
Standardized Data-Parallel Rendering Using ANARI
Ingo Wald*

NVIDIA
Stefan Zellmann†

University of Cologne
Jefferson Amstutz‡

NVIDIA
Qi Wu§

University of California, Davis
Kevin Griffin ¶

NVIDIA

Milan Jaros||

IT4Innovations, VSB – Technical University of Ostrava
Stefan Wesner**

University of Cologne

(a) (b) (c) (d)

Figure 1: Several examples of large sci-vis data being rendered using the data-parallel ANARI paradigm proposed in this paper.
From left to right: a) Roughly one billion color-mapped spheres, rendered using HayStack and BANARI. b) The roughly 500GB
DNS data set, with volume path tracing on 128 GPUs, also using HayStack and BANARI. c) An iso-surface rendered during an
in-situ Ascent session, while attached to an S3D simulation. d) ParaView performing data-parallel rendering on the airplane data
set, using our data-parallel ANARI integration in pvserver.

ABSTRACT

We propose and discuss a paradigm that allows for expressing data-
parallel rendering with the classically non-parallel ANARI API. We
propose this as a new standard for data-parallel rendering, describe
two different implementations of this paradigm, and use multiple
sample integrations into existing applications to show how easy it is
to adopt, and what can be gained from doing so.

1 INTRODUCTION

Visualization is about more than rendering, but rendering never-
theless plays a large role in many tools. Rendering is difficult: it
was already a hard problem when all such tools could rely on a
single common API (e.g. OpenGL); today, it is further complicated
through the emergence of a whole host of different vendor specific
APIs—which for many good reasons visualization tools are often
loath to adopt.

To make it easier for developers to adopt newer rendering
technologies—and for vendors, to get their tools adopted—the
Khronos organization has proposed the ANARI API for portable
cross-platform 3D rendering [33]. ANARI aims to provide a single
API that both 3D application developers and different rendering
engine vendors can all agree on, providing important benefits to both
sides. For application developers, it means they can target a single
API without having to adopt vendor-specific APIs, and without com-
promising the availability of state-of-the-art rendering features. For
those developing ANARI implementations, it means higher adoption
rates and faster adaptation to technological changes as they become
available in back-ends.

To the application developer, ANARI presents itself in a prag-
matic way: ANARI is an API for the user to specify scene data and
render frames. Content changes are expressed by updating objects

*e-mail: iwald@nvidia.com
†e-mail: zellmann@uni-koeln.de
‡e-mail: jamstutz@nvidia.com
§e-mail: qadwu@ucdavis.edu
¶e-mail: kgriffin@nvidia.com
||e-mail: milan.jaros@vsb.cz

**e-mail: wesner@uni-koeln.de

involved in rendering, such as cameras or data arrays containing
geometry, materials, colors, etc. These objects ultimately represent a
generic interface to the private implementation, where the mechanics
of rendering frames is left up to the implementation.

ANARI is not free from challenges, though. Even with a single
agreed-upon API, different implementations can and will still differ
in what features exactly they will support (and in which form). Thus,
applications still need to be aware of which specific implementation
they may be running on—and either adopt a least common denom-
inator approach, or have some application features only available
from specific ANARI vendors. Still, standardization is encouraging
as ANARI is already seeing adoption even in VTK and VTK-m, and
through that, in a variety of tools that use these [2, 6, 17, 34].

For this paper, it is paramount to observe that ANARI currently
does not explicitly cover data-parallel rendering. This does not
mean that data-parallel applications such as ParaView/Catalyst or
VisIt/libsim cannot use ANARI for their own data-parallel rendering.
They certainly can use ANARI to render on each node, and then
composite the resulting per-rank images in exactly the same way
they have always done, using image-compositing libraries such as
IceT. This approach is already used in practice, but is intrinsically
limited to whatever image-compositing can or cannot achieve.

Rendering intermediate images independently on each node, sort-
ing them in order and compositing them at the end only results
in correct images for the most simple shading models. If we are
interested in any global effects—even such rudimentary effects as
shadows or ambient occlusion—an individual surface cannot be
shaded without knowledge of neighboring surfaces; and such neigh-
boring surfaces can, and in general do reside on other compute nodes.
This fundamental problem can not be solved merely by using ghost
and halo regions, as lighting effects are a global phenomena.

Distributed renderers relying on ray tracing solve this problem
effectively by queuing and exchanging rays not at the end of ren-
dering a frame, but instead constantly while the image is generated.
GPU renderers based on ray wave-fronts are demonstrably efficient
at doing this, making the approach considered state-of-the-art, al-
lowing scientific visualization tools to benefit from higher-quality
rendering techniques at very little extra cost compared to standard
data-parallel sci-vis renderers.

What we also observe today is that tools like Paraview or VisIt
do adopt those higher-quality rendering effects, e.g., by integrating
OSPRay or VisRTX in their standard rendering pipelines. However,
when visualizing larger data sets requiring distributed rendering,

even when using those rendering engines, have to resort to local
shading only because when combined with ordinary image com-
positing cannot create artifact-free images otherwise. This, in fact,
is a puzzling conundrum at the heart of scientific visualization today:
sci-vis is already adopting ANARI, with the goal of standardizing
around a single rendering API for ray tracing—yet current ANARI
cannot properly express the kind of data-parallel rendering that high-
end sci-vis requires.

In this paper, we explore and argue for the concept of data-
parallel ANARI. We do so through the lens of using the existing
ANARI API to define—for certain types of data parallel ANARI
devices—a distributed world whose individual consistent parts are
located on different collaborating ranks. We show that this can be
done by merely defining the semantics of a data-parallel ANARI
device, and how the different ranks’ individual API calls will jointly
define such a common distributed world. We then describe two dif-
ferent sample implementations that each implement this paradigm—
with very different capabilities and limitations—and show the poten-
tial of this approach using a set of diverse applications that make use
of these implementations. In particular, we show several examples
of what this explicitly distributed data-aware paradigm can realize
that a purely application-side compositing-based approach can not.

2 BACKGROUND AND RELATED WORK

2.1 Data Parallel Rendering
Scientific visualization applications can be classified as either post-
hoc or in-situ/in-transfer, where in the latter case the visualization
and analysis pipeline is executed as the data is generated. Post-hoc is
the alternative processing paradigm to in-situ/in-transfer, where data
is saved to permanent storage and then loaded by the application to
perform visualization and analysis.

