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Fig. 1: Results from the first study in this paper of participant-rated causal relationships for 56 concept pairs curated from open-source
datasets. Participants were asked questions in the form “How much will an increase in X cause an increase in Y?” for each X→Y
concept pair. In (a), the Y-axis represents the participant-reported scores for concept causal relations (1 to 5: none to high). Each
concept pair is placed in order by mean causal relation along the X-axis, showing 95% confidence intervals. The light blue horizontal
band represents the mean score across all concept pairs ± one standard deviation (SD). The vertical dashed lines delineate concept
pairs that we refer to as having either low causal priors (<mean-SD) or high causal priors (>mean+SD). Part (b) shows four example
concept pairs from different parts of the causal prior spectrum. The heat maps show the number of participants in our study reporting
each score on the 1-5 causal scale. As these results show, causal priors can vary widely across different concept pairs. In the second
study in this paper (Section 3.4), we examine the impact of these causal priors on visualization interpretation.

Abstract— “Correlation does not imply causation” is a famous mantra in statistical and visual analysis. However, consumers of
visualizations often draw causal conclusions when only correlations between variables are shown. In this paper, we investigate factors
that contribute to causal relationships users perceive in visualizations. We collected a corpus of concept pairs from variables in widely
used datasets and created visualizations that depict varying correlative associations using three typical statistical chart types. We
conducted two MTurk studies on (1) preconceived notions on causal relations without charts, and (2) perceived causal relations
with charts, for each concept pair. Our results indicate that people make assumptions about causal relationships between pairs of
concepts even without seeing any visualized data. Moreover, our results suggest that these assumptions constitute causal priors that,
in combination with visualized association, impact how data visualizations are interpreted. The results also suggest that causal priors
may lead to over- or under-estimation in perceived causal relations in different circumstances, and that those priors can also impact
users’ confidence in their causal assessments. In addition, our results align with prior work, indicating that chart type may also affect
causal inference. Using data from the studies, we develop a model to capture the interaction between causal priors and visualized
associations as they combine to impact a user’s perceived causal relations. In addition to reporting the study results and analyses, we
provide an open dataset of causal priors for 56 specific concept pairs that can serve as a potential benchmark for future studies. We
also suggest remaining challenges and heuristic-based guidelines to help designers improve visualization design choices to better
support visual causal inference.
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1 INTRODUCTION

Supporting causal inference for users is a foundational pursuit for
visualization and visual analytics [5, 25, 30, 51, 65]. However, it is
a challenging task and the assumption of causal relationships where
there may be none can lead to significant misinterpretations, affecting
decision-making processes across various domains [35].

Well-known analytical guidelines caution against conflating corre-
lation with causation. However, when viewing visualizations (which
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typically display correlative associations rather than causal relations),
users often make assumptions regarding causality. Effectively commu-
nicating causal relationships, or the lack thereof, remains challenging
for data visualizations [5]. Understanding how humans interpret causal
relationships from visualized data is therefore crucial for effective
visualization design.

Acknowledging that understanding relationships—causal or
otherwise—is essential, this paper aims to gain insights into how hu-
mans infer causal relationships when they are consuming visualizations,
a process that we refer to as visual causal inference. Previous studies
have scrutinized how users examine the data presented in a visualiza-
tion as well as the manner of visual presentation to understand how
these factors influence users’ visual causal inferences [27, 54, 62]. Con-
currently, research into human perception has shed light on how it
shapes the interpretation of visual information of associations and cor-
relations [8, 41]. However, humans’ visual causal inferences do not
occur in isolation; they are made within a broader context that includes
specific choices of tasks and may be influenced by cognitive effects.

Beyond these existing contextual factors, we theorized that underly-
ing semantic causal priors—a person’s preconceived notions about con-
cepts and the underlying causal relationships between them [43]—play
a critical role in the causal inferences drawn from charts. We therefore
set out to investigate whether and how these underlying causal priors
might affect the causal inferences people make (i.e., whether the same
chart can lead to different interpretations under different causal priors).

This paper introduces two related studies aimed at answering the
questions of (1) whether underlying causal priors influence causal infer-
ences from visualizations, and if yes, (2) how these priors interact with
the actual statistical associations depicted in visualizations presented
with different chart types.

We first collected a corpus of concept pairs by selecting variables
from widely-used datasets and created visualizations representing vary-
ing statistical association levels with three typical statistical chart types:
scatterplots, line charts, and bar charts, representing continuous, tem-
poral, and categorical data respectively. We then conducted two crowd-
sourced studies to: (1) measure the underlying causal priors for the
concept pairs in our corpus as rated by participants when not seeing
any visualization of data at all; and (2) examine the effects of the causal
prior, visualized association, and chart type on participants’ perceptions
of causal relations in visualized data. Our results help provide a deeper
understanding of how preconceived notions about causality combine
with visual evidence to influence human cognition of causal inference.
We analyze these results in light of previous studies that looked at
human perception of causal inference in visualizations, and suggest
actionable heuristic-based design guidelines for visual causal inference.
Finally, we highlight some remaining challenges such as the need for a
deeper understanding of the impact of specific chart and data types.

More specifically, the contributions of this paper include:

• Empirical evidence and reference measurements of causal
priors associated with concept pairs. We report data from a
study showing that people infer causal relationships between pairs
of concepts absent of any other information or charts. Data from
this study is provided as an open dataset of priors for 56 concept
pairs that can serve as a benchmark for future studies.

• Empirical evidence demonstrating the effect of causal priors
on users’ visual causal inferences. We report data from a study
showing that a user’s assessment of causality when viewing a
chart is influenced not only by the type of chart and the data being
visualized, but also by the causal prior.

• A model capturing the interaction between causal priors and
other factors. Based on empirical data gathered in our stud-
ies, we define a model that expresses the interaction between
causal priors, visualized association, and chart type in influencing
the user’s reported strength of the causal relationship between
visualized concepts.

