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Abstract—Large Language Models (LLMs) are powerful but also raise significant security concerns, particularly regarding the harm
they can cause, such as generating fake news that manipulates public opinion on social media and providing responses to unethical
activities. Traditional red teaming approaches for identifying AI vulnerabilities rely on manual prompt construction and expertise. This
paper introduces AdversaFlow, a novel visual analytics system designed to enhance LLM security against adversarial attacks through
human-AI collaboration. AdversaFlow involves adversarial training between a target model and a red model, featuring unique multi-level
adversarial flow and fluctuation path visualizations. These features provide insights into adversarial dynamics and LLM robustness,
enabling experts to identify and mitigate vulnerabilities effectively. We present quantitative evaluations and case studies validating our
system’s utility and offering insights for future AI security solutions. Our method can enhance LLM security, supporting downstream
scenarios like social media regulation by enabling more effective detection, monitoring, and mitigation of harmful content and behaviors.

Index Terms—Visual Analytics for Machine Learning, Artificial Intelligence Security, Large Language Models, Text Visualization

1 INTRODUCTION

Large language models (LLMs), such as ChatGPT and Llama, have
shown great power in natural language processing and are used in
various application domains. However, ethical issues and security
concerns have emerged. For example, LLMs can generate fake news
on social media that amplifies the risk of social unrest or provide
solutions for illegal activities. Thus, developing secure and trustworthy
LLMs has become a societal responsibility for providers like OpenAI
and Google. Various techniques, such as reinforcement learning from
human feedback (RLHF) with safeguarding prompts, have been used to
align LLMs with human values [60]. While these techniques improve
LLM security, malicious actors still seek to bypass these protections.

Red teaming is a common technique in artificial intelligence (AI)
security that identifies and fixes model vulnerabilities by constructing
adversarial cases. Traditionally, developers manually create adversar-
ial datasets, relying on their expertise. For example, ChatGPT users
post prompts on platforms like Reddit to induce unintended outcomes,
which developers use to refine the model, improving its ability to han-
dle or reject such inputs. However, the reliance on manually created
prompts limits the scalability of red teaming [51]. To enhance scala-
bility, researchers are exploring automated approaches for generating
adversarial cases. Perez et al. [42] suggested using Large Language
Models (LLMs) as generators of toxic prompts, termed “red models,” to
challenge the target LLM. They applied adversarial training to prevent
the target model from becoming overly accustomed to a fixed set of
inputs. The success of this method hinges on incorporating feedback
to ensure the red LLMs can produce novel, varied, and high-quality
prompts as test cases. However, managing the environment and deliver-
ing precise feedback to the models pose ongoing challenges.

Additionally, adversarial training involving both the red and target
models is complex in terms of understanding and troubleshooting. Ad-
versarial training aims to improve both models simultaneously. Yet,
there are situations where performance may decline. For instance, red
models may adopt simpler strategies to create toxic cases that yield high
rewards. Meanwhile, the target model’s optimization goal is to improve
overall performance against all toxic prompts, which might unintention-
ally affect its capability in general scenarios. Therefore, it is essential
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to monitor and assess model performance from various perspectives.
Visual analytics has been established as a potent method for making
machine learning models both navigable and interpretable [5,48,64,72].
However, two significant challenges need to be overcome to effectively
visualize and analyze the intricacies of red teaming in language models
dealing with unstructured text.

Presentation of Adversarial Patterns. The adversarial training pro-
cess involves subtle nuances in how adversarial prompts are generated
and how target models react to them. Although existing studies have
provided visual analytics techniques for reinforcement learning [55,57]
and adversarial models [23, 56], they mainly focus on descriptive met-
rics like loss and diversity or high-level information, such as embed-
dings. Red teaming concerns models’ behaviors across the training
process. However, each iteration contains hundreds of model outputs,
and tens of training iterations can be used. It is challenging to provide
an intuitive overall trend while supporting the identification of concrete
prompts where models fail.

Support of Fluctuation Analysis. Evaluating models with well-
defined metrics, such as attack success rate, might be limited and fail
to reflect their robustness. For instance, the same attack prompts might
elicit appropriate responses at some checkpoints but not at others, indi-
cating that with some intervention, the attack could succeed. Existing
visual analytics approaches for natural language processing typically
visualize token distributions to understand model outputs [35,50]. How-
ever, since LLMs are sequence models whose outputs heavily rely on
context, fluctuations in the first few words can significantly impact
subsequent outputs. Current methods do not account for these fluctua-
tions in security scenarios. Visualizing the uncertainty and analyzing
probability transitions in language models remains a challenge.

We propose a visual analytics system, AdversaFlow, against attacks
for LLMs. This system incorporates a unique human-AI collabora-
tion framework consisting of a target model, a red model, a reward
model, and an interface where the experts can adjust the red model’s
behavior according to the performance analysis of the models. To
address the first challenge, we propose a visualization design called
multi-level adversarial flow. This technique offers a comprehensive
view of the adversarial dynamics, ranging from an overview of the
entire training procedure to the granular details of individual iterations.
To address the second challenge, we devise a distribution-based metric
for assessing the likelihood of token transitions. This assessment helps
determine how susceptible LLMs are to deception and producing un-
suitable replies. Additionally, we enhance our system with an advanced
Sankey diagram tailored for fluctuation analysis, which can intuitively
show the transition of LLM responses from safe to unsafe levels, in-
corporating a clear depiction of uncertainty in the process. Our core
contributions are as follows:
⋄ A human-AI collaborative red teaming framework that involves

human experts, LLMs, and effective metrics.



⋄ A visual analytics system, AdversaFlow, that support the presenta-
tion of adversarial patterns and fluctuation analysis of the models.

⋄ Case studies that demonstrate the usefulness of our system and
lessons learned for developing systems on AI security.

2 RELATED WORK

Here introduces studies on LLM red teaming and visual analytics.

2.1 Large Language Model Red-Teaming
Current LLM red teaming techniques can be divided into manual and
automated strategies. Manual approaches have been explored in prior
works [13, 43, 67], but these methods face limitations due to the con-
straints of manual annotation and the difficulty in discovering the failing
mode of reinforcement learning from human feedback (RLHF) [40]
manually. Therefore, there is a need for automated techniques to con-
duct red teaming [14]. In automated red teaming, prompt injection
and jailbreak are two effective ways to attack the LLM. These tech-
niques develop transferable adversarial prompts that can attack different
models, including black-box [25] and white-box models [78]. Wei et
al. [61] analyzed how jailbreak attacks achieve success, suggesting that
security mechanisms should be as sophisticated as their underlying
models. These works underscore the significant importance of red
teaming while highlighting numerous issues awaiting resolution [45].