At scale, the dominating operation of a traditional renderer that
uses rasterization, simple shading, etc., is sort-last image composit-
ing; the literature has focused on optimizing this operation through
efficient algorithms such as parallel direct send [8,14] or radix-k [20].
These developments culminated in the IceT image compositing li-
brary [24] which has become the de-facto standard for real-time
distributed renderers. The distributed rendering back-ends of visu-
alization packages like VisIt [6] or ParaView [2], as well as in-situ
visualization frameworks like libsim [39], Catalyst2 [21], or As-
cent [18, 22] all internally build on IceT.

The implication of using sort-last is that compositing happens
at the end, once each rank has reduced its rendering operation to
a single fragment (color, opacity, and depth) per pixel. In reality,
that restricts the application in what kind of content it can render
in this way; in particular, compositing with a single fragment only
works correctly if data is partitioned in a way where each rank’s
data is convex. To remove some of these restrictions researchers
have looked at various forms of “deep” frame buffers that can store
more than one fragment per pixel, which in turn allows for better
handling transparency when data is partitioned in non-convex ways.
A very early example of this was proposed by Ma [23], more recent
ones by Binyahib et al. [4] and Sahistan et al. [30]. The same
concept is also used by OSPRay [37], whose data-parallel rendering
mode relies on using a distributed frame buffer [35] where ranks
can also produce more than one fragment per pixel. One interesting
contradiction becomes obvious when looking at OSPRay: while in
non-data parallel OSPRay supports advanced rendering techniques
realized with Monte Carlo ray tracing, when rendering in parallel
within ParaView or VisIt, OSPRay has to switch to simple ray casting
without secondary rays, resulting in similar quality as the typical
rasterization renderers used by other sci-vis applications.

2.2 Data Pararallel Ray Tracing
For ray tracing, data parallel rendering means that any ray on any
rank may at any time need intersection with geometry stored by any

other rank. This can be done by using either one of two alternative
techniques: fetching the remote data to the rank that traces the
ray (typically involving some caching of said data, e.g. [7, 19]), or
sending the ray to the rank that has the data (see, e.g., [1, 11, 28, 31,
36, 38], or some combination thereof (e.g., [26, 27, 29]).

Though some of these approaches have been around for decades,
this kind of data parallel rendering has only recently seen interest
from the sci-vis community, probably because only recently hard-
ware has become capable enough to actually do this. In particular,
SpRay [28], Galaxy [1], BriX [38], and RQS [36] are all been shown
to achieve interactive performance for non-trivial data.

Data parallel CPU and GPU ray tracers aimed at sci-vis achieve
illumination effects, including shadows or ambient occlusion, but
also global illumination with diffuse reflection, by queuing and ex-
changing rays across ranks [1, 36, 38]. Shading effects are computed
by light rays “bouncing”, i.e., they change direction upon interac-
tion with surfaces, volumes, or lights. Each time a ray bounces it
consequently has to visit scene content in completely different spots,
resulting in highly incoherent patterns.

To avoid latency, when exchanging rays across ranks, data parallel
ray tracers do that in batches rather than exchanging small groups or
even individual rays. A core concept for that is the ray wave-front:
instead of computing the recursive ray tracing function per each ray
individually, compute kernels are executed per bounce, on all the
rays the rank is currently responsible for. After a bounce finished,
the ray wave-fronts are synchronized, can optionally be sorted and
compacted; this is also the point where a data parallel wave-front
ray tracer will synchronize its wave-fronts across ranks using MPI
broad-casts or uni-casts. The ranks exchange the rays they are
responsible for until a maximum number of bounces was reached,
until all wave-fronts contain zero rays; etc. The main difference of
state-of-the-art methods these days is how the renderers compute,
cull, and assign ray wave-fronts to ranks in-between bounces.

Traditionally, the reason for distributing rays was to reduce the
overall bandwidth. Optimizing ray tracers account for that by build-
ing complex culling acceleration structures [1, 38] to minimize the
overall number of rays exchanged. Those data structures can be
extremely unbalanced, especially when scene data is instanced, re-
quiring additional constraints to avoid overflowing memory [40].

An alternative approach, also adopted in this work, by the data
parallel ANARI back-end described in Section 5.2, is to distribute
the scene data in a very simple way—e.g., round-robin, bin-packing
until all GPU memory is used, etc.—and then just generate full
wave-fronts on all ranks. The ranks can initially discard some of
the rays in their wave-fronts by testing them for visibility against
their geometry, but still generally exchange more rays than with an
optimized partitioning; wave-fronts are exchanged in a ring buffer or
similar pattern. The reason that this works and is not overly costly
is that wave-fronts are sent in lock-step, i.e., all the communication
happens at the same time and is then limited by the pair of ranks with
the highest ray count to exchange. When adding more ranks, the
overall ray count stays the same, resulting in more ranks exchanging
fewer rays individually. This concept was evaluated by Wald et
al. [36] on multi-GPU systems with NV-Link interconnect, but also
extends to massively parallel architectures like GPU clusters. One
compelling reason for preferring this method over approaches that
optimize for bandwidth is its negligible pre-processing time; whereas
building an optimized acceleration structure can often take hours
and is then impractical for visualization in a production context.

2.3 ANARI

ANARI is a cross-vendor 3D rendering API maintained by the
Khronos Group. ANARI connects applications from diverse do-
mains to any 3D rendering engine implementing the ANARI API
while still giving implementations a vast degree of freedom of how
exactly rendering is done.

ANARI has already been adopted by major scientific visualization
packages, namely VTK [32], VTK-m [25], ParaView [2], VisIt [6],
VMD [17], and OVITO [34]. ANARI is not limited to scientific visu-
alization, and has also been integrated, for example, in Blender [12],
and OpenUSD’s Hydra subsystem [9].

A comprehensive introduction to ANARI is out of the scope of
this work; instead we briefly summarize what we consider the main
components of the API that are relevant for data parallel rendering.
For a complete overview we refer the reader to [33].

ANARI’s core design centers around opaque handles to objects
representing the various bespoke actors commonly found in render-
ing an image—surfaces, materials, volumes, cameras, lights, frames
etc. These objects are parameterized through generic parameters
represented by name/value pairs and are transitioned between states
using parameter commit semantics—specifically that committing the
object’s parameters indicates that those changes should be visible in
the next rendered frame. Alas, frames are rendered asynchronously,
where the application triggers a render operation to start, and then is
free to synchronize with it to access resulting output buffers.

The foundational object for most API calls is the device, which
represents the instance of the rendering engine handling ANARI
API calls. After creating a device, applications make all ANARI API
calls through this special handle, which provides implementations a
point to reconcile any common implementation-wide state and gives
applications a clear set of rules for how implementations can be used
concurrently. Thus for the rest of this paper, the phrases “ANARI
implementation” and “ANARI device” will be used synonymously.