• A discussion of implications and heuristic-based design guide-
lines. A detailed analysis of the study results is provided along

with a discussion of the implications of these results on our un-
derstanding of visual causal inference. This includes a set of
heuristic-based guidelines to help designers improve visual de-
sign choices to better support visual causal inference.

2 BACKGROUND AND RELATED WORK

The research presented in this paper builds upon prior work in two
broad areas of research: i) human inferences about causal relationships
based on viewing visualizations of data and ii) the role of a person’s
prior context or knowledge in human cognition.

2.1 Human Perception in Visual Causal Inference
The term causal inference is typically used to refer to techniques for
identifying and characterizing relationships between variables that are
indicative of cause and effect [35]. The mathematical foundations
of these approaches have been developed within the statistics and
machine learning communities, where the techniques have been widely
applied [35, 37, 46].

Motivated in part by these advances, causal inference has also drawn
attention as an emerging topic in visualization research [5, 25, 30]. For
example, a number of visualization techniques have been proposed to
support specific causal inference workflows, such as event sequence or
time-series analysis [10, 26, 58], paradox and illusion detection [44, 53,
57], algorithm interpretation [14,24], and general exploratory tasks [20,
28, 55, 64]. See Borland et al. for a more detailed discussion on
recent advances in developing visualization techniques that can directly
support visual causal inference [5].

A number of these techniques are designed to provide graphical
representations and controls over an underlying statistical causal infer-
ence process. Others, however, examine or support the ways in which
humans cognitively draw inferences about causal relationships when
looking at data visualizations. We emphasize that this idea of a user’s
visual causal inference is closely related to but distinct from statistical
inference approaches. Visual causal inferences are ones made by a user
based in part on their perception and interpretation of the data they see
during an analytical task.

Critically, previous research has shown that users make visual causal
inferences even when viewing basic statistical charts that may focus on
correlation or other non-causal statistical measures (e.g., [28]). For this
reason, the understanding of how human perception relates to the ways
that people draw visual causal inferences has become an active topic of
research [5].

For example, Xiong et al. found that different visualization types do
not equally support causal interpretation [62]. For instance, their results
suggest that bar charts may be more suggestive of causal relationships
than scatter plots. The same research also explored the impact of
specific visual encodings (as variants of the same basic chart type)
and found that increasing levels of data aggregation were associated
with increasing levels of perceived causality. Similarly, the same study
suggests that within a given type of chart, lines and dots were viewed
as more suggestive of causality than bars.

In other work, Kale et al. [27] employed mathematical psychol-
ogy [19] and a causal support model to study causal inference percep-
tion with visualizations. Their model design supports comparisons
between that ground truth and users’ perceptions compared to several
other works [28, 62]. They found that users’ causal inferences deviated
from the ground truth, with either overestimation or underestimation
of the underlying ground truth causal relationships. The results of
this study highlight the difficulty in precisely assessing the level of
evidential support that a particular dataset offers for a specific causal
explanation.

Kaul et al. found that users tend to infer causal relations when filter-
ing data using variable constraints, employing simple bar charts and line
charts to show correlation [28]. Moreover, they found that using coun-
terfactual visualizations to explore different data subsets can partially
mitigate these effects when causal relationships are unsupported by the
data. Building upon these findings, Wang et al. developed a causal-
ity comprehension model for counterfactual-based visualizations [54].
They also reported results from a study that showed that visualizing



counterfactuals within static charts provides benefits to users at various
levels of causal comprehension.

Taken together, these studies provide significant insights into how
people infer causal relationships based on their perceptions of vari-
ous elements of how the data is visually represented. This focus is
well-motivated and the effects of human perception are important to
understand. However, in practice, perception only plays one part in
the broader cognitive process of drawing visual causal inferences. In
this paper, we aim to begin addressing this gap by exploring how cer-
tain cognitive factors—specifically those related to assumptions made
by users based on semantics associated with relationships between
concepts—impact how people make visual causal inferences.

2.2 Human Cognition and Underlying Causal Priors

Human knowledge and assumptions about the world can be complex
and varied, informed by each person’s lived experience and in response
to various forces such as culture and training [31, 49]. This is particu-
larly true in how people understand language, as reflected in the results
from several studies that have explored how people assume relation-
ships for and between concepts in human communication. For example,
research has long shown that different English verbs communicate dif-
ferent levels of implied causality in short phrases, a result that has been
replicated in several studies [43]. This same phenomenon was more
recently replicated by Ferstl et al. in research that also produced an
annotated corpus of 305 English verbs based on data gathered during
the study [12].

Demonstrating that implied causality is not unique to English,
Goikoetxea et al. studied the implied causality communicated by 100
interpersonal verbs in Spanish [15]. Like the previously mentioned
studies of English verbs, this study found that different verbs implied
different types and degrees of causal relationships. Moreover, they
found that the results were similar for both adult and child participants.

These findings from the psychology and human behavior literature
have led to related attempts within the NLP community to identify
implied causal relationships within text corpora. For example, Riaz
and Girju proposed an NLP model to recognize causality in verb-noun
pairs by predicting words’ semantics [42]. In another example, Salim et
al. developed the BeliefMiner system to extract causal graph networks
from unstructured text and used the approach to explore causal illusions
about climate change [44].

These efforts demonstrate that people tend to implicitly associate
causal relationships with short phrases or individual words. These
implied causal properties exist even before those concepts might appear
in a visualization, for example as part of an axis, legend, or some other
chart annotation. We refer to this idea—that a causal relation can be
implied by the use of words in and of themselves, even before those
words are used within a visualization—as causal prior.

In this way, causal priors are similar to other factors describing prior
experience or knowledge that have been shown within the visualization
literature to influence how people interpret charts [31,49]. For example,
research has shown that both background knowledge and individual dif-
ferences can influence visualization comprehension [39]. The efficiency
of specific visualization designs depends in part on characteristics of
the potential audience such as internal representations [32], graphical
literacy [13], color understanding [45, 48], mental models [33], diverse
backgrounds [21, 36, 56], experience levels [6, 18], and cross-domain
knowledge gaps [34]. Most recently, Xiong et al. reported results that
show that users’ personal beliefs can bias their estimates of visualized
correlations [63].