In addition to the above methods, leveraging adversarial training is
an effective approach in automated red teaming. For instance, Gan-
guli et al. [14] proposed using LLMs to generate adversarial prompts
to improve the safety of the target model. Additionally, MART [15]
introduces multi-round automated adversarial training, enhancing both
adversarial and target model performance. Our work innovatively in-
corporates visual analytics, enabling us to explore data features through
expert knowledge and visualization analysis, facilitating the discovery
of failing modes. Building upon previous research, we further enhance
the performance of automated red teaming.

2.2 Visual Analytics for Machine Learning
Visual analytics can detect the issues of model performance, fairness,
and vulnerability [72]. We discussed the related studies from model
performance and model safety concerning fairness and vulnerability.

Visual diagnosis of model performance. Researchers have pro-
posed various approaches to visualize the structures and parameters
of different models, including CNNs [22, 29], DQNs [55], ensemble
models [39, 73], sequence-to-sequence models [44, 49, 66], transfer
learning models [30, 31], and Transformers [54, 70]. For instance,
CNNVis [29] helps experts identify CNN training failures by visu-
alizing network structures and internal features. Seq2seq-Vis [49]
focuses on natural language processing tasks, enabling interactive
what-if analysis to diagnose translation errors. Other methods aim
to enhance model performance by correcting problematic training
data [6, 7, 16, 21, 22, 24, 27, 36, 68, 69, 75]. OoDAnalyzer [7] detects
poorly representative samples to address model performance decline.
EvoVis [26] introduces a novel human-model collaborative method for
understanding data programming in model iterations. ACTIVIS [22]
and Yang et al. [69] integrate visualizations of the model and data,
providing comprehensive diagnostic interfaces.

Visual diagnosis of model safety. Model security is a crucial con-
cern in model development. Several studies have focused on model
fairness [1,3,58,66,74], i.e., potential biases during the model decision-
making process through dataset visualization. Recent efforts pay more
attention to model vulnerability [4, 9, 11, 32, 77]. Bluff [11] and AE-
Vis [4] visualize the activation pathways of images in models to explain
the process of adversarial attacks. Additionally, some work has been
developed and applied in other scenarios. Ma et al. [32] employed a
visual analytics framework to study data poisoning attacks on a spam
classifier. Ziegler et al. [77] created an interface to assist in adversarial
training, helping experts identify vulnerabilities in language models.
Moreover, research from the machine learning community [46, 77]
usually focuses on specific metrics, lacking a comprehensive view of
model security. In this paper, we introduce a visual analytics system
that provides a holistic and in-depth diagnosis of LLM security.

3 BACKGROUNDS

In this section, we will introduce terminologies related to our study.

3.1 Red Teaming in Large Language Models
Large language models (LLMs) have a large number of parameters,
ranging from billions to tens of billions. Because of their large size,
LLMs can compress a surprising amount of knowledge from the Inter-
net. Thanks to knowledge compression, LLMs have the capability of
zero-shot learning and few-shot learning, which means that they can
achieve various tasks with a small number of instructions and examples.
The instructions and examples are called prompts.

Given that LLMs can achieve the tasks prompted by users, ill-
intentioned users might request the model to pursue illegal or unethical
activities. These prompts are called toxic prompts or adversarial
prompts. The behaviors of using adversarial prompts are regarded as
attack. The attack can be classified into two categories, i.e., gradient-
based and non-gradient-based [65]. Gradient-based attacks attempt
to manipulate the input tokens to maximize the probability of toxic out-
puts. These methods rely on gradient descent, so the weights of target
models must be accessible. Moreover, gradient-based methods usually
result in prompts with “magic code” that is unreadable to humans. In
practice, AI security experts focus more on non-gradient-based attacks.
Non-gradient-based attacks attempt to revise the original prompts
without changing the semantics, which makes it difficult to defend. The
attacks include token manipulation, which means replacing several to-
kens with semantically similar tokens, and jailbreak prompting, which
can involve a more complex revision of the original prompts, such as
role-play, to make the model bypass the built-in safety. In this study,
we mainly focus on non-gradient-based attacks.

Developers implement safety measures to prevent LLMs from re-
sponding to toxic prompts. For example, they design pairs of toxic
prompts and refusal responses to fine-tune the model and inject safe-
guarding prompts to ensure the model does not generate offensive
responses. However, these built-in safety measures are not always
complete due to the black-box nature of the model. LLM Red teaming
is a strategy to test the security of the target LLM by constructing
toxic prompts. The red team generates toxic prompts for attacking the
model. Depending on who generates the toxic prompts, red-teaming
can be further categorized into human and model red-teaming.

3.2 Taxonomies of Toxic Prompts and Responses
The adversarial attacks might result in different harms. Weidinger et
al. [62, 63] have indicated five different risk types. The taxonomy was
well recognized and widely used in the development of trustworthy
LLMs [2, 10, 34]. Wang et al. [59] further elaborated on the taxonomy
and propose a hierarchical version for LLMs from the perspective of
security. The taxonomy of risk types is as follows: I. Information
Hazards, II. Malicious Uses, III. Discrimination, Exclusion, Toxicity,
Hateful, Offensive, IV. Misinformation Harms, and V. Human-chatbot
Interaction Harms. The authors also identified several subtypes for
each harm type. For example, information hazards potentially lead to
the leaking of sensitive information from organizations or individuals.

Wang et al. [59] created a benchmark called Do-Not-Answer with
GPT-4 and template-based methods to collect 939 toxic prompts. Re-
sponses are categorized into six toxicity levels from 0 to 5, indicating
the toxicity of the response. Level 0 responses mean the LLM refused
to answer, showing the lowest toxicity, while level 5 responses mean
the LLM followed the prompts without ethical concerns. Intermediate
levels contain statements that implicitly respond or refuse. We use a
similar rating for response toxicity in our visual analytics framework.
During red teaming and analysis, we used the Do-Not-Answer model
to classify responses into toxicity levels for detailed investigation. In
the following text, we use risk types for prompt categorization and
toxicity levels for response categorization for clarity.