Once the ANARI device is initialized, a valid ANARIFrame object
is all that is required for rendering. A frame object has color, depth,
and other optional auxiliary memory buffers allocated that it can
retire rendered pixels to. A valid frame has a ANARIRenderer object,
a ANARICamera, and ANARIWorld assigned to it. The ANARI world
defines a declarative scene graph. It is a special group node serving
as a collection of surfaces, volumes, and light objects. In addition
it may also contain ANARIInstance objects that themselves contain
groups of surfaces, volumes, and lights. ANARIWorld is a special
group node that always represents the top of the (up to 2-level)
scene hierarchy. Buffer objects for input and output are realized as
ANARIArray s. Arrays deviate from the otherwise strict immediate
mode model in that they can be mapped and their content altered by
the user.

3 DATA PARALLEL ANARI (DP-ANARI)

The goal of this paper is to propose a paradigm for data parallel
rendering using ANARI that fits the object model of a data parallel
ray tracer without the limitations of image compositing. One option
would be to propose a completely new API, but this would be asking
the scientific visualization community to completely discard all
existing ANARI progress, and start anew. Instead, we decided to
look into what it takes to extend the existing ANARI API to also
do data parallel rendering. As it turns out, this can actually be done
without any additional new API calls, by simply proposing a new set
of semantics of what the calling of different API calls on different
ranks actually means.

The core of our work is defining the semantics of ANARI API
usage in the context of a distributed application environment. Specif-
ically, all ANARI API calls are usable as-is, but have additional
semantics and constraints applied to them. The following subsec-
tions will outline these semantics and constraints.

3.1 Object Locality and Consistency

A concept that occurs in distributed rendering is how objects relate to
one another between nodes. For some objects, they are only defined
and interacted with on the node in which they are created, while for
others there must be a global definition to them on every rank. The

following describes the different application of object definitions
with respect to their global or local definitions.

3.1.1 Globally Consistent Objects

Some objects are considered global in the sense that they represent
a single, cooperative entity in the ANARI object hierarchy on all
ranks. We define all ANARIFrame and ANARIWorld objects to be consid-
ered global objects where their global identity is established by the
order of their construction. Thus all ranks which use an ANARIFrame
an ANARIWorld handle must have those objects constructed as their
respective N’th object of that type, effectively requiring all ranks to
create the same number of these objects.

Some objects must have their parameters match on every node
in order to have a well-defined image—ANARIFrame, ANARIRenderer,
and ANARICamera. Applications must use the same sub-type and
parameterize these objects identically, otherwise the output of the
resulting image will be undefined.

3.1.2 Locally Defined Objects

All objects under ANARIWorld are locally defined within the rank
on which they are created and are globally visible (i.e. secondary
illumination when applicable) in the final rendered image. This
includes anything which can be contained with the ANARIWorld –
instances, groups, surfaces, volumes, geometries, materials, spatial
fields, samplers, and even arrays themselves. There is no application
requirement that any object within the world has any knowledge or
connection to an object on any other rank.

3.1.3 Locally Mapped Frame Buffers

One question is how and where the data parallel application can
actually access the pixels that a distributed anariRenderFrame call
has produced. While this sounds like a trivial problem, it is not:
it is easy to imagine some applications wanting to map the entire
frame buffers on all ranks, or for others to have different ranks map
different regions of a frame, or ranks just having some call-back
mechanism for image tiles that a given rank has produced (see,
e.g., [15,35]). On the other hand, trying to capture all these potential
use cases would not only require significant extensions to the API,
but also raise the cost for device developers to implement all these
options.

For this trade-off, we intentionally opt for simplicity and specify
that data parallel ANARI devices are only responsible for providing
the final frame buffer on rank 01: Though all ranks participate in
specifying and rendering the scene only a single rank—rank 0—
contains the final image buffers (designated by a parameter on the
participating ANARIFrame); and on this rank the application can map
this using the existing anariMapFrame in exactly the same way a
non-parallel application would have.

While it is not an error to map the frame on another rank, its
dimensions, pixel type, and buffer contents are undefined. Given
that this operation is inherently local, mapping frame buffer out-
puts has no synchronization requirements across nodes. ANARI’s
asynchronous frame rendering semantics however still apply as they
do in traditional single-node rendering setups. An added benefit of
choosing this route is that there is no difference whatsoever in how
a data-parallel application maps a frame buffer on a data parallel
device, vs. how a traditional single-process application does on a
non-parallel device (also see Section 7.1). Of course, any use cases
not captured through this paradigm could still get added later on
through ANARI’s extension mechanism.

1This refers to rank 0 of the MPI communicator used to initialize the
data-parallel ANARI device; if the application wants this to be on another
rank than its rank 0 it can of course use MPI’s split operation to create a
new communicator for this.

3.2 Collaborative Operations
Most ANARI API calls can be done independently on each rank,
but a few will behave as a rank synchronizing operation—in other
words, some ANARI API calls will necessarily require all ranks to
participate in and will implicitly barrier at that call.

The first and most obvious synchronizing API call is
anariRenderFrame, as it is the central place that all object param-
eter transactions must be completed and where the vast majority
of the implementation’s work is done. While the mechanics of
rendering a frame is intentionally left as implementation defined,
applications must follow this semantic to express that every node is
ready for its local ANARIWorld is ready to render.

Similarly, anariGetProperty is a synchronizing API for objects
that have a global identity (ANARIFrame and ANARIWorld). This is
to ensure that implementations can guarantee global consistency
to those objects when properties are queried by the application.
However, this constraint is only required when applications pass
ANARI WAIT to anariGetProperty, as ANARI NO WAIT would indicate it
is permissible for the device to return a previously held value (or
none at all) in order to prevent blocking.

Finally, anariRelease is a synchronizing API when called on the
ANARIDevice which has no remaining application references. This
permits implementations to rely on the device being destroyed in
lock-step and guarantee no additional ANARI API calls will be
made using the device.

3.3 How this works out in practice
We observe that this new data-parallel paradigm in practice actually
matches how existing data parallel applications work. An application
using IceT for compositing would also use MPI for synchronization.
The individual ranks would operate largely independent of each
other and render different content using calls to whatever library the
application uses for per-rank rendering. Similarly, that application
must also ensure consistency between different ranks’ global ren-
dering information like camera, background color, etc., so it would
likely already have some mechanism to synchronize such informa-
tion before it calls rendering. For our paradigm, this is exactly the
same, except that we apply it to ANARI, and formalize the process.