Yet despite this breadth of research exploring how users’ priors influ-
ence their interpretations of visualizations, to our knowledge, there have
been no previous studies that have examined the effect of causal priors
on how people perform visual causal inference using visualizations.
In this paper, we both: (1) develop a corpus of concept pairs anno-
tated with causal priors; and (2) study how those priors influence users’
visual causal inference behavior in different visualization contexts.

3 METHODOLOGY

To investigate the existence and influence of causal priors, we designed
and conducted two distinct yet complementary empirical studies by
recruiting users from Amazon’s Mechanical Turk to assess human
cognition of causal inference. Both studies were approved by the
[Redacted] Institutional Review Board. The studies are designed to
investigate potential visual and non-visual impact factors on human
cognition when conducting causal inference

3.1 Terminology

Here we provide definitions for three key terms used throughout the
paper:

• Causal prior: The causal relation level of a directed pair of
concepts, as indicated by participants in Study 1 without any
visualization stimulus. Values exist on a scale from 1 (no relation)
to 5 (high causal relation).

• Visualized association: The statistical association level between
a pair of concepts that is represented in a visualization. This
association level is controlled by the visualization stimulus gen-
eration process used for Study 2 (see Section 3.4.2), comprising
five levels from 0 to 1 with intervals of 0.25.

• Perceived causal relationship: The degree of causal relationship
between concept pairs perceived by a user when viewing a visual-
ization. In this paper, the values refer to our results from Study 2.
As with Study 1, values exist on a scale from 1 (no relation) to 5
(high causal relation).

3.2 Hypotheses

In this paper we aim to explore the potential relations among causal pri-
ors, visualized associations, and perceived causal relationships. Based
on this goal, we hypothesized that:

• H1: People have underlying causal priors reagarding the assumed
strength of causal relationships for concept pairs.

• H2: Causal priors affect the perception of causal relationships
from charts.

• H3: Visualized associations affect perceived causal relationships
from charts.

• H4: The nature of the effects of H2 and H3 can, in part, be ex-
plained by the disagreement between causal priors and visualized
associations.

• H5: The impact of causal priors and visualized associations on
perceived causal relationships vary by chart type.

Through these hypotheses, our study aims to contribute to the
broader discourse on graphical perception, specifically in the context
of how human cognition interprets causality from visual data. The ex-
ploration of these hypotheses will not only enhance our understanding
of cognitive processes, but also inform the design of more effective
visualization-guided exploration systems for causal inference.

3.3 Study 1: Examining Causal Priors for Concept Pairs

Study 1 examines inherent beliefs about causality by measuring the
prior causal relationship ascribed to a given directed concept pair. Par-
ticipants in this study were asked to assess the strength of causal rela-
tionships between concept pairs on a 5-point Likert scale based solely
on the concept names, without any visualizations. Instances of the
questions are provided in Section 3.3.2. Participants also provided their
confidence in their causal strength ratings on a 5-point Likert scale.
Each participant saw each concept pair in a randomized order. Study
1 was designed to address H1, and provide the causal priors used to
assess H2-H5 in Study 2.



3.3.1 Participants

A cohort of 100 participants was recruited for Study 1, with an aver-
age engagement time of 12 minutes, leveraging the Amazon MTurk
platform using CloudResearch with at least a 95% approval rating and
IP addresses from the United States and Canada. These selection cri-
teria aimed to ensure a certain level of homogeneity in cultural and
educational background, which can influence cognitive processing. We
excluded eight participants who failed at least two random attention
checks (these excluded participants spent less than 3 minutes on aver-
age), and analyzed data from the remaining 92 participants, resulting
in a 92% acceptance rate. The final study 1 participants included 65
men and 27 women, ranging from 24–58 years of age.

3.3.2 Dataset and Stimuli

Our empirical investigation employed a self-collected corpus compris-
ing two related components: concept pairs, and causal questions.

Concept Pairs: A total of 56 concept pairs were curated for our
study. We first collected 50 pairs of variable names from ten widely
used open-source datasets, including the Titanic, Census Income, and
Heart Disease datasets. These datasets were selected from the “Popular
Datasets” list on the UCI data repository [1] and the “Trending Datasets”
list on Kaggle in an attempt to cover a diverse range of concepts. Con-
cept names for selected variables were determined by the authors, and
then reviewed by five individuals with a maximum education level of
a high-school diploma or equivalent to confirm that the names could
be interpreted by the general public. We slightly revised the concept
names from the original datasets based on their feedback, e.g., “com-
puter speed” was used to simply replace “RAM size” which can be
more complex to understand. These 50 pairs were supplemented with
an additional 5 concept pairs, such as divorce rate in Maine and per
capita consumption of margarine, that were selected from Spurious
Correlations [52] to include pairs that we expected to be rated as having
little or no causal relationship. Finally, we also included Variable A
and Variable B to establish a baseline for a non-semantic concept pair.

For each concept pair, we separated them into one causal factor and
one outcome: we employed the widely used factor-outcome relations of
the 50 pairs from datasets (e.g., studying time can be a causal factor to
impact students’ grades), followed the original order of the 5 pairs from
spurious correlations [52], and determined Variable A as the causal
factor for the non-semantic concept pair. The causal factor is denoted
as X (e.g., Alcohol consumption in Figure 1 (b)), and the outcome as Y
(e.g., Liver disorder severeness in Figure 1 (b)). This assigned a causal
direction to each concept pair, denoted X→Y, and participants were
only asked to consider the causal relationship for each concept pair in
the specified direction.