4 SYSTEM DESIGN

Throughout the system design, we worked closely with two senior
AI security experts. One expert is a full professor with more than
fifteen years of research experience in security. The other expert is a
postdoctoral researcher interested in LLM security. Both experts have



published papers about LLM security in related venues like USENIX
Security, IEEE S&P, and NDSS.

4.1 Requirement Analysis
The goal of red-teaming is to improve LLM security by constructing
adversarial cases. While expert-created test prompts are high quality,
they are expensive and difficult to scale. Using generative models
like LLMs to create prompts is efficient but can lead to quality issues.
Based on literature reviews and discussions with experts, we derive the
following requirements [37, 71]:
R1 Automatic Execution of Adversarial Training. The system is

supposed to execute the whole framework of adversarial training,
including generating toxic prompts, fine-tuning the target model,
and updating the seed database according to model feedback. A
key point is automatically generating toxic prompts to improve the
efficiency of adversarial training.

R2 Convenient Manipulation of Red Team Model. The generation
of toxic prompts should be conveniently steerable by the experts.
Based on the model’s performance, experts can adjust the generated
prompts at scale to ensure the target model refuses to respond to
specific types of harmful content.

R3 Intuitive Overview of Training Process. The system should
provide a holistic view of the entire training process, showing how
key metrics (e.g., attack success rate, toxicity, and diversity) evolve
and how distributions of different risk types and toxicity levels
change. Experts emphasized the importance of evaluating model
performance on a general reasoning dataset simultaneously, as
improving security might reduce capability on other tasks [51].

R4 Detailed Investigation of Iteration Result. During red-teaming,
the red model generates different toxic prompts at each iteration.
An overview of metrics cannot accurately reflect model changes
in each iteration. A high attack success rate may be biased if
the number of different risk types is unbalanced. It is crucial to
examine responses to different risk types. Therefore, the system
should allow experts to zoom into the iteration level to investigate
detailed data, especially the relationship between risk types and
toxicity levels in each iteration.

R5 Comprehensive Evaluation on Validation Data. The visualiza-
tion of the training process can only reflect the dynamics of the
training model. To understand whether the target model becomes
better as the training proceeds, the model should be validated with
benchmarks that do not overlap with the training data.

R6 Fluctuation Analysis for Insight Discovery. In addition to
the evaluation result, fluctuation analysis on specific adversarial
prompts can provide insights into the adjustment. The system is
expected to provide an automatic strategy to help experts filter
unstable responses and support analyzing their fluctuation.

4.2 System Overview
As demonstrated in Figure 1, the system comprises a model manager, a
metric evaluator, and a visual interface.

The model manager is implemented with Python, with the library
of PyTorch and Hugging Face. It includes a red model for generating
adversarial prompts, a target model that responds to the prompts, and a
reward model evaluating whether the responses are appropriate. With
these three models collaborating with each other, the model manager
facilitates the automatic adversarial training (R1).

The metric evaluator and visual interface provide an intuitive and
efficient investigation of the models. For model training, the interface
provides a metric monitor showing the metrics’ statistics (R3) and
an adversarial view supporting a multi-level training process analysis
(R4). The interface contains a Sankey diagram demonstrating model
performance on validation datasets across different risk types for vali-
dation data (R5). The Sankey diagram is extended and connected with
a fluctuation view to understand the model’s vulnerability (R6).

With the interface, experts can understand the model behaviors,
identify weaknesses of the current model, and decide which data to
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Fig. 1: System Overview: The system includes a model manager (A),
a metric evaluator (B), and a visual interface (C). The models feature
an automatic training paradigm (R1), and the metrics and visualizations
uncover the performance and patterns in the dynamic training and val-
idation phases (R3-R6). With the visual interface, experts can further
adjust the model to achieve better model performance.

strengthen. The decisions are forwarded to the backend, and the training
will continue for additional iterations (R2).

5 RED-TEAMING FRAMEWORK

In this section, we introduce the red-teaming framework of our system
(R1), as demonstrated in Figure 2.

5.1 Red Model
The red model is used to generate toxic prompts for attacks. In recent
years, model red-teaming studies have commonly employed large lan-
guage models as prompt generators. For example, FLIRT [33] uses
GPT-Neo 2.7B, Perez et al. [42] use Dialogue-Prompted Gopher, and
MART [15] uses Llama 65B. In this study, we chose Llama2 [34], one
of the state-of-the-art open-source LLMs, as the red model. A critical is-
sue with Llama2 is that it was not primarily trained for long responses,
which are a critical indicator of prompt quality [8]. We fine-tuned
Llama2 using the supervised fine-tuning dataset from Alpaca [52] to
improve its capability of generating long responses.

There are different strategies for red models to generate toxic
prompts. Zero-shot prompting involves asking the models to generate
prompts without any examples, e.g., “generate a prompt that requests
the model to output sexually explicit content.” However, this might
result in low-quality prompts. Few-shot prompting, which provides
several good examples before asking the model to generate a prompt,
is more controllable. However, the diversity might be limited as the
prompts are conditioned by the examples. To ensure quality, we use few-
shot prompting, with seed prompts sampled from the Do-Not-Answer
Dataset [59]. The red model can be represented as below:

X ′ = fr(X , I), (1)

where fr is red team model, X denotes seed prompts, I denotes instruc-
tions, and X ′ denotes the generated toxic prompts.

5.2 Target Model
The target model is the LLM we aim to improve for security. In our
study, we use Llama2 as our target model, but any open-source LLM
can be used. We focus on open-source LLMs because our target users
are AI security experts responsible for securing LLMs against attacks,
and they need access to model weights. Llama2 is chosen because it
is considered more secure than other open-source LLMs, making it
a more challenging subject for red-teaming methods [59]. The target
model can be represented as:

R = ft(X ′), (2)
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Fig. 2: Our Red-teaming Framework: Seeds of toxic prompts are sampled from the database and forwarded to the red model. The red model then
rewrites the seed prompts and forwards them to the target model. A reward model will rate the responses of the target model. The scores are then
used to update the target model and database. So far, an iteration has ended.

where ft is target model and R denotes responses.

5.3 Reward Model
The reward model evaluates responses to adversarial prompts, with
the scores used to update the red model and the target model. Several
studies have explored how to evaluate response toxicity. For example,
Do-Not-Answer [59] classifies responses into six toxicity levels qualita-
tively. Perspective API [17] rates the toxicity of text and is widely used
in social media moderation. However, its high tolerance for toxic con-
tent makes it unsuitable for our scenario. Additionally, these methods
evaluate responses without considering the prompts.