In Fig. 2 we illustrate exactly the workflow: Upon startup all
ranks would (collaboratively) create their DP-ANARI device, then
do whatever the application wants to do for data loading, iso-surface
extraction, etc. At some point each rank creates its local ANARI
world, and populate it with different ANARI objects—these calls
are not collaborative, so different ranks can do as many of those—
and whichever ones they want—without any other ranks even be-
ing aware. Once all ranks are ready for rendering they all call
anariRenderFrame(), at which point they implicitly synchronize the
operation until the frame is done. Rank 0 can then map the generated
frame buffer, save or display it, and wait for UI events or user input,
at which point it will instruct its worker ranks to do whatever scene
updates are required, etc.

4 EVALUATION CHALLENGES AND METHODOLOGY

What we have discussed so far is not a specific method, nor a system.
It cannot be evaluated via any one implementation, nor via any
one application using it, nor via any one or more use cases thereof.
Ultimately, the success of this proposed paradigm will depend on
whether—and to what degree—it will actually get adopted for day-
to-day data-parallel rendering, in tools such as ParaView or VisIt.

Any such adoption is challenging because there is an inherent
chicken-and-egg problem that must be solved: applications will not
adopt any API or paradigm that there are no compelling device im-
plementations for, and for device implementers it makes little sense
to create such compelling implementations if there is no plausible
path for them to be adopted—nor is it easy to develop them if there
are no use cases to exercise them.

Rank 0 Rank 1 ... Rank N

Create Device (collab)

A
p

p
 E

xe
cu

ti
o

n

Render Frame (collab)

GUI
Create

Create /
Load Data

Create /
Load Data

GUI
Event

Data
Update

Data
Update

Data
Update

Create /
Load Data

GUI
Event

GUI
Display

Render Frame (collab)

Map
Frame

Camera / scene updates. (broadcast)

App context

ANARI (local)

ANARI (collab)

Figure 2: Illustration of how a typical data-parallel application would
use our paradigm (also see Section 3.3).

Eventually—and this is the purpose of the work described in
this paper—breaking this log-jam requires three simultaneous ef-
forts: a) some example device implementation(s) that implement this
paradigm, and that end-user applications can actually target; b) some
reasonably complex applications that actually use this paradigm, that
use it in a way that is reasonably representative of how the eventual
applications-to-be will use it, and that device implementers can use
to develop, debug, and tune their implementations; and c) some
reasonably compelling proof-of-concept use cases that show that
this paradigm is actually worth adopting, and thus can serve as an
incentive for the other two parties to actually work towards this goal.

5 EXAMPLE REALIZATIONS

To serve as sample implementations of our paradigm we created two
different ANARI devices that implement it. Both devices implement
the same paradigm, but are by no means identical: they do not offer
the same feature set, nor will they produce the same images for
the same inputs. This is OK—different applications have different
needs, and different devices will always offer different features. For
our purposes, we intentionally chose two opposite extremes of the
spectrum: one relying on compositing, and one performing true
data-parallel path tracing.

5.1 ANARI-Composite: Application-transparent com-
positing using an ANARI Pass-through Device

The bespoke non-distributed ANARI API—i.e., ANARI without
the paradigms introduced in this paper—has no concept of a “data
parallel world”. However, that does not mean that applications
using ANARI could not do data-parallel rendering of their own:
such applications could use ANARI to render data locally on each
rank, and then rely on depth- and/or alpha compositing to somehow
composite the resulting images. This approach has some obvious
limitations in terms of what effects can or cannot be rendered, but
these limitations are not specific to ANARI: they are not different
from those when using any other rendering back-end for the per-rank
rendering.

Where these limitations are acceptable, one could use exactly
that same approach also within an ANARI device to implement the

data-parallel ANARI paradigm we have introduced above. In such a
device, almost all functions would behave in exactly the same way
as in any other local device; namely, they would set up the scene to
be rendered, and perform rendering of a local frame buffer. The only
thing this device would need to modify is anariRenderFrame(), in
which it would first perform its local rendering, and then composite
the results. We decided to implement this approach, for which
we need two main ingredients: a means of performing local-node
rendering, and a means of compositing.

5.1.1 Compositing
The standard way of implementing alpha and depth compositing is
through IceT [24], but for our general use case this library is too
restrictive. Alpha blending with IceT requires that the application
provides a fixed compositing order. With simple pass-through that
compositing order is quite difficult to determine as the input data
would need to be classified into opaque or transparent, the data con-
vexly partitioned, etc., which would require data specific knowledge
the pass-through device cannot have.

To circumvent this we require that any fragment generated by
the local device for a pixel not only has an RGBA but also a depth
component, which allows us to instead rely on another compositing
library we had readily available: the deep compositing (deepComp)
library originally developed for another data-parallel rendering
project [30]. Using this library an application (in this case, our
ANARI compositing device) can render possibly multiple RGBA-z
fragments for each pixel; the compositor will then follow a parallel
direct send [8, 14] paradigm to have all ranks exchange their frag-
ments such that each rank gets all the fragments for some portion of
all pixels. Each rank receives its pixels’ fragments, and then, in a
CUDA kernel, sorts and composites each pixel’s fragments in proper
front-to-back alpha-composited order. The resulting composited
pixels are gathered at rank 0. For our purposes we only need a
single RGBA-z fragment per pixel (on each rank), but then no longer
need to worry about which order the different ranks generate these
fragments.

5.1.2 Rendering
For rendering itself, we leave most of the heavy lifting to ANARI
itself, by using another existing ANARI implementation for what
we call a “pass-through” device. We pass all other calls through to
this device and let it do local rendering, as long as it is capable of
computing both color and depth buffers.

To implement this compositing device, we can simply take every
ANARI API call and pass it on to the pass-through device, except
for the following:

anariLoadLibrary(): we first load our own data parallel device, then
on each rank also load the device requested by the application—
and save that as a pass-through device.

anariNewFrame(): we first pass this through to the pass-through de-
vice, and intercept the returned ANARIFrame handle for that rank.
We then create our own—collaborative—frame object that first
creates a new deep compositing context for that frame, and then
also stores that rank’s intercepted pass-through frame handle
(through which we can later access that rank’s local frame).

anariCommitParameters(): we pass this through to the pass-through
device, but also check if this commit affected a frame, and if
so, whether it resized that frame (and if so, resize that frame’s
compositing context).

anariRenderFrame(): we pass this to the pass-through device to per-
form local rendering, then wait for that to finish, map the local
rank’s frame using the stored pass-through device frame han-
dle, and perform compositing. Compositing in deepComp requires
collective MPI calls, but in our data-parallel ANARI paradigm
anariRenderFrame is collective, so this poses a problem.

anariMapFrame(): this is the one call we do not pass through at
all, since local frames have already been read and composited
in anariRenderFrame. We simply retrieve the composited image
from the compositing context, and return this.