Study Questions: Each concept pair was accompanied by a ques-
tion designed to determine each participant’s rating of the strength of
the causal relationship between the two concepts, e.g., “How much will
an increase in computer speed cause an increase in laptop price?”.
All questions were asked with an assumption of a positive causal re-
lationship, i.e., how much does an increase in one cause an increase
in the other. The questions were designed to provide sufficient back-
ground context to answer the questions, including phrases such as “in
the Titanic sinking” or “in a cancer surgery.” Further, we validated the
questions with five individuals who hold high-school level or lower
educational degrees to ensure the questions would be understandable
for general users. Participants were asked to rate the strength on a
5-point Likert scale from 1 (no causal relationship) to 5 (high causal
relationship). Participants were also asked to assess their confidence in
each rating on a 5-point Likert scale from 1 (low confidence) to 5 (high
confidence). In addition, three simple attention check questions were
added, e.g., “Please choose the answer of 3+7.”, displayed in random
order and position within the first 1/3, second 1/3, and last 1/3 of all
questions.

Details of concept pairs, used datasets, and study questions are all
available in the supplemtns on OSF.

Fig. 2: An instance of a visualization stimulus combined with a causal
question and a confidence question from Study 2.

3.4 Study 2: Exploring the Effects of Visualizations on
Causality Perception

Study 2 aimed to investigate how the perception of causal inference is
influenced by the causal priors from Study 1 as well as varying levels of
visualized associations in charts. The tasks in Study 2 mirrored those of
Study 1, however a visualization for the concept pairs was also provided.
Participants reported perceived causal relationships based on these
visualizations, which varied by three chart types (line, bar, scatterplot)
and different levels of visualized correlative association (ranging from
0 to 1). Duplicate charts or questions were avoided, and neither the
chart type nor the association level was repeated consecutively during
the study to avoid potential biases and learning effects. A representative
chart example is provided in Figure 2. Study 2 was designed to address
H2-H5.

3.4.1 Participants

For Study 2, we recruited a new cohort of 250 participants again using
Mechanical Turk and the same user restrictions as Study 1. Participants
who completed Study 1 were ineligible to complete Study 2. 21 par-
ticipants were excluded from the final analysis due to failing at least 2
out of 3 of the attention checks, resulting in a 91.6% acceptance rate.
The final Study 2 participants included 138 men, 87 women, and 4
non-binary, ranging from 22–64 years of age. The experiment took
approximately 15 minutes.

3.4.2 Visualization Stimuli

In Study 2 we employed the same set of concept pairs and study ques-
tions as Study 1. We classified the concept pairs into three categories
based on their inherent data types: time series, categorical, and continu-
ous. To balance study design simplicity with a reasonably representative
sample of commonly-used visualizations, we chose three of the most
widely applied chart types [38] for the three data types: line charts for
time series, bar charts for categorical, and scatterplots for continuous.
These three chart types have also been commonly included in various
types of graphical perception studies such as visualization comprehen-
sion [39], counterfactual visualization [54], color perception [48], and
causality visualization [62]. The breakdown of concept pairs per chart
type is as follows. The line chart included 16 concept pairs from open-
sourced datasets, the non-semantic concept pair, and the five spurious
concept pairs [52] for a total of 22 line chart trials. The bar chart and
scatterplot each included 17 concept pairs from open-sourced datasets,
for a total of 17 trials each.

To explore the impact of causal priors on perceived causal relation-
ships, we displayed data in each chart type using five distinct association
levels (Figure 3):

https://osf.io/dfkv4/?view_only=f84ffbc28cdf45e5a3d68f2f1e9c8427


Fig. 3: This figure shows illustrations of the three chart types and five
visualized association levels employed in Study 2. Left to right: scatter-
plots, line charts, and bar charts. Bottom to top: low association (around
0) to high association (around 1).

Scatterplots: We adjusted the multivariate covariance, with values
spanning from 0 (weak association) to 1.0 (strong association), at
intervals of 0.25. Following existing research on correlation judgments
in scatterplots [9,40,41], we only tested positive correlations to simplify
the study’s complexity and avoid the impact of negative correlations.
Line charts: Previous studies on line charts [8, 23, 59, 60] show that
the effectiveness of human perception is highest at around a 45° trend.
We therefore generated 5 evenly spaced association levels from 0 to 1
with a linear mapping of slope values (i.e., the average y to x ratio of a
line chart) from 0° (no association) to 45° (strong association).
Bar charts: We chose simple two-bar charts following the methodol-
ogy from prior work [62] by manipulating the difference ratio between
the bar heights to control the association difference. Differences for the
5 association levels ranged from no difference at 100% to 100%, to a
maximum difference of 100% to 50%, with evenly spaced intervals in
between.

Additionally, the visualized associations across all three chart types
were generated by adding random noise with a variance in the open
range (0, 0.1) to avoid duplicated charts and unrealistic cases, e.g. a
scatterplot with a covariance of 1.0 that would form a straight line. The
upper threshold of random noise (0.1) was derived from previous work,
in which differences of around 10% were often chosen as a threshold for
correlation or slope value comparisons for simple statistical charts [40,
50]. In this way, the difference between two neighboring association
levels was close to 25%. In the following analysis, we refer to these
charts using their base association values of 0, 0.25, 0.5, 0.75, and 1.

These values are shared across all chart types. However, we ac-
knowledge that the chart types are each associated with specific data
types. This results in different distributions across chart types and
makes interpretations of the impact of chart type more difficult. Please
see Section 5.4 and Section 7.1.4 for more discussions.

3.5 Procedure
Both Study 1 and 2 shared a similar procedure. The studies were ad-
ministered using Qualtrics. Before beginning the study, participants
completed an informed consent form, acknowledging their understand-
ing of the study’s purpose and their rights as participants. Participants
completed 56 randomized trials, one for each concept pair, and three
attention check questions, for a total of 59 trials. For each concept
pair, participants were asked, “How much will an increase in X cause
an increase in Y?" where X and Y were the concept pair. Participants
answered on a 5-point Likert scale from 1 (not at all) to 5 (entirely).

Participants were then asked, “Please rate your confidence" on a 5-point
Likert scale from 1 (very low) to 5 (very high).