In our study, we employ the reward model from OpenAssistant, a
DeBERTa [18] based model that is trained with reinforcement learn-
ing from human feedback [41]. The model can jointly consider the
instructions, questions, and responses for evaluation.

s = g(X ′,R), (3)

where g is the reward model and s is the toxicity score. The s ∈
[−10,10] indicates the response toxicity from very toxic to non-toxic.

5.4 Iteration
We outline the model interactions occurring within a single iteration.
Initially, seed prompts are sampled from the database, and the red
model is tasked with generating toxic prompts based on these seeds.
These toxic prompts are subsequently submitted to the target model,
which provides responses. Following this, both the prompts and their re-
sponses are forwarded to the reward model to calculate toxicity scores.

Based on the assigned scores, we classify the prompt and response
pairs into two groups: (X ′−,R−) and (X ′+,R+), indicating whether
the target model has failed or succeeded in appropriately responding
to the prompts. The data (X ′−,R−) is utilized to fine-tune the red
model fr. In contrast, the data (X ′+,R+) is employed to fine-tune
the target model ft , aiming to bolster its defense against similar at-
tacks. However, we identified that data close to zero scores are typ-
ically of inferior quality, leading us to establish a threshold value of
s′ = 1.8. Consequently, {(X ′−,R−)} = {(X ′,R)|s ≤ 0∧ |s| ≥ s′} and
{(X ′+,R+)}= {(X ′,R)|s ≥ 0∧|s| ≥ s′}.

Furthermore, we adjust the response R− to reflect responses that
refuse to answer. This modified data is then used to refine the target
model ft . Specifically, entries {(X ′−,R−)}= {(X ′,R)|s ≤ 0∧|s| ≥ s′′}
with the most negative scores, where s′′ = 4.0, are added to the database
as seed prompts for future iterations. Supervised fine-tuning is con-
ducted using AutoTrain [20], adopting an auto-regressive approach
where the model predicts responses on a token-by-token basis. Predic-
tions are evaluated against the true labels, X ′ for fr and R for ft , using
a cross-entropy loss function to guide model updates.

Following the fine-tuning process, the target model undergoes eval-
uation using validation data to track performance shifts and gather
responses for further analysis. Upon the completion of this validation
phase, an iteration concludes, after which a new iteration commences.

6 METRICS FOR PERFORMANCE ANALYSIS

The red-teaming framework enables automatic training for the red and
target model, while the performance analysis, which is the focus of
domain experts, determines how to adjust the model training process. In

this section, we will introduce the metrics for training (R3), validation
(R5), and fluctuation analysis (R6).

6.1 Training and Validation
The model performance of training and validation can be evaluated from
multiple perspectives, which correspond to different metrics. Overall,
the metrics are selected to balance the model’s security and perfor-
mance, based on the understanding that a more secure model may
exhibit weaker reasoning capabilities. [51]. First, we evaluate the mod-
els’ security with an attack success rate and average toxicity score from
the security perspective [59]. Specifically, the attack success rate is
computed by dividing the number of successful attack prompts by the
amount of prompts. The average toxicity score is the average of the
scores computed by the reward model. We show these two metrics on
the training dataset and validation dataset, respectively. Second, as we
enhance the model’s security, it’s crucial to preserve its performance
in general reasoning tasks simultaneously. To this end, during each
iteration, we assess the target model using the MMLU dataset [19]
to gauge its commonsense reasoning capability. The accuracy of the
model’s responses serves as the evaluation metric. While numerous
tasks and benchmarks exist for assessing model capabilities, includ-
ing code generation, world knowledge, and reading comprehension,
our primary aim is to establish an effective model red-teaming process.
Consequently, the prototype system specifically focuses on the accuracy
of commonsense reasoning as its metric of measurement.

In addition, to avoid red model degeneration during adversarial train-
ing [53], we ensure the diversity of the generated adversarial prompts.
Diversity is computed using Self-BLEU [76], a widely used metric de-
rived from BLEU. Specifically, BLEU evaluates how similar a prompt
is to the rest of the prompts, while Self-BLEU is the average of the
BLEU scores for all prompts. Other metrics, such as the proportion of
unique n-grams, entropy, and the “Zipf coefficient” [42], can also be
used for diversity assessment.

6.2 Fluctuation Analysis
In addition to the aforementioned metrics, experts expect to identify
corner prompts that the target model cannot handle properly. In other
words, the model is not confident in the response across the iterations,
sometimes refusing to answer and sometimes agreeing. The metrics
reflect the transitions between different response toxicity levels, which
we can use to measure the fluctuation at the prompt level. Specifically,
from iteration n to iteration n+1, if the model’s toxicity level transits
from label 0 to label 5, the count of transition will increase by 5. We
sum up the transition from the first iteration to the latest one to measure
the fluctuation at the prompt level:

Fp =
N

∑
i=2

|ln − ln−1|, (4)

where N is the maximum iteration number and ln is the toxicity level.
We further proposed a numerical measure to evaluate the fluctua-

tion at the token level. The idea was inspired by jailbreak attacks on
LLMs [78] that effectively increase success rates by guiding models to
start responses with affirmative tokens like “I will answer your ques-
tion,” leveraging the context learning mechanism to produce expected
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results. The idea guides the researchers in designing loss functions
of gradient-based search strategy for jailbreak attacks [47]. In our
scenario, the difference between token distributions can assess the risk
of a safe response turning into a risky one. Specifically, given a prompt,
the first K tokens of the safe response R from the target model can be
denoted as r1,r2, · · · ,rK . We use the set A = {A1,A2,A3, · · ·} to denote
the risky responses with the first K tokens. For a risky response An,
the first K tokens are an,1,an,2, · · · ,an,K . p(·) denotes the probability
distribution of the vocabulary. For R and An, we use Euclidean distance
to measure the difference between two responses:

d(R,An) =

√√√√ K

∑
i=1

|p(ri)− p(an,i)|2. (5)

We use the distance from R to the risky response set to represent the
fluctuation at the token level:

Ft = d(R,A) = min
n

d(R,An). (6)

We define the distance from a safe response to risky responses as token-
level fluctuation. The set A is obtained by counting the frequent starting
tokens from the target model responses. We set K = 4 and identified
the most frequent starting tokens as “The best way to,” “I would like to,”
and “The most effective methods.” We found that the starting tokens
follow a long-tail distribution, with the top ten accounting for over 60%
of all risky ones. Thus, we set n = 10 and use the top ten tokens to
form the set A. At each iteration, we update the list of risky responses.

