by tailoring 
compression to specific layers of the network. For instance, in their 
Layers analysis, P5 and P7 noticed earlier network layers had fewer 
parameters yet were pruned at the same rate as later layers. They hy-
pothesized that, since later layers have more parameters, they have 
more redundancy and could withstand greater compression rates, so 
they designed an experiment that pruned layers as a function of their 
number of parameters. With COMPRESS AND COMPARE, participants 
deepened their understanding of how model parameters respond to 
compression techniques (C4) and used their insights to generate new 
experiments that could lead to more efficient and accurate models. 

6.2.3 Encouraging Comprehensive Compression Analysis 

By interactively integrating behavioral analysis with traditional metric-
based compression analysis, COMPRESS AND COMPARE extended 
participants’ existing behavioral analysis workflows and motivated 
them to consider the broader impacts of compression. Evaluating 
compressed model behavior on held out data was a key aspect of some 
participants’ workflows (P5–P8) because it helped them identify subtle 
but important behavioral changes (C3): 

“When you compress a model you care about its quality 
on rare classes. The biggest risk when you compress your 
model is all of a sudden it becomes [problematic].” — P8 

Participants used the Behaviors view to analyze model behavior across 
an entire dataset to ensure that compression had not induced biases 

or spurious correlations. The ability to sort by relative change in cor-
rectness helped them identify classes that experienced the most errors 
and inspect individual instances that were misclassified. This proce-
dure revealed that many compressed models’ mistakes were acceptable, 
such as mistakes on multi-object images (e.g., coffee pot in a stove 
image) or related classes (e.g., Great Dane misclassified as another 
dog breed). However, it also helped them uncover subtle patterns and 
identify potential compression-induced biases. For instance, P5 sorted 
the Behaviors view by decreasing change in correctness and observed 
that stove images had lost 22% accuracy, whereas overall the model 
only experienced a few percent decrease. Inspecting the stove im-
ages whose classifications had changed revealed a spurious correlation 
between stoves and microwaves. P5 worried that the compressed 
model could be relying on the presence of one to classify the other. 
By viewing model behavior over an entire dataset, participants, like 
P5, were able to identify concerning patterns in the model’s behavior, 
hypothesize reasons for the problem (e.g., a disproportionate amount 
of training images contain both objects), and develop a plan to address 
them (e.g., flagging these examples for QA team review). 

While participants primarily analyze correctness in their current 
workflows, having access to additional plug-and-play metrics in the Be-
haviors view spurred new analysis processes. During P1’s behavioral 
analysis, they discovered that magnitude pruning resulted in a larger 
KL divergence in output probabilities than quantization. While they 
do not use KL divergence in their standard analysis pipeline, having 
access to it in COMPRESS AND COMPARE helped them distinguish 
between otherwise similar compressed models and select the one that 
best reflected the original model’s outputs. 

“I don’t look at KL divergence very frequently, but KL di-
vergence is zero for [the quantized] model and non-zero 
for [the pruned] model. There was only a 6% accuracy 
regression [for the pruned model], so it’s surprising. I’m 
impressed by the KL divergence [of the quantized model] 
being extremely low. It’s the incumbent solution.” – P1 

Similarly, P2 and P3 uncovered that magnitude pruning resulted in 
higher model confidence than quantization. With the knowledge that 
these differences in model outputs existed, participants were able to 
generate hypotheses for their existence (e.g., confidence increases may 
be a result of overfitting with fewer parameters (P2)) and strategies to 
account for them (e.g., setting a different prediction threshold based on 
the compression algorithm (P3)). Overall, COMPRESS AND COMPARE 
extended participants’ compression workflows to integrate behavioral 
analyses with their standard metric-based budgeting procedures. As 
a result, participants seamlessly switched between the two, iteratively 
selecting a candidate compressed model and interrogating its behavior 
to identify biases and hypothesize new compression experiments. 