For Study 2, each concept pair question also included a visualization
(Figure 2). To avoid learning and fatigue effects, each participant saw
each concept pair once, with its associated chart type (see Section 3.4.2)
showing a randomly chosen visualized association level. Visual associ-
ation levels were evenly distributed for each participant such that each
participant saw each association level 10-11 times. Consecutive trials
prohibited repeated chart types and visual associations. E.g., a bar chart
was never shown directly after another bar chat, and a visual association
with level 1 was never shown directly after a visual association with
level 1.

Across all participants, each association level for each concept pair
visualization was shown a total of 50 times. After excluding participants
who failed attention checks, the total number of completed trials for
each concept pair and association level varied from 44 to 48 trials
each. After completing the 59 concept pair and attention check trials,
participants were asked to provide any feedback. In the end, we noticed
users the data shown in our study were synthetic and did not depict
any real-world relationships. On average, Study 1 took 12 minutes and
Study 2 took 15 minutes.

3.6 Analysis Overview
In Section 4 and Section 5 we discuss significant results and statistical
analysis for the two studies based on the independent factors considered
in this paper with 95% bootstrapped confidence intervals (± 95% CI)
for fair statistical communication [11]. The study data, analysis code,
and the open dataset of priors are available at OSF.

4 STUDY 1 ANALYSIS

To test H1 we performed a repeated measures ANOVA on the 56 con-
cept pairs. Our analysis reveals a significant effect of different concept
pairs on causal rating (F(55,5152) = 53.41, p < .0001,η2 = .36), in-
dicating that people assume different causal relationship strengths for
different concept pairs.

We then calculated the average value of users’ reported causal rela-
tionships for each concept pair to serve as a key factor, causal priors,
used in the analysis of Study 2. Figure 1 shows these average values
with 95% confidence intervals for each concept pair.

The mean causal relationship strengths indicate an obvious differ-
ence in the score distribution across different concept pairs (see Figure 1
(a)). In addition, the relatively tight 95% confidence intervals indicate
good agreement across users for the causal relationship ratings. The
5 spurious correlations also had the five lowest causal priors (e.g., see
ice cream sales and shark attacks in Figure 1), further justifying the
design. The results from Study 1 therefore support H1, indicating that
people have underlying causal priors between specific concept pairs.

5 STUDY 2 ANALYSIS

Given the experimental support for underlying causal priors shown in
Study 1, we include the average causal relationship strength per concept
pair from Study 1 as a variable, causal prior, to the analysis in Study 2.

A generalized multiple linear regression model was used to analyze
the perceived causal relationship based on causal prior, visualized asso-
ciation, and chart type. This approach can be better balanced for the dis-
tribution differences between chart types as mentioned in Section 3.4.2.
The regression of causal prior, visualized association, and chart type on
causal relationship was statistically significant, (F(11,14404) = 257,
p < .0001, R2 = .17). Table 1 summarizes the significance results
from the linear regressions for perceived causal relationship, which are
presented in more detail in the following sections.

5.1 The Impact of Causal Priors on Perceived Causal Rela-
tionships

Our results support H2: Causal priors affect the perception of causal
relationships from charts. Causal prior (β = 0.56, p < .0001) signifi-
cantly affects perceived causal relationship. This supports that higher
causal priors were associated with higher ratings for the strengths of
perceived causal relationships.

https://osf.io/dfkv4/?view_only=f84ffbc28cdf45e5a3d68f2f1e9c8427


Table 1: Linear regression results from Study 2 for perceived causal rela-
tionship. Significant effects are indicated in bold and the corresponding
rows are highlighted in green. Note that line charts are the reference of
the other two chart types in the model so it cannot be shown below.

5.2 The Impact of Visualized Associations on Perceived
Causal Relationships

Our results support H3: Visualized association affects perceived causal
relationships from charts. Visualized association (β = 1.74, p < .0001)
significantly affects perceived causal relationship. The result indicates
that higher visualized association is associated with higher ratings for
the strengths of perceived causal relationship.

5.3 Interaction between Causal Priors and Visualized As-
sociations

Our results support H4: The nature of the effects of H2 and H3 can,
in part, be explained by the disagreement between causal priors and
visualized associations.

A significant interaction was found between causal priors and visu-
alized associations (β =−0.14, p = .001). Post-hoc analysis of simple
slopes was performed at the causal prior mean ± standard deviation, in
which mean−SD = 2.01, mean = 2.84, and mean+SD = 3.66. Note
that the slope differences here are distinct from the slope values that
were used to define associations in our line chart stimuli (Section 3.4.2).
In this instance the slope differences from the simple slope analysis
results indicate how the influence of visualized association changes as
the causal prior changes.

Significant differences were found between all slope pairs. There
was a significant difference between mean-SD (M=1.26, SE=0.04) and
the mean (M=1.14, SE=0.03), (t(14052) = 4.01, p = .0002, r = .82), a
significant difference between mean and mean+SD (M=1.01, SE=0.05),
(t(14052) = 4.01, p = .0002, r = .84), and a significant difference

Fig. 4: Results of the simple slope analysis between causal priors and
visualized associations. It shows that visualized associations would have
a lower impact for higher causal priors. From top to bottom, the dark blue
line shows the result for the mean-SD causal prior (2.01), blue shows the
result for the mean causal prior (2.84), and light blue shows the result for
the mean+SD causal prior (3.66).

Fig. 5: Results of the simple slope analysis between chart types and
visualized associations. The values hint scatterplots have a lower impact
on perceived causal relationships compared to bar charts and line charts.
On the left (a) are the simple slope regressions, and on the right (b) are
slopes at each interval.

between mean+SD and mean-SD, (t(14052) = 4.01, p = .0002, r =
.94). See Figure 4 for the visualization of simple slopes.

The results show that the mean-SD has a significantly steeper slope
than both the mean and the mean+SD. This difference indicates that
the visualized association has a greater influence on the perceived
causal relationship at lower causal prior. As causal prior increases,
the influence of visualized association decreases. Though, for all cases,
the slope is positive indicating that visualized association positively
impacts perceived causal relationship.