One advantage of this approach is that it is straightforward to im-
plement: given an existing compositing library, we implemented a
working proof of concept with very little effort.

What is particularly useful is that because our compositing device
itself works by issuing ANARI calls to the pass-through device it can
actually use any other exiting ANARI device for the actual rendering,
without having to know which. This makes this approach useful as
an easy “fall-back” mechanism of using any other—not yet natively
data parallel—ANARI device in a data parallel context.

The downside to this approach is that it is intrinsically limited
to what compositing can or cannot do. Using the deepComp library
means we can avoid some of the specific limitations of IceT—in
particular, we do not need to specify a fixed compositing order—but
it still relies on compositing, and thus will never be able to produce
guaranteed-correct shadows or path tracing for data parallel content.

5.2 Barney and (B)ANARI
Barney is a new—and still under development—rendering engine for
data-parallel path tracing on multi-node and multi-GPU hardware.
For rendering, Barney relies on ray forwarding similar to what is
done by the recently published Brix [38] and RQS [36] papers,
where rays are sent to the node(s) that may have geometry that
may intersect a given ray—and where each ray will always find its
respectively closest intersection no matter which rank the ray was
spawned on, or which rank holds that respective geometry.

Barney was built with parallel rendering—and in particular, data
parallel rendering—in mind from its very inception. In addition to
the relatively simple mode we described above—where each rank
has exactly one part of the data to be rendered—Barney also offers
various additional modes such as, for example, data-replicated ren-
dering, islands-parallel rendering, non-MPI multi-GPU rendering,
additional multi-GPU data-parallel rendering within a given rank,
etc. Despite this bigger set of functionality, Barney follows the
same general paradigm described above: it has the concept of a
data-parallel world, where different ranks can independently spec-
ify different pieces of this world, and render operations are MPI
synchronous.

5.2.1 BANARI
Barney is not exclusively built for ANARI, but targets the same end-
user applications, and thus supports similar functionality: it supports
both surface and volume types, and in particular also supports the
more scientific visualization oriented data types of cylinders and
spheres for surface data, or unstructured mesh and AMR data for
volume data.

With all these pieces in place, implementing a data-parallel
ANARI device was relatively straightforward: this mostly required
implementing the various ANARI API functions to properly read
scene data passed through this API, and passing it on to its match-
ing data types, where applicable. As with many other ANARI
implementations, the Barney ANARI device—or BANARI, for short—
implements only a subset of the full set of ANARI’s different data
types, and simply ignores all others.

5.2.2 Local vs. Global Rendering
Barney is, by nature, designed for data-parallel rendering. However,
to also be accessible to non-data parallel applications it can also be
built without MPI support, in which case it simply performs local,
data-replicated multi-GPU rendering.

If used in this way, the BANARI device still implements the
ANARI API (just without out data-parallel semantics), and we can

thus also use this as a pass-through device for the ANARI composit-
ing device described in Section 5.1.

6 EXAMPLE INTEGRATIONS

Whereas the previous section showed that it is possible (and in fact,
not all too difficult) to write devices that implement our paradigm,
in this section we look at the reverse problem of integrating such an
API in an application that wants to use data-parallel (DP)-ANARI.

6.1 Minimal, Proof-of-Concept Applications
We are ultimately most interested in how challenging it is to inte-
grate our data-parallel rendering with ANARI paradigm into actual
end-user applications like VisIt or ParaView, or widely used frame-
works such as VTK. However, we could not evaluate that until some
implementation(s) existed, but neither could we have developed the
aforementioned back-ends without applications to exercise it. To
break this chicken-and-egg problem we decided to defer integration
into actual end-user tools to the end, and in the meanwhile, relied
on developing both back-ends and several different front-ends in
parallel.

6.1.1 OSPRay and TSD Mini-Applications
As one proof-of-concept we started with several existing mini-
applications from the OSPRay project. The semantics of our data
parallel ANARI and those of data parallel OSPRay are (intention-
ally) quite similar; the API calls and function names differ, and so do
some low-level concepts, but the application flow is very similar. To
prove the generality of data parallel ANARI we took the data parallel
sample applications coming with OSPRay and ported them to our
semantics—where possible line-by-line. This allowed us to exercise
our semantics on some very simple data parallel applications outside
our own software ecosystem.

This provided an early proof of concept, but does not come with
much interesting data to test with. To get more realistic inputs,
our next step was to take an existing single-rank ANARI viewer
(TSD, from VisRTX [3]), and prototypically extend that to use MPI
parallelism: all ranks load different parts of the input, then rank 0
runs the existing viewer, and broadcasts UI updates and render
requests to the worker ranks; workers wait for such broadcasts, then
perform ANARI scene updates and call anariRenderFrame. This
all naturally follows our paradigm, meaning all the effort in this
proof-of-concept was in changing this viewer to be MPI-parallel in
itself—with no extra work for our paradigm at all.

6.1.2 HayStack, and HANARI
In order to have a more challenging use case we also took Barney’s
original HayStack viewer, and prototypically ported (parts of) that
over to ANARI. HayStack was originally developed for Barney even
before Barney’s ANARI device was developed.
HayStack is what we consider a developer-centric minimal GUI

application with the minimum at what it takes to manipulate cameras,
edit transfer functions, etc. While HayStack is intentionally minimal-
ist when it comes to the user interface, it was from the beginning
designed to be able to stress-test Barney to the end of its abilities,
and to be as realistic a mock-up of what a real application like Par-
aView would be as it possibly could. In particular, HayStack supports
importers for many different data types including structured and un-
structured volume data; triangle meshes, spheres, cylinders, and
even production-style data with instances and textures; it contains
facilities for data-parallel loading, offline and on-the-fly partitioning
(including both object-space and spatial partitions), where desired,
different data load balancing schemes (to simulate different ways of
how an application might assign geometry to different nodes).

While originally not under ANARI, this wealth of different data
configurations made it an attractive candidate to also add an ANARI-
based render pass. As with the mini-applications, virtually all the

work required in doing so is the traditional ANARI calls to create
and provision each rank’s geometry, with no special effort to meet
our DP-ANARI requirements whatsoever. We observe, however, that
this ANARI path currently only supports some of HayStack’s data
types, and even then does not necessarily produce exactly the same
images. Usually, this is because some of Barney’s data formats and
material types are slightly different from ANARI’s. Nevertheless,
the key insight from this exercise matched exactly what we saw
for the significantly simpler mini-applications: almost all the effort
required for using a DP-ANARI device lies in how a given rank
specifies its ANARI—which is exactly the same as it would have
been for per-rank ANARI rendering—with virtually no extra effort
required for the data-parallel portion.