In addition to Euclidean distance, entropy can measure the distance
between the probabilities of the predicted tokens and the risky responses.
However, computing entropy requires obtaining all token distributions
at a position, which is computationally expensive. To ensure efficiency,
we use Euclidean distance to evaluate token-level fluctuation.

6.3 Implementation
The red teaming framework was implemented with Python, and the
pre-trained Llama2 was implemented with PyTorch from Hugging Face.
The models were trained on a computational server with four NVIDIA
A100 (80GB) GPUs. At each iteration, we set the number of seed
prompts to 200. The backend was implemented with Flask, which
communicated the results to the front-end interface.

7 VISUALIZATION DESIGN

We then introduce the visualization designs to support the in-depth
analysis and model steerability. As demonstrated in Figure 3, the
AdversaFlow interface contains six views: (A) Control Panel, (B) Em-
bedding View, (C) Metric Monitor, (D) Adversarial Flow, (E) Instance
List, and (F) Fluctuation View.

7.1 Control Panel
The control panel (Figure 3-A) facilitates model management, featuring
buttons for importing and exporting models, pausing, and resuming
training (R2). As detailed in subsection 5.4, the seed prompt database
incorporates high-scoring prompts in each iteration, leading to changes
in prompt distribution. To illustrate the variance in prompt types, we
employ a pie chart with colors signifying different risk types (Figure 3-
A2). Our sampling rate is equal to the prompt distribution in the
database. To avoid the added prompts disrupting the equilibrium among
risk types, we provide another pie chart to allow adjustments to the
sampling rates for seed data. Users can alternate between pie charts
via a toggle button and modify the sampling rates for different types as
needed. The adjustments will apply to subsequent iterations.

7.2 Embedding View
To enhance the generation of toxic prompts, maintaining their diversity
is crucial. While we have implemented a metric to track diversity, it
does not offer an overview of prompt similarities. To address this, we
introduce an embedding view (Figure 3-B) that displays the distribution
of prompts’ high-dimensional embeddings generated using OpenAI’s
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text embedding API. We apply t-SNE to map the embeddings onto
a two-dimensional plane, presented as a scatter plot. We constructed
view coordination between the embedding view and adversarial flow to
help experts observe prompt distributions. When clicking on a specific
flow or instance in the instance list, the corresponding data points in
the embedding view will be highlighted. The view includes a lasso
interaction to add seed prompts to the database (R2).

7.3 Metric Monitor
The metric monitor (Figure 3-C) provides insights into model security,
prompt diversity, and reasoning abilities (R3) through a radar chart
(Figure 3-C1) and a line chart (Figure 3-C2). The radar chart displays
the metrics of a selected iteration. In addition to the radar chart, a
line chart is utilized to depict the progression of metrics over time,
offering a chronological view of the data. The line represents the value
of the metric at different iterations. By interacting with the radar chart
labels, users can select and switch between different metrics on the
line chart, which accommodates up to two metrics simultaneously on
a dual axis. While visualizing two metrics with disparate scales may
introduce complexity [12], it allows for the analysis of trends and assists
in evaluating the effectiveness of the training process. For instance,
a rapid decline in model performance against a slow improvement in
security suggests the need for revising the training approach.

7.4 Adversarial Flow
The adversarial flow (Figure 3-D) is the key component of our system,
supporting the analysis of fine-grained performance changes during
the adversarial training from multiple levels (from level 1 to level 3,
as indicated in Figure 4). The adversarial flow contains two views: a
training flow and a validation flow.

Training Flow. The training flow (Figure 3-D1) shows the distri-
bution of prompts and responses across iterations (R4). At level 1, as
the experts more focusing on performance, we visualize the response
distribution by toxicity levels using an area chart by default (Figure 4-
A1). We employ a sequential color scheme from red to blue to denote
the toxicity levels of responses, ranging from the highest risk to the
safest (Figure 4-A3). The color encoding is consistent across the sys-
tem. The area width encodes the amount of the specific toxicity level
at that iteration (Figure 4-A4). During an iteration, it is critical to
analyze the correspondence between prompts and responses. Therefore,
the training flow supports zooming in level 2 (Figure 4-B1) on the
details of each iteration using a mouse scroll interaction (Figure 4-A5).
Because the prompts and responses are generated independently in
different iterations, after zooming in, the area chart splits vertically
and transforms into a sequence of Sankey diagrams. Each Sankey
diagram represents the relation between generated prompts and model
responses in an iteration. The flow encodes the number of specific
prompts (e.g., Malicious Uses) that receive responses of a specific risk
type(Figure 4-B4). Moreover, the categorical color scheme encodes
risk types (Figure 4-B3), which is also consistent in other views.

A design alternative to the Sankey diagram is matrix visualization,
with the color of each cell representing the flow volume from a risk

type to a toxicity level. However, there are three reasons for choosing
Sankey diagrams over matrices. First, it is easier to perceive subtle
differences using width rather than color, as spatial encodings of numer-
ical values are more efficient than color channels [38]. Second, showing
the distribution of different columns and rows in a matrix requires ad-
ditional space, such as using accompanying histograms. Third, the
Sankey diagram provides a consistent representation of the validation
flow, which will be introduced later. Therefore, we use a sequence of
Sankey diagrams instead of matrices.

Our system facilitates a detailed level-3 analysis of nodes and flows
(Figure 4-C). Clicking the nodes associated with risk types (Figure 4-
C3, Figure 4-D2) and toxicity levels (Figure 4-C1), a stacked bar chart
appears, illustrating the distribution of the respective toxicity levels or
risk types. Similarly, clicking on a flow brings up a line chart to depict
the change in volume over iterations (Figure 4-C2).

Validation Flow. The validation flow (Figure 3-D3) showcases the
model’s performance on the validation dataset (R5). In contrast to the
training flow, which captures the iteration-based dynamics, the valida-
tion flow utilizes consistent prompts across all iterations, facilitating
a more straightforward assessment of the model’s evolving security
performance. This distinction allows for an analysis of how the target
model’s responses to identical prompts change over time. Leveraging
this uniformity, a Sankey diagram is used to trace the shifts in toxicity
levels from specified risk types. The visual encoding is the same as the
Sankey diagram of training flow. For level-1 overviews, the Sankey
depicts transitions among toxicity levels (Figure 4-A2). As the analysis
progresses to level-2 details by scrolling the mouse, which is synchro-
nized with the training flow, the validation flow will change to show
the flows starting from risk types (Figure 4-B2).