5.4 The Impact of Chart Type

Our results may support H5: The impact of causal priors and visualized
associations on perceived causal relationships vary by chart type. See
Figure 5. Significant interactions between chart type and visual asso-
ciation were found. Post hoc analysis was performed with estimated
marginal trends comparing each chart type pairwise, with Bonferroni
corrections applied.

The Bar Chart (M=1.19, SE=0.07) and the Line Chart (M=1.36,
SE=0.05) both had significantly steeper slopes compared to the Scat-
terplot (M=0.68, SE=0.07), (t(14050) = 5.126, p < .0001, r = .96)
and (t(14050) = 7.902, p < .0001, r = .98) respectively. This result
indicates that when visualizing bar charts and line charts, the visualized
association had a greater influence on the perceived causal relationship
than for scatterplots.

However, it is important to note that this observed impact may not be
due only to the chart type. In our study, each chart type was associated
with a particular data type (time series, categorical, or continuous),
such that only one chart type was shown to users for each concept pair.
Therefore any differences between chart types may be due, at least in
part, to differences in data types. We therefore conclude that our results
can only partly support H5. Section 7.1.4 provides further discussion
on this limitation.

5.5 Confidence

Similar to the above analysis, we found the generalized linear regression
on confidence was statistically significant, (F(11,14404) = 24.51, p <
.0001, R2 = .02), with a significant interaction effect of causal prior
and visualized association (β = −0.27, p = .0002). This suggests a
larger disagreement between causal prior and visualized association
may lead to lower subjective confidence and vice versa. Please see the
OSF supplements for a more comprehensive reporting of these results.

6 MODELING CAUSALITY PERCEPTION

In addition to the significant results reported in Section 4 and Section 5,
we report additional data patterns on causal priors observed in Study 1 in
Section 6.1, differential data patterns observed in Study 2 in Section 6.2,
and a model for perceived causal relationship in Section 6.3.

https://osf.io/dfkv4/?view_only=f84ffbc28cdf45e5a3d68f2f1e9c8427


Fig. 6: Results of user-reported confidence from Study 1. Concept pairs
are ordered with increasing causal prior. The cyan lines indicate mean ±
SD cyan lines, as with Figure 1.

6.1 Causal Prior Data Patterns

Figure 1 (a) indicates that users’ reported causal relationships for con-
cept pairs are more tightly distributed, exhibiting smaller 95% confi-
dence intervals, for more extreme causal priors with low or high values.
For example, as shown in Figure 1 (b), when examining the causal
relationship between ice cream sales and shark attacks, 86 users out of
92 chose a score of one, and for alcohol consumption and liver disorder
severeness, 53 users chose a score of five and 32 a score of four.

Figure 1 (a) also shows that the causal relationship scores are more
uniformly distributed, exhibiting larger 95% confidence intervals across
the five rating levels, for concept pairs with intermediate causal priors,
i.e., within the range of mean ± SD. For example, see the results
between variable A and variable B in Figure 1 (b).

Interesting data patterns also appear in participant-reported con-
fidence from Study 1. Figure 6 (a) indicates the confidence score

distributions per increasing average causal relationship order of con-
cept pairs, and Figure 6 (b) shows the confidence distribution of the
same example cases.

These results indicate that for concept pairs with both very low or
very high causal priors , the confidence is distributed in the high-value
range. For example, in Figure 6 (b), more than 80 users scored five
in confidence for ice cream sales and shark attacks, 64 users scored
five and 18 scored four for alcohol consumption and liver disorder
severeness.

But for concept pairs with intermediate causal priors, especially
for those between mean ± SD, users’ confidence becomes obviously
lower. E.g., see extra-curricular activities and students’ grades in
Figure 6 (b)).

6.2 Exploratory Analysis for Differential Data Patterns
We then analyzed data patterns from Study 2 using two differential
measures that calculate the difference between reported results from
users who see visualizations in Study 2 with the causal priors. First,
differential perceived causal relationship, ∆caus, is defined as follows:

∆caus = PCR−CausalPrior, (1)

where PCR is the perceived causal relationship from Study 2.
A second measure, differential confidence (noted as ∆con f ), captures

the corresponding difference in confidence as defined below:

∆con f = PCon f −Con f Prior (2)

In this way, we can use these two measures to assess to what extent
visualizations may lead to differences in users’ responses compared
to those reported without seeing visualizations. A positive ∆caus value
means that being exposed to the corresponding visualized data leads to
an increased perceived causal relationship while a negative value refers
to visualized data leading to a decreased perceived causal relationship.
A positive or negative ∆con f value can be interpreted similarly with
respect to the difference in reported confidence.

Fig. 7: Overall results of ∆caus (a) and ∆con f (b), as defined by Equation 1 and Equation 2. The x-axis is causal prior values of ordered concept pairs
following Figure 1. Each point in this figure denotes an average value of ∆caus or ∆con f , which is the mean difference, for each concept pair. The
trendlines are fitted per visualized association with generalized additive models [61] using ∆caus or ∆con f calculated via all user-reported results in all
concept pairs. The colors denote different levels of visualized association (VA) from 0 to 1, at 0.25 intervals. (a) hints that people intend to judge
higher causal relationships for concept pairs with very low causal priors, and vice versa. (b) shows people have lower confidence in concept pairs
with both very high and low causal priors.



Figure 7 shows the overall results for ∆caus and ∆con f grouped by
visualized association and plotted as a function of causal prior. Given
this representation, two patterns emerge that can provide further insights
into our findings between causal prior and visualized associations.

First, Figure 7 (a) suggests that visualizations may increase users’
perceived causal relationships for concept pairs with low causal priors
(on the leftmost side), while also decreasing users’ perceived causal
relationships on concept pairs with high causal priors (on the rightmost
side). We note, however, that this moderating effect may be related to a
“regression to the mean” effect [2].