6.1.3 Data Parallel VTK Mini-Application

Being one of the most popular scientific visualization frameworks,
interoperability with the Visualization Toolkit (VTK) [32] was an ob-
vious choice. In preparation for further integration with ParaView [2]
we started with a simple proof of concept application using VTK
internal classes only.

To add a new rendering subsystem to VTK, a custom “pass” must
be registered with the vtkRenderer. VTK already has builtin support
for rendering with ANARI via the Rendering/ANARI module, which
co-exists with other rendering modules (e.g., for core OpenGL, or
OSPRay), and which we build on.

VTK itself has no concept of any data parallel rendering; any data
parallel loading and rendering has to happen on the application side.
To do this we started by implementing a simple MPI-parallel appli-
cation in which each ranks loads its respective geometry, assuming
pre-partitioned data on disk. For the user interface we created a sim-
ple VTK GUI application using the vtkRenderWindow class, which
implements a platform-specific event loop utilizing GLX, WGL,
or similar depending on the target platform, and calls the Render()
function of the vtkRenderer object attached when redraw events oc-
cur. Simply attaching a vtkAnariPass object to the latter we achieve
serial rendering.

The actual GUI window only runs on rank 0, but to make our
paradigm work, the workers also need to run the same VTK render
passes, in synchronous mode. We solve that by having each worker
create an off-screen window of the same window class that the
display rank uses: this creates the same pipeline as on the display
rank, but obviously does not get any of that rank’s UI events. We
solve this by having the display rank perform MPI broadcasts for
events that affect global data, such as resize, camera changes, or
render. Workers then implement a custom event loop in which they
listen for such requests from the display rank, upon which they then
issue the corresponding events.

One caveat with the standard vtkRenderWindow, which was not
implemented with data parallelism in mind, is that events that re-
quire lockstep processing can be triggered unexpectedly; on X11
for example, a resize event plus redraw event only gets triggered
when the window size increases. To guarantee lockstep execution,
we implemented a pass-through extension via a C++ class inheriting
from vtkAnariPass that intercepts these events and communicates
with the worker’s event loop using a simple custom communication
protocol on top of MPI.

In retrospect, most of the challenges of this exercise turned out to
be related to VTK—and in particular its event system—not having
any concept of other clients it might have to synchronize with, and
wanting to issue supposedly-synchronous ANARI calls at seemingly-
random UI events. This made the integration into nominally more
complicated applications (see upcoming sections) actually easier
than what was originally intended as a warm-up exercise for that.

Figure 3: Screenshots from our prototypical integrations of our DP-ANARI paradigm into VisIt/Libsim and ParaView. a) VisIt/Libsim data set
generated by a mini-simulation used to test VisIt’s in-situ capabilities, running on 8 ranks and using our data-parallel ANARI integration (see
Section 6.2.3). b) ParaView rendering the 1,225×580×2,000×float aircraft model with Q-criterion vortex field (see Section 6.2.1). This
case was rendered with BANARI on 4 ranks of 1 GPU each. c) ParaView rendering an iso-surface extracted from a 2× reduced version of the
DNS data set. d) ParaView rendering the 2,501×3,001×305×float thunderstorm data set, in this case rendered with BANARI on 4 ranks of
1 GPU each (using Barney’s volumetric path tracing mode).

6.2 Prototypical Production Integrations
While mini-applications and HayStack were invaluable from a devel-
oper’s point of view, the eventual goal for any data-parallel ANARI
effort must necessarily lie with actual “real” end-user visualization
applications such as ParaView, VisIt, or various in-situ frameworks.

6.2.1 ParaView
To implement our DP-ANARI semantics into ParaView [2] we start
with the proof of concept application described in Section 6.1.3.
In contrast to VTK, ParaView supports full data parallel rendering
via a client/server architecture. Synchronization issues such as
the ones encountered with vtkRenderWindow in our test application
hence are not an issue. To run ParaView in data-parallel mode,
we start the pvserver application with as many MPI ranks as we
have workers, and connect to that using the ParaView client. In that
setup, the ParaView client does not participate in the MPI-parallel
rendering, but will receive remote-rendered, compressed images
from the dedicated MPI worker rank that eventually holds all the
pixels.

Although exposing ANARI-based rendering in ParaView is
straightforward (using similar routines as for OSPRay), this ex-
tension has not yet found its way into the upstream repository; our
work builds off a custom implementation comprising a handful of
ParaView classes to expose VTK’s Rendering/ANARI in the GUI.

ParaView realizes compositing via IceT, but for our paradigm it
does not make sense that the application should do that. One option
would have been to take this component out of ParaView, but this
would have required non-trivial changes to ParaView. Instead, we
simply have rank 0 pass the already-finalized image to IceT, while
all other ranks report an empty frame. When IceT “composits” these
frames it will simply end up getting what we reported on rank 0;
it will have performed some un-necessary computations, but since
compositing is not a bottleneck, this is acceptable to us. Using this
approach all our paradigm’s demands are already met: rendering
and resize are synchronous (IceT had this requirement, too), and all
per-rank rendering is done through ANARI already.

The only snag we encountered with this approach is that ParaView
currently uses an optimization by communicating the local scene
bounds to IceT on the worker ranks; this allows IceT to determine
that certain pixels will not have any (directly) visible geometry,
and thus can be excluded from compositing. This optimization
obviously does not work for our approach where rank 0 always
reports all pixels. We currently disable this optimization, in which
case our approach works as expected. We also observe that this
problem only occurs because we decided to leave IceT enabled in
ParaView; the moment ParaView were to fully adopt data parallel
ANARI it would be cleaner to disable composing on the application
layer, anyway, at which point this problem would no longer exist.

6.2.2 Ascent
To also experiment with an in-situ setup, we also integrated our
data parallel ANARI approach into Ascent—an increasingly popu-
lar, lightweight in-situ visualization and analysis infrastructure [18].

Ascent uses VTK-m, not VTK, so the VTK work from Section 6.1.3
did not apply. We therefore decided to base our integration directly
on the ANARI level, which we then did by implementing new “ex-
tracts” in Ascent (i.e., to follow using a customized renderer type in
Ascent’s terminology).

In this framework, meeting our DP-ANARI requirements was
trivial. Consequently, virtually all the work in this integration was
in issuing the ANARI calls to create each rank’s local scene data,
which is identical to what would have been needed for a local per-
rank ANARI back-end, too. In fact, using DP-ANARI meant that
we only had to do the ANARI geometry calls, and not worry about
any compositing of the results, which in DP-ANARI is not required.