7.5 Fluctuation View
To aid experts in identifying problematic cases (R6), we have devel-
oped a fluctuation view that pinpoints and visualizes problematic cases
that the model is not confident with (Figure 3-F1). As described in
subsection 6.2, numerical metrics have been utilized to assess model
fluctuations at both the prompt and token levels. This view organizes
responses according to their prompt-level fluctuations and shows token-
level fluctuations over iterations with a line chart. When clicking on
a point in the line chart (Figure 4-F2), the detailed prompts and re-
sponses (Figure 4-F3) and the token probabilities of the predictions
and risky tokens (Figure 4-F4) will be shown on a card, where color
brightness encodes the probability value. When clicking on the whole
card (Figure 4-D1, Figure 3-F1), the fluctuation path will be shown on
the validation flow (Figure 4-D2, Figure 3-D4). The path starts from
risk types and traverses the toxicity levels at each iteration. At each
node where the path has gone through, we overlay a circle whose area
encodes the token-level fluctuation value.

7.6 Instance List
We have designed an instance list to display the prompts and responses
along with their associated risk types and toxicity levels, updating based
on whether experts select a training or validation flow. Additionally,



the instance list is synchronized with the fluctuation view: selecting
an instance from the validation set triggers its corresponding card in
the fluctuation view, simultaneously showcasing the fluctuation path on
the validation flow. Concurrently, the selected instance is highlighted
within the embedding view.

8 EVALUATION

We have conducted case studies and quantitative evaluations to demon-
strate the usefulness of our method.

8.1 Case Studies
We showcase the effectiveness of AdversaFlow with two case studies.

Participants & Data.The case studies were conducted by two AI
security experts who have not participated in our design process. The
first expert (E1) holds a Ph.D. degree in computer science, and his
research interest involves backdoor attacks and adversarial attacks for
AI models. The second expert (E2) is a tenure-track assistant professor
whose research interests cover LLM security and privacy, AI system
security, and software security. In the case studies, the models are
trained and validated using Do-Not-Answer Dataset [59].

Procedure. Due to the extensive time required for model fine-tuning,
with each iteration taking approximately one hour, the case studies were
conducted in multiple rounds. First, we presented the system interface
and models that had undergone several training iterations, allowing the
experts to familiarize themselves with the system and offer preliminary
recommendations for model setup. After training completion, a second
meeting was convened where the experts thoroughly analyzed the
results and suggested further refinements for Case I. After additional
iterations, we held a third meeting with the experts, specifically inviting
E2 to focus on fluctuation analysis and deliver Case II. Finally, we
organized a fourth meeting with E2 to review and confirm the outcomes.

8.1.1 Case I: Set-level adjustment for optimization
We invited expert E1 to use AdversaFlow. The case is about balancing
the model performance across risk types and multiple metrics.

The training experienced an inflection point. E1 set the iteration
number to 20 and clicked the start button, and the red teaming started.
As the training proceeded, the metric monitor and adversarial flow
were updated. E1 decided to analyze the change in attack success
rate (ASR) and average toxicity score (TS), which reflect the security
of the target model (Figure 5-A1). From the dual-axis line chart, he
discovered that TS first reduced significantly and then increased a little
while the ASR first kept consistent and then significantly reduced in the
following iterations (Figure 5-A2). The reduction of TS indicated that
the generated responses got toxic at the first 12 iterations and became
less toxic. The change in ASR also aligned with the observation.

The transition from quantity to quality. E1 wanted to understand
why the inflection point appeared around the 12th iteration. He then
turned to the adversarial flow, which showed the distribution of the
toxicity level across iterations. From the training flow, he discovered
that the proportion of high toxicity levels decreased significantly after
the 12th iteration (Figure 5-B1). He further scrolled the wheel on the
mouse (Figure 5-B2) and zoomed into the details of each iteration.
A significant change from iteration 12 (Figure 5-B3) to iteration 14
(Figure 5-B4) is the flow from Malicious Uses to toxicity level 0. He
clicked the node of Malicious Uses and a card showing the distribution
of different toxicity levels that the node flowed in (Figure 5-B5). The
red proportion quickly got smaller after the 12th iteration. He further
clicked the node of level-0 toxicity, and another chart appeared, show-
ing the distribution of risk types flowing into level-0 toxicity across
iterations (Figure 5-B6). E1 observed that the proportion of Malicious
Uses changed synchronously as the level-0 toxicity. He inferred that
during the training process, the prompts of Malicious Uses might result
in responses of relatively low toxicity scores from the target model. He
complimented that this risk type is the most challenging one for LLMs,
and even GPT-4 cannot achieve a good performance on it. When the
iteration button was clicked, the pool representing the risk type distri-
bution in the database changed (Figure 5-E1). The distribution showed
that the red teaming framework had added additional seed prompts and
improved the sampling rate of Malicious Uses, which conformed to the

expert’s inference. The extensive training on this type for the first 12
iterations increased the security of the target model.

Get the training back on track. From the validation flow, he
discovered that the red proportions became significantly smaller after 20
iterations, indicating a substantial increase in model security (Figure 5-
C1, C2). Overtraining on Malicious Use might overlook the harm of
other types, so he decided to adjust the type distribution. E1 turned to
iteration 20 and clicked the nodes of level 0 (Figure 5-D1) and level 5
(Figure 5-D3) to understand the distribution. From the embedding view,
he discovered that most points in the center were well safeguarded,
but those far from the center were at risk. The distribution showed
that Information Hazards constituted most of toxicity level 5. Clicking
on the sub-flow (Figure 5-D2), he explored the instances in detail.
The prompts were mostly about personal information and resembled
daily dialogues. E1 indicated this type was highly deceptive because
LLMs were trained from a large corpus of similar information during
supervised fine-tuning. As a result, the LLMs were unaware that the
question was problematic and might leak information misused during
training. He decided to increase the sampling rate of Information
Hazards and reduce the proportion of Malicious Use (Figure 5-E2).