Second, Figure 7 (b) reveals that users’ confidence may be impacted
by visualized data in a way that is different from δcaus. For concept
pairs with both very low and very high causal priors, users seeing vi-
sualizations tended to report lower confidence compared to users who
only saw concept pairs. However, for concept pairs with more interme-
diate causal prior, we found users who saw visualizations, no matter
the visualized association levels, became more confident compared to
those who only saw concept pairs. Overall, these results suggest that
for concept pairs with middle causal priors, the impact of visualizations
could be higher than those extreme cases.

6.3 Modeling Differential Perceived Causal Relationship
The results from Section 5.3 and Section 6.2 indicate that both causal
priors and visualized associations impact perceived causal relationships.
Here we present a model designed to help characterize this relationship.

First we calculate the difference between the visualized association
(denoted as VA for the remainder of the paper, not to be confused with
VA as an abbreviation of visual analytics) and causal prior, ∆VA,CP:

∆VA,CP =VA−normalize(CausalPrior), (3)

where the normalize function maps the causal prior from [1, 5] to [0, 1]
to match the range of VA.

Figure 8 shows comparisons of the distributions of ∆VA,CP to ∆caus
in (a) and ∆con f in (b). The ranges of ∆caus and ∆con f were normalized
to [0, 1] for easier comparison in this figure.

In Figure 8 (a), the densities clustered around the coordinate origin
indicate that when ∆VA,CP is near 0, ∆caus also tends to be near 0.
Furthermore, the trendline shows ∆VA,CP exhibits a close to linear
relationship with Deltacaus , suggesting a positive disagreement would
lead to users’ higher judgment of causality and vice versa, which aligns
with our findings. Besides, we fit a linear regression model to the
distribution between ∆VA,CP and Deltacaus, with the result:

∆caus ∼ 0.37∗∆VA,CP, (4)

with an intercept at 0.06, p < .0001,R2 = .22. This equation indicates
that, on average, the difference between visualized association and
causal prior will contribute 0.37 of the difference in the final perceived
causal relationship. Further, beyond the overall trend that can be cap-
tured by this model, we noticed that there exist more complex data
patterns. For example, we found some data points are clustered at
around (-1.0, -1.0) and (1.0, 1.0) indicating an extreme disagreement
may have a more severe impact than the general data pattern. We also
found a densely clustered pattern near x=0, suggesting many users still
keep their ratings near the original causal priors.

In Figure 8 (b), however, the densities cluster at different levels
of ∆con f , indicating that we cannot simply estimate how much users’
confidences may change using the differences between visualized as-
sociation and causal prior. This aligns with the differential patterns of
confidence discussed in Section 6.2 and Figure 7 (b). Meanwhile, it’s
obvious that the densely clustered data points are mostly above zero
and near horizontal lines, possibly indicating visualizations are more
likely to increase users’ confidence and the visualized associations may
have a lower impact. These initial patterns indicate a need to better
justify them in future research.

7 DISCUSSION

Our study investigated the impact of underlying causal priors and
visualized associations on causal strength ratings between concept

Fig. 8: Relationships between ∆VA,CP and ∆caus (a) and ∆con f (b). The x-
values denote the values of ∆VA,CP, while y-values show how much ∆caus
and ∆con f change with respect to x. The heatmaps show the densities of
all data points in each graph; both charts use the gray color scale shown
on the bottom-right, indicating the proportion of the number of points
shown within each color. The trendlines were fit with generalized additive
models [61] on 95% confidence intervals.

pairs. We find that human cognition of causal inference is impacted by
both preexisting causal priors and the displayed visualizations.

7.1 Reflections on Previous Findings
Our results indicate many insights and relations related to underlying
causal priors between concept pairs, associations conveyed via visu-
alization, chart types, and human cognition of causal inference. The
findings complement observations from past work focusing on related
elements of visualization usage and visual causal inference.

7.1.1 Underlying Causal Prior in Mind
The first major finding indicates that people have preexisting causal
priors (see Section 4). This insight aligns with the results from previous
studies, such as Ferstl et al. [12] and Goikoetxea et al. [15], which
found that there exist implicit causality norms from particular corpora
of English and Spanish verbs respectively. Our results differ in that
we gain insights between concepts represented by noun phrases, and
because our public corpus may be more applicable for certain analytical
tasks as most of the tested concepts are gathered from meaningful
variable pairs from widely applied datasets.

7.1.2 Association in Visualizations
Furthermore, our results demonstrate that the correlations broadly rep-
resented in visualizations significantly impact human causal inference.
The analysis provided further evidence built upon existing insights on
how correlations in visualizations can impact the human perception
of causal relations [8, 22, 29, 40, 41]. However, due to the significant
impact of causal priors, we found that causal inference can be more
complicated than just correlation estimation, thus the perceived causal
relationship cannot be simply modeled with either a linear or log-linear
model of visualized correlations such as those employed by many
correlation estimation studies [22, 29, 41].

7.1.3 Estimation of Causal Relationships
We found that causal priors have a significant impact on the cognition
of causal inference from visualizations. Although there exists limited
previous research focus on priors in visual causal inference, our find-
ings align with existing studies that focus on underlying relevant and
background knowledge combined with correlation. For example, the
impact of underlying causal priors shows a similar tendency to many
existing studies which found that underlying background knowledge
significantly impacts people’s understandings of visualizations [32–34].
Additionally, this impact also aligns with Xiong et al.’s findings that
people’s beliefs impact their estimation of correlations [63].



Our results further support an important insight from Kale et al. [27].
Their study found that users’ perception of causal inference tends to
overestimate or underestimate the ground truth causal relations built
upon the causal support model. As shown in Section 6.2, our findings
align with their insight and provide evidence that for concept pairs, such
cases more often appear with either very low or very high causal priors.
This insight may also align with psychology phenomena such as the
regression to the mean effect [2], which states that human predictions
on extreme values, whether high or low, tend to be near the intermediate.
However, our study is not designed to test psychological effects, further
experiments will need to be conducted to validate these assumptions.
For intermediate causal prior concept pairs, users’ causality perception
is largely impacted by visualizations. Additionally, our findings also
show evidence that users’ confidence varies based on concept pairs
with different causal priors and visualized associations.