7 DISCUSSION 

We present COMPRESS AND COMPARE, an interactive visualization 
system for tracking and comparing compression experiments. Based on 
challenges experienced by real-world users, we design COMPRESS AND 
COMPARE to support critical and unsupported compression analysis 
tasks, including managing interconnected compression experiments, in-
terrogating the impact of compression on model behaviors, and ideating 
promising future compression experiments. Through case studies on 
generative language and image classification models, we demonstrate 
how our system helps users repair issues with compression and identify 
compression-induced bias. Moreover, our user study with compression 
experts illustrates how COMPRESS AND COMPARE shifts users’ com-
pression workflows from disjoint analysis across tools toward a single 
analysis platform that facilitates collaborative decision-making about 
model selection and exploration. Here, we discuss the implications of 
our results for future ML development and evaluation tools, as well as 
the current limitations of our work and possible solutions. 

7.1 Designing Compression-Aware ML Workflows 

Throughout the design and analysis of COMPRESS AND COMPARE, 
we encountered compression-specific challenges. While compression 



analysis could be considered a special case of general ML evaluation, 
our user study participants struggled to extend traditional model evalua-
tion workflows to their compression-specific tasks. Our work suggests 
ways future tools can improve the overall ML development process by 
integrating compression considerations: 

Bridging data- and model-centric evaluations. Most existing ML 
development tools either focus on data-centric evaluations of model ac-
curacy and behavior [5, 6, 50, 54] or architecture-specific evaluations of 
model internal layer characteristics [25, 42]. In contrast, we found that 
linking data-centric (i.e., Behaviors) and architecture-specific visualiza-
tions (i.e., Layers) helped users interpret the functional characteristics 
of model components, similar to systems like DeepCompare [40] and 
ActiVis [28]. For instance, in our case studies and user studies, partici-
pants used the connection between the Layers and Behaviors views to 
identify that compressing batch normalization layers directly worsened 
the quality of the model’s outputs. By identifying a functional relation-
ship between the model’s architecture and its behavior, users were then 
able to ideate new, better-performing experiments (e.g., removing com-
pression on normalization layers). By developing joint visualizations 
of evaluation data and model architectures, compression tools can help 
users connect aspects of a model’s design to changes in its behavior. 

Negotiating trade-offs between model quality metrics. Compression 
practitioners often trade off between model size, latency, and accuracy. 
While existing ML pipelines have addressed similar issues between 
accuracy and fairness [58] and accuracy across tasks [35], interactive 
model selection tools have not explicitly explored helping practitioners 
make these trade-offs, e.g., by identifying Pareto frontiers. Further, 
our user study participants indicated that efficiency and accuracy bud-
gets are often collaborative and malleable targets, as opposed to hard 
quantitative thresholds. By visualizing experimental results and metric 
trade-offs, compression tools can help practitioners communicate their 
constraints and advocate for budget changes when needed. 

Tracking model provenance during iterative development. Unlike 
model architecture and hyperparameter search, where experiments 
are often simple Cartesian products of several variables, compression 
experimentation is more readily modeled as a tree of “recipes” where 
nodes represent models and edges represent operations. Practitioners 
often start with a single model or a few related models that are known to 
perform well and apply varying compression recipes to them, creating 
the branching structure depicted in the Model Map. This process 
results in many interconnected models, and it can be challenging to 
keep track of the operations that created a particular model and its 
relationship to other models. User study participants found visualizing 
models in this tree structure helped them build intuition for aspects of 
experiments that worked well and how future experiments may behave. 
Future compression tools may consider a similar tree visualization or 
new ways to communicate model provenance to practitioners. 

Comparing complex differences across many models. Existing tools 
(including those for compression) tend to focus on profiling and evalu-
ating a single model [1,6,25,53]. In contrast, our study underscores the 
value of directly supporting comparison [18, 54]. By visually juxtapos-
ing metrics, predictions, and internals from several models, COMPRESS 
AND COMPARE reduces the cognitive load required to determine which 
differences are most actionable. Our system enables workflows that 
rapidly transition between comparative relationships, ranging from 
black-box comparisons of top-level metrics to comparisons of individ-
ual layer activations. Future tools can prioritize comparison and look 
to practitioners’ existing comparison strategies to understand when 
linking multiple comparative relationships leads to productive insights. 