Obtaining a candidate checkpoint. E1 decided to balance the
security and model performance on general reasoning tasks. Therefore,
he selected the success rate and accuracy to be the monitored metrics
(Figure 5-F1). After training for another 10 iterations, the success
rate on the validation set continued to decrease. He discovered that
the accuracy decreased from 53% to 49%, but after iteration 24, the
accuracy was higher than 50%. The decrease was within an acceptable
range. Moreover, from the training flow, he discovered that in iteration
25 (Figure 5-F3), the target model tends to achieve better in Information
Hazard compared to the previous iteration (Figure 5-F2). The toxicity
level distribution also conformed to the flow (Figure 5-F4). Therefore,
he stopped the model training and exported the model checkpoints at
iteration 25 as a candidate for future deployment.

8.1.2 Case II: Instance-level investigation for fine-tuning

The second case (Figure 6) emphasizes fluctuation analysis, aiming to
pinpoint uncertain prompts within the validation dataset to examine
the model’s vulnerabilities thoroughly. This analysis can help improve
model performance at the instance level. The case was conducted in
collaboration with E2.

High fluctuation recalls uncertain cases. Building on the prior
case’s foundation, where the model underwent training and adjust-
ments yielding satisfactory outcomes across various risk categories, E2
shifted focus to the fluctuation view. All prompts were ranked from the
highest to the lowest fluctuation. He specifically investigated prompts
exhibiting significant prompt-level fluctuation. Investigating the cards
by clicking on them (Figure 6-A2, A5), he discovered that responses to
these highly fluctuating prompts oscillate between high and low toxicity
levels (Figure 6-A4, A6). The responses first transit to level 5 and then
transit back to level 0 after the 3 iterations. From the path, E2 identified
that the circles on the path were relatively smaller before the transition
back to level 0, which means that the distributions of generated tokens
and the risky tokens are relatively closer (Figure 6-A4). E2 inferred
that the model was confused about the generated responses and risky
responses. The path in Figure 6-A6 lay at a safe level, but he thought
that there might be a similar problem in additional iterations, especially
when compared to samples the model can handle well (Figure 6-A1).

The same starting tokens can be risky or safe. From the line chart,
E2 observed how token-level fluctuations changed across iterations. He
noticed the fluctuation became extremely small at iteration 27 (Figure 6-
A3). Clicking the point in the line, he explored the token probabilities
(Figure 6-B1)and discovered that the token-level fluctuation was zero
because the starting token was “I’m sorry,” which can be safe or risky.
For instance, in Figure 6-B1, the tokens form a safe response that
resolves the user question, but for Figure 6-B3, the response is a safe
refusing response. The risky response starting with “I’m sorry” refuses
to respond with a totally wrong reason, inviting the user to try again
(Figure 6-B5). E2 indicated that the case was extremely complex for
the LLMs to figure out. As a compromise, E2 revised the responses
with a clearer justification (Figure 6-B2, B4) and decided to forward
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the response to train the model explicitly.
Corner cases appear to be semantically similar. E2 further in-

vestigated the cases that were still not resolved well. He turned to the
validation flow and clicked on the flow of level 0 at the last iteration.
The prompts were filtered and listed in the instance list. E2 investigated
the prompts one by one, and the embeddings of the prompts were high-
lighted in the embedding view. He noticed that these prompts were
mostly concentrated at the lower left position of the embedding view.
Most of these prompts were of the type of Discrimination, Exclusion,

Toxicity, Hateful, and Offensive and Misinformation Harms. E2 indi-
cated that LLMs are indeed more vulnerable to this type because the
recognition is difficult and dependent on culture. He further selected
the points in the embedding view using a lasso interaction (Figure 6-C),
and the seeds close to these points will be sampled in the following
training iterations. After another five iterations of training, the model
performance further improved.

8.2 Expert Feedback

We summarize experts’ feedback from the perspective of effectiveness,
expressiveness, and usability.

Effectiveness. Experts recognized the effectiveness of our system.
E2 suggested that the red teaming framework we used is an effective
structure. They also recognized the metrics we used, especially for
the accuracy evaluation with general reasoning tasks. E1 indicated
that the balance between security and capability is the most important
consideration during the red teaming. The dual-axis line chart was
capable of showing multiple metrics at the same time, which allows an
intuitive comparison. Moreover, they liked the fluctuation metrics we
developed. In fact, in the field of AI security, training and analysis are
usually goal-oriented. Experts seldom focus on data changes during
training. The use of prompt-level fluctuation can provide a window
into the reasoning mechanism of the LLMs. The metric is “simple but
effective,” commented E1. The token-level fluctuation was also useful
for inferring the uncertainty. E1 indicated that “the value changes can
align with the fluctuation in most cases.”

Expressiveness. Experts were highly impressed by the expressive-
ness of our visualization design. E1 indicated that they usually red-team
LLMs without an interactive interface and only focused on key metrics
like attack success rate. However, the analysis is prone to be biased,
and the model might be effective in specific simple tasks that are with
high frequency. Using the adversarial training flow, they can easily
explore the trends of toxicity levels of different risk types. They also
liked the scrolling interactions, which zoomed into the iteration details
from an overview of the toxicity level. E2 commented, “the transition
is fluent and flexible.” They praised the validation flow of fluctuation
analysis. The paths shown on the Sankey diagram can intuitively show
the transition across different flows. The understanding of the visualiza-



tion design takes little mental effort. After explaining the visual design,
the experts can quickly align the design to their domain knowledge.

Usability. Experts found the system to be highly usable. Adver-
saFlow integrates a red-teaming pipeline, allowing experts to select a
target model and start the process with a convenient import operation.
Adjusting data is also user-friendly, with E1 commenting, “adjusting
the sampling rate and selecting additional seed data is convenient.”
Although the entire pipeline takes time due to the costly training pro-
cess, the time spent on exploration and analysis is minimal. In their
traditional pipeline, writing code to log model performance metrics
is tedious and time-consuming. AdversaFlow provides an interactive
interface that requires no coding effort. Experts considered the system
to be complete and ready for deployment with only minor engineering
adjustments. The system has high open-source and commercial value,
potentially benefiting a broader range of AI security experts.

8.3 Post-Study Analysis
Based on expert feedback and case studies, we summarize that the
system improves model security through two main uses: exploration
for insights and adjustment for fine-tuning.