Unlike the previously mentioned mini-applications, this integra-
tion was not just done for the sake of evaluation—but as an actual
means of enabling high-fidelity data parallel rendering for actual
state of the art simulations. In Fig. 4 we show two examples of this:
NekRS, a GPU-accelerated spectral element Navier-Stokes Solver
for incompressible turbulent flows employing an unstructured hex-
ahedral mesh [10]; and S3D, a scalable direct numerical solver for
reactive and compressible flows, based on a rectilinear mesh [5, 16].

6.2.3 VisIt/LibSim

As a final proof of concept we are also working on an integration
into libsim [39]. Libsim is an infrastructure for in-situ visualization
using VisIt [6], so some sense this effort is closer to the Ascent effort
than it is to our ParaView integration. However, libsim connects
to VisIt for visualization which uses VTK for rendering, so the
actual steps to make it work are essentially identical to what we have
described above for the VTK mini-application, and works exactly
the same.

For the initial testing we used the globalids mini-simulation [13]
and are thus limited to the relatively simple test geometry produced
by this libsim mini-simulation. This is obviously not representative
for the kind of volume or geometry data that a real libsim session
would generate. However, what geometry and volumes libsim gener-
ates on a given rank should only affect what local per-rank operations
the underlying ANARI VTK renderer would need to perform. While
this clearly needs more testing and profiling, we believe that the key
concepts are already in place. A screenshot of this effort is shown in
Figure 3 (in this case, rendering through BANARI)

7 A CASE FOR ADOPTING THIS PARADIGM

In the last two sections, we have shown that it is reasonably easy
to realize our DP-ANARI paradigm in back-ends, and that it is
similarly easy to integrate it into new or existing data-parallel ap-
plications. Together, these two arguments show that our proposed
paradigm is realistic in the sense that if one is seriously interested in
standardizing towards an API for data-parallel ray traced rendering,
then this paradigm could indeed work. In this section, we are making
an argument as to why any given application should care.

NekRS: pb146 pressure S3D: ammonia pressure (iso-surface) S3D: ammonia, velocity magnitude (volume rendered)
Figure 4: Some images from our ASCENT integration, used on two different HPC simulation codes and data sets (rendered using BANARI).

7.1 Impact on Existing, Classic-ANARI Applications
Our first observation is that our paradigm is purely additive in that it
does not take anything away from existing state of the art. A single-
process application already using ANARI (e.g., TSD or Blender (cf.
Fig. 5) will use ANARI in the exact same way, which will have the
exact same performance implications as it did before. Similarly, an
existing data-parallel application that however already uses ANARI
for local, per-rank rendering (e.g., mainline ParaView without our
modifications) would also see no negative effects whatsoever when
using the DP-ANARI paradigm and whatever means it uses to render
images in parallel.

Let us now consider this same application to follow the (simple)
steps outlined above (Section 6.2.1) to actually enable that device’s
data-parallel capabilities, and follow our paradigm. Assuming it
simply used our compositing device (passing through to whatever it
used before) it still would not see any difference whatsoever. At this
point the application could already get rid of its own compositing
layer, and still not “lose” anything it could have done before. Though
the application would still not have seen any benefit, it also would
not have lost anything by adopting our paradigm.

Figure 5: Examples of our paradigm on traditional—i.e., not data
parallel—applications: a) a stand alone ANARI-based viewer (in this
case, using BANARI). b) blender, using ptc/visionaray. Though
our paradigm does enable data-parallel path tracing, it does not
change anything for traditional, non-parallel applications, which can
therefore use our DP-enabled devices without any changes.

7.2 Benefits of Adopting a DP-ANARI Paradigm
Our motivation for a DP-ANARI paradigm is to enable global effects
usually realized with ray tracing in data-parallel renderers. Ordinary
data-parallel renderers cannot produce these effects without artifacts,
as can be seen in Fig. 6. To illustrate the effect of missing global
effects for some more realistic data, in Fig. 7 we show two large
data sets (one volumetric, one surface based) rendered with Barney,
and in exactly the same data-parallel configuration—but once with
only local shading, and once with path tracing turned on. Clearly
the images with global effects are not only “nicer”, but also convey
more information (which is what visualization is about)—but with
classical ANARI (i.e., without exposing the concept of a data parallel
world) this could not be reproduced. An application could of course
still decide to not use ANARI for such use cases at all, and instead
integrate into libraries like Barney in the first place—but this would
lose all the benefits of why applications are integrating in the first
place.

Whereas Fig. 7 explicitly illustrated data-parallel rendering with
and without advanced ray tracing effects, in Fig. 1 and Fig. 8 we

Figure 6: Capabilities and limitations of compositing: A test case
of 43 boxes pseudo-randomly interleaved across 4 ranks. Left, ren-
dered with the pass-through compositing (PTC) device, compositing
images from another ANARI device that does not know that other
ranks (or their data) even exist. Our ANARI PTC device can properly
z-composite these images, but cannot create (global) shadows. Mid-
dle, the same data-parallel application using a natively data-parallel
ANARI device (Barney, in this case), with proper global shading
effects. Right: difference images generated with FLIP. Bottom row:
similar experiment, conducted with the DNS data set in ParaView.

provide several more examples of what an application could expect
when adopting a data-parallel path tracing paradigm.

8 DISCUSSION

In this paper we have proposed a paradigm for using ANARI for
data-parallel rendering.We have not proposed any new method, nor
a new API, nor even a specific system. Instead, this paper should
be seen as an attempt to rally both developers and users of ANARI
to agree on a specific way of using ANARI. Doing this is what we
believe to be the key to breaking the chicken-and-egg problem in
which –at least for data parallel rendering—applications are stuck
with compositing, while ANARI device developers cannot develop
data-parallel renderers because existing ANARI is purely single-
rank.

We have formalized a workflow that is simple and flexible, yet
sufficiently expressive to work for both compositing and true data-
parallel path tracing. We have shown that it is quite easy to imple-
ment this paradigm (for both of these categories), and have used a
variety of different (prototypical) integrations to show that this is
also easy to adopt. We have also shown that there is a very easy on-
ramp for applications to ease into this paradigm, by simply using our
(or any similar) compositing device—if this is used with whatever
ANARI device the application is currently using, the application
would get exactly the same outcome as before, while being able to
also run any true data-parallel path tracer when desired.