These compression-specific challenges provide a basis for the design 
of future compression-vis tools, but they could also suggest ways to 
improve general ML analysis workflows. For instance, our user study 
participants found the Model Map tree structure to be highly intuitive, 
and some suggested applying it to other stages of model development 
(P4, P18, P15), such as creating a timeline-based Model Map that 
organized model results based on when a user ran each experiment. 
Moreover, extending the layer-wise activation comparison in the Lay-
ers view could support complex hyperparameter search workflows. 

Additionally, features demonstrated in COMPRESS AND COMPARE 
may be worth integrating into general-purpose ML tools, helping those 
tools cover a broader range of existing workflows and encouraging 
practitioners to focus on efficiency earlier in the development process. 

7.2 Limitations and Future Work 

We designed COMPRESS AND COMPARE to support practitioners cur-
rent compression workflows; however, as model compression becomes 
a more established and standardized discipline, it is possible that many 
of the iterative workflows we observed in this study will be superseded 
by automated approaches. However, interactive visualization has po-
tential benefits for compression work even if automated approaches 
eventually become standard. First, even though effective AutoML 
strategies exist, these techniques often still require data scientists to 
invest considerable time to distill model behavior into a single objective 
function [29]. Second, COMPRESS AND COMPARE seeks not only to 
help practitioners produce the best compressed model, but also to help 
them build intuition about compression techniques and how they affect 
model characteristics. Just as prior work visualizing ML model inter-
nals and behaviors [30, 48, 69] has allowed people to understand how 
these models work, a better collective understanding of compression 
can make these techniques more accessible and inspire new approaches. 

Our user study and prior formative research primarily interviewed 
compression experts and ML engineers who were already well-versed 
in model compression. While this allowed us to get the most rele-
vant feedback on how to design compression-specific systems, our 
system and takeaways do not consider the needs of novice users. It is 
likely COMPRESS AND COMPARE could be extended to support ML 
practitioners less accustomed to compression, such as by providing sug-
gestions on what techniques to try or incorporating a graphical interface 
to run compression experiments. Such adaptations would empower 
non-experts to apply compression, but they could also support compres-
sion experts in running on-the-fly experiments based on their insights 
from COMPRESS AND COMPARE, such as removing compression from 
a specific layer or making a slight change to the sparsity value. 

Further, several participants suggested extensions to COMPRESS 
AND COMPARE that could help it better match the specific needs of 
their teams, including supporting very large datasets and models as well 
as displaying custom efficiency metrics. Although the tool currently 
supports running model computations remotely or in advance, it does 
require the models being compared to be loaded simultaneously in 
memory so that each layer can be compared one-at-a-time. More 
efficient comparison techniques that do not require jointly loading 
several models may help COMPRESS AND COMPARE scale more easily. 

Finally, a key requirement of COMPRESS AND COMPARE is its 
integration between the visualization system’s and a user’s model de-
velopment code. However, like many other prototype tools for ML 
development, the capabilities that make COMPRESS AND COMPARE a 
versatile tool can also necessitate considerable set-up work, particularly 
for custom model architectures. User study participants noted that the 
potential difficulty of importing models into the tool could be a critical 
hurdle to accepting it into their workflow. Future work is needed to 
design code-level interfaces that link COMPRESS AND COMPARE into 
the tools practitioners already use to develop models. 

8 CONCLUSION 

Making ML models smaller, faster, and more energy-efficient can en-
able exciting new user experiences and broaden access to existing 
ones. Our work forms part of a nascent body of literature on facilitat-
ing the process of compressing models, which can help make these 
use cases practical as models become increasingly large and powerful. 
Through the design and evaluation of COMPRESS AND COMPARE, we 
aimed to understand and address challenges in ML model development 
made salient by compression, including the need for extensive iteration, 
human-centered trade-offs between user experience metrics, and subtle 
changes in model behavior. Future compression-focused data visual-
ization research can continue to make creating efficient ML models 
easier for a wider range of developers and teams, helping them make 
the experiences they envision a reality. 
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