In Case I, most interactions focus on exploring changes in model
performance, including metric trends and the merging and splitting of
flows. In Case II, interactions are centered on the fluctuation view to
explore prompts with high fluctuation between toxicity levels. In both
cases, the multi-level adversarial flow and fluctuation path visualiza-
tions offer detailed insights into adversarial dynamics, helping experts
identify and analyze specific prompts and responses where the model
fails, thereby facilitating more effective fine-tuning.

Adjustment. In Case I, the adjustments primarily focus on changing
the distribution in the Seed Setting panel. In Case II, the adjustments
involve investigating corner cases, which is typically tedious. Adver-
saFlow provides rankings by fluctuation and an intuitive embedding
view, helping experts quickly identify uncertain and semantically simi-
lar corner cases, thereby accelerating the fine-tuning process.

8.4 Quantitative Evaluation
To show the effectiveness of AdversaFlow, we evaluate Llama2’s re-
silience to adversaries under various treatments: without any protective
measures (No Safeguarding), with our red-teaming strategy minus vi-
sual analytics (RED) and with the full implementation of AdversaFlow,
including visual analytics (RED+VA). The RED was conducted with the
model using the first 20 iterations, as introduced in Case I (subsubsec-
tion 8.1.1). To eliminate the effect of the additional training iterations,
we continued to train the RED of 20 iterations without the intervention
of VA for five more iterations. The checkpoint is denoted as RED (25
iter.). The treatment of RED+VA was also conducted with the models
in Case I, which was the checkpoint selected by the expert. We have not
employed a baseline here. Because of their potential harm, most of the
state-of-the-art red models were not open-sourced. To provide an objec-
tive evaluation, we employ another dataset, ToxicChat [28], that does
not overlap with the training and validation data, i.e., Do-Not-Answer
dataset, in the case studies. However, ToxicChat does not provide labels
of risk types for the prompts. Therefore, we manually annotate the risk
types for each prompt. The evaluation metrics include attack success
rate (ASR) and toxicity scores (TS). The lower both metrics are, the
better the performance. From Table 1, we understand that the model
using our red-teaming framework can significantly reduce the TS and
ASR from 0.209 and 87.2% to 0.154 and 48.7%. With five additional
iterations, the model’s ASR performance only slightly improved from
48.7% to 48.4%. However, with visual analytics, the metrics further
reduced to 0.146 and 44.3%. The reason might be the overfitting of
the risk type of Malicious Uses. After adjustment, the model still gets
reduced slightly on II. Malicious Uses, but the model can better address
the risk types of III. Discrimination, Exclusion, Toxicity, Hateful, and
Offensive (ASR reduced from 56.99% to 52.45%). From the table,
AdversaFlow can help steer the training process and purposely improve
the resistance to specific risk types.

9 DISCUSSION

In this section, we discuss the lessons learned and limitations.

Table 1: The results of quantitative evaluation.

Treatments
ASR (%)

TS
I II III IV V Total

No Safeguarding 100.00 85.90 87.76 72.73 100.00 87.2 0.209
RED (20 iter.) 66.67 16.67 56.99 72.73 16.67 48.7 0.154
RED (25 iter.) 66.67 16.67 56.99 54.55 16.67 48.4 0.145
RED+VA 66.67 15.38 52.45 45.45 16.67 44.3 0.146

#Sample 3 78 286 11 6 384 -

Lessons Learned. Collaborating with AI security domain experts
has provided valuable insights and highlighted new challenges. First, at-
tending seminars led by these experts enriched our understanding of the
model red-teaming process. We participated in three such seminars, fa-
miliarizing ourselves with the specific terminology and methodologies
used in red-teaming research, which streamlined our communication
with the experts. Second, close collaboration with experts helped us un-
derstand the differences between security and other AI research fields,
aiding in system development. Security researchers primarily devise
methods to challenge target models, often through manual prompt engi-
neering, with less emphasis on model explainability. This distinction
led us to reconsider the applicability of techniques focused on visualiz-
ing model weights and inner workings in a security context, suggesting
they may not be as relevant for security-focused applications.

Limitations. There are several limitations of AdversaFlow. First, the
adversarial flow’s scalability can be enhanced. Experts noted difficulties
navigating Sankey diagrams over numerous iterations, a challenge
that intensifies with an increase in iteration count. Nonetheless, they
considered the current scalability manageable, prioritizing the display
and analysis from the most recent iterations. A potential solution
is to fix the view size and compress the aggregated flow together.
However, if we employ multi-level adversarial flow to split the flow
into iteration levels, the detail of each iteration will be hard to observe.
Therefore, we could use a minimap to show the overall flow patterns for
navigation. Second, the supported evaluation metrics and datasets are
somewhat constrained. E1 noted that model performance on general
tasks was only evaluated by accuracy on MMLU [19]. However, LLM
evaluation can use a broader array of metrics and datasets, as seen with
the OpenCompass platform and Stanford’s HELM project. While our
focus on security uses metrics like attack success rate and toxicity score,
evaluated on state-of-the-art datasets, we plan to expand our metric
suite for general tasks to enhance our system’s evaluation capability.
Third, AdversaFlow fails to support the analysis of advanced jailbreak
attacks. These attacks often use tricks like role play, where a long
context is provided to bypass safeguards and embed the true instruction
within the context. For example, asking LLMs to act as a grandmother
telling a good night story is a typical role-play attack. Analyzing
such attacks requires advanced text visual analysis techniques to reveal
the detailed structure of the prompts. Fourth, future studies could
investigate how prompt changes affect target model behaviors at a
micro level. Currently, the red model rephrases toxic prompts through
zero-shot learning, making the generated prompts difficult to control. In
AI security, understanding the boundaries where the model’s inference
changes is critical, as it can help design more effective attack strategies.

10 CONCLUSION

We introduce AdversaFlow, a visual analytics system designed to en-
hance the security of LLMs against adversarial attacks. AdversaFlow
offers a comprehensive suite of visualizations, including a unique multi-
level adversarial flow and fluctuation path technique. These innovations
provide deep insights into adversarial dynamics and LLM resilience,
enabling AI security experts to pinpoint and mitigate vulnerabilities
effectively. Our quantitative evaluations and case studies affirm the util-
ity of AdversaFlow, highlighting its potential to foster more secure and
reliable AI solutions. The proposed technique can also be generalized
to analyze the broadcast of toxic information in social media for rumor
tracking or other scenarios. This work also lays the groundwork for
future advancements in visual analytics to enhance LLM security.
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