8.1 Limitations
The most obvious limitation of our approach is that it is not as
easily tangible as any new API extension would be. At its heart our
paradigm only specifies a convention, and even that would eventually
need some sort of formalization in the ANARI specification. This is,
however, not all that different from how ANARI works in general:
for example, ANARI does the API call for creating a material with
a given name, but it does not make any guarantees how (or even
whether) a given device will implement a given material. In practice,

airflow around wing, ca 1 billion spheres
(local shading only) (with path tracing)

thunderstorm data set (volume rendered)
(local-only shading model) (with volumetric shadows)

Figure 7: Examples of why path traced rendering is important in
the first place, even for data-parallel visualization. Top: a roughly 1
billion spheres data set from NASA AMES (showing airflow around
a wing). Bottom: the 2,501× 3,001× 305×float thunderstorm
data set. Left: with local shading only; right: with path tracing
turned on. All images rendered with Barney, HayStack, and in
data-parallel.

this still works, due to what we call a normative pressure: once
enough applications start to expect a given material to operate in
a given way, device developers come under significant pressure to
implement it the way that those applications expect. We fully expect
adoption of our paradigm to work exactly the same way.

Another limitation is that our paradigm specifies how a given
scene is to be created, but does not make any guarantees about how
a given device will then render it. This is yet another example of
ANARI being intentionally vague, and relying on said normative
pressure; however, we fully expect compositing-based devices to
remain in use for a considerable while, and applications will have to
decide how to deal with that.

8.2 Scene/Data Partitioning

One key issue for data parallel rendering—which we have com-
pletely disregarded thus far—is how the scene is partitioned across
the different ranks. This is important because many data-parallel
renderers will only work for certain types of data partitioning. For
example, IceT’s alpha blending mode [38] requires a spatial par-
titioning of the scene as well as an a-priori known compositing
order; and similar limitations would apply to other renderers. In
scientific visualization, this problem gets even more interesting be-
cause it is not the renderer that does the scene partitioning, but the
application—such as pvserver for ParaView, or libsim for VisIt.

Clearly, if there is such a strong dependence on how the scene is
partitioned, any API or paradigm for data parallel rendering must
have a means of communicating what the back-end can consume,
and/or what the front-end has generated. One way of solving this
would be to specify a certain partitioning requirement in the API,
but this would unduly restrict what kind of renderers could or could
not be implemented.

Instead, we suggest to handle that by having the applications
pass such meta information by setting a set of parameters on the
underlying device. For example, applications that do want to use
devices that use IceT could set some int compositingOrder and box3
boundingBox parameter on the device. Of course, this only works
if the application can actually provide such data, but if it couldn’t

Figure 8: Several examples of data-parallel path traced data. Left
to right, top to bottom: a) The 10,240×7,680×1,536 DNS data set,
volume path traced on either RTX 8000 cards. b) streamlines from
a jet flow simulation rendered with depth of field c) 250M particle
DLA simulation also rendered with depth of field d) A total of order
1 billion, extracted on-the-fly from the order 1 billion element NASA
Mars Lander dataset (see [30], and color-coded by which rank owned
the underlying mesh part.

it wouldn’t be able to use IceT, anyway. Here, however, we would
expect the aforementioned normative pressure to eventually assert
itself, too: if some devices have more constraints than others then
clearly these will see some pressure to relieve these constraints.

8.3 Remaining Issues
The key remaining issue is to get the developers of actual tools like
ParaView and VisIt to adopt this paradigm. Though we believe this
paper to have made a strong argument that they should, this will
likely not happen immediately.

Ultimately this will also require more work on the device side.
OSPRay, for example, already more or less follows the same
paradigm, and already has a (single-rank) ANARI interface—but
would yet have to merge these two. For our own devices, much is
also left to be done. For Barney, there are still rather large gaps
between what Barney supports and what ANARI would expect.
Adding these missing features—and changing existing ones to be
more ANARI-like—will require significant effort. However, applica-
tions will not adopt it until it supports enough of the ANARI features
that said application requires.

9 CONCLUSION

In this paper, we have proposed a paradigm—or convention—for
how data-parallel applications and data-parallel renderers can use
ANARI to jointly reason about a global scene. This by itself clearly
does not completely solve the problem of data-parallel rendering in
its entirety. However, we believe this paper to have made three ma-
jor contributions towards that goal: First, to have proposed what is
essentially a road-map towards true data-parallel path tracing in sci-
entific visualization, which both application and device developers
can follow. Second, a set of arguments why application developers
should join in this effort, and that there is no longer a reason not to.
And third, a set of devices, prototypes, and proof-of-concepts that
others can build on (all of which we have made publicly available),
and which we believe will be a foundation for reaching a virtuous
cycle where application developers and device developers can now
jointly work towards a common goal.

ACKNOWLEDGMENTS

This work was in parts supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under grant
no. 456842964. This work was also supported by the Ministry of
Education, Youth and Sports of the Czech Republic through the
e-INFRA CZ (ID:90254).

REFERENCES

[1] G. Abram, P. Navratil, P. Grossett, D. Rogers, and J. Ahrens. Galaxy:
Asynchronous Ray Tracing for Large High-Fidelity Visualization. In
IEEE 8th Symposium on Large Data Analysis and Visualization, 2018.

[2] J. Ahrens, B. Geveci, and C. Law. ParaView: An End-User Tool for
Large Data Visualization. Visualization Handbook. Elsevier, 2005.

[3] J. Amstutz. VisRTX: A NVidia OptiX based implementation of ANARI.
https://github.com/NVIDIA/VisRTX, 2024.

[4] R. Binyahib, T. Peterka, M. Larsen, K.-L. Ma, and H. Childs. A
Scalable Hybrid Scheme for Ray-Casting of Unstructured Volume
Data. IEEE Transactions on Visualization and Computer Graphics,
25(7), 2019.

[5] J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W.-K. Liao, K.-L. Ma, J. Mellor-Crummey, N. Podhorszki,
et al. Terascale direct numerical simulations of turbulent combustion
using s3d. Computational Science & Discovery, 2(1), 2009.

[6] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, K. Bonnell,
M. Miller, G. H. Weber, C. Harrison, D. Pugmire, T. Fogal, C. Garth,
A. Sanderson, E. W. Bethel, M. Durant, D. Camp, J. M. Favre, O. Rübel,
P. Navrátil, M. Wheeler, P. Selby, and F. Vivodtzev. VisIt: An End-User
Tool For Visualizing and Analyzing Very Large Data. In Proceedings
of SciDAC 2011. Denver, CO, July 2011.

[7] D. E. DeMarle, C. Gribble, and S. G. Parker. Memory-Savvy Dis-
tributed Interactive Ray Tracing. In 5th Eurographics / ACM SIG-
GRAPH Symposium on Parallel Graphics and Visualization, 2004.

[8] S. Eilemann and R. Pajarola. Direct Send Compositing for Parallel
Sort-Last Rendering. In Proceedings of the Eurographics Symposium
on