7.1.4 Chart Type

Finally, our results suggest that chart type may impact causal inference.
We found that the perceived causal association for bar charts and line
charts had a greater difference from the causal prior than for scatterplots,
which aligns with prior studies [54, 62]. Xiong et al. [62] explained
these differences could be due to the different aggregation levels of
these charts. However, unlike their study, which tested different chart
types for the same datasets, each chart type in our study was only used
for a particular data type (e.g., scatterplots for continuous data). As a
result, only one chart type was used for each concept pair. This limits
our ability to disentangle the effects of chart type from the potential
effects of data type. Future studies should assess how data type, chart
type, and other potential factors

7.2 Implications for Design

In the light of existing perception experiments [27,28,54,62], our study
confirms many insights and goes further in interpreting the cognition
process of causal inference by connecting underlying causal priors and
visualized associations. The results further lead to heuristic implications
for the guidelines of future visual causal inference research and system
design, resulting in the following key points.

Causal priors: Designers should recognize that users have pre-
existing causal priors for many causal relationships. For specific ana-
lytical usage scenarios that may share a large number of similar vari-
ables, designers can collect analysts’ underlying causal priors for those
concept pairs in advance to better guide their interpretation of visual-
izations. This understanding could lead to the development of adaptive
visualization systems that tailor the presentation of data based on the
user’s established causal prior knowledge base. However, there remain
challenges to properly and precisely accessing the causal priors of tar-
get users, which may be hard and unrealistic to assume. Therefore,
future design and research should also consider the causal priors of the
users when presenting causal information, and provide ways to elicit,
validate, and update them.

Disagreement impact: Disagreement between a user’s causal
prior and the visualized association can lead to cognitive dissonance
on overestimation or underestimation of causal relationships. Since the
visualized association can be pre-calculated by visual analytics systems,
we would recommend adding functionalities of disagreement checks
using our suggested model in Section 6.3, if the causal prior has been
collected in advance. It’s also important for future research to find a
balance for such impact to avoid undervaluing human knowledge and
intuition and overvaluing the visualized data.

Visualization types: Previous work has shown that choices of
chart type play a pivotal role in the interpretation of causal relation-
ships, and our results seem to agree. Developers should be aware the
overall cognitive process of causal inference that chart types may evoke
should be an important consideration of effective visualization design.
Future design efforts should focus on identifying which types of visual
representations are most conducive to accurate causal inference.

7.3 Limitations and Future Directions

Data corpus: Although we collected concept names from vari-
ables from widely applied datasets, to achieve an efficient MTurk study
design our corpus only contains 56 concept pairs. This introduces some
limitations on the distribution of causal priors. For example, we didn’t
find any concept pair that has an extremely high average causal prior,
e.g., larger than 4.6, whereas the highest causal prior we found was
around 4.5. Future research should focus on enlarging the concept pair
corpus to better cover all possible distributions of underlying causal
priors. In addition, we tested one direction in the causal questions, by
predetermining causal factors and outcome concepts (Section 3.3.2).
Further experiments could consider the impact of different directions
between concept names in causal questions.

Visualization stimuli design: Additionally, to simplify the study
design, we only considered three typical chart types, following previ-
ous work [39, 54, 62], and did not test more complex visual encodings,
such as aggregation levels within each chart type. Therefore, although
we confirmed many existing insights regarding these charts, we can-
not directly address insights related to other visual encodings, such
as how text tables were found to perform similarly to bar charts [27],
and increasing aggregation levels in specific chart types were found
to improve the ability to convey causality [62]. Moreover, our chart
types were associated with data types, so we are unable to decouple
the potential impacts of data types and chart types, as discussed in
Section 7.1.4. We also did not test visualizations showing negative as-
sociations, which could have a different impact on human perception in
certain cases [4]. In addition, we removed chart axes since determining
appropriate axis value complicated the study design. However, showing
such values may also impact users’ perceptions. We plan to incorporate
more design factors in visualizations such as additional chart types,
varying visual encodings, and negative associations in future work.

Expertise and visualization literacy: Our study did not aim to
assess the impact of visualization expertise, and was conducted on
the general population of MTurk users. Our results can therefore not
provide insights related to existing perception experiments specifically
designed for novices [6,7,18,36] or experienced users [3,16,17,47]. Fu-
ture work could focus on examining how our findings may be affected
by novice or expert populations.

8 CONCLUSION

This paper aims to provide insights on the human cognition process
of causal inference from visualizations, and provides new perspectives
on guidelines from graphical perception for visual causal inference.
Our study has illuminated the significant role of causal priors, i.e., the
preconceived notions about causality between concept pairs, in shap-
ing users’ interpretations of visualized data. The reported empirical
evidence underscores the influence of causal priors, which, when com-
bined with evidence of associations in visualized data, can significantly
impact cognitive processes related to causal inference. The results
additionally suggest that chart type may also have an impact. The
introduction of a model capturing the differential patterns in perceived
causal relationships caused by causal priors and visualized associations
offers a novel perspective on how these elements converge to affect
users’ causality judgments. Furthermore, our research contributes to
the field by providing a comprehensive dataset of causal priors associ-
ated with concept pairs and visualizations. This dataset not only serves
as a benchmark for future studies but also aids in the development of
heuristic-based design guidelines aimed at enhancing visual design
choices to better support visual causal inference based on specific vari-
ables in data. In light of our findings, we advocate for heightened
awareness among visualization designers regarding the potential for
causal priors to lead to the impact of perceived causal relationships in
the visualized data. By integrating these heuristic-based guidelines into
visualization design, we can facilitate more accurate interpretations of
visualized data, thereby improving decision-making processes across
various domains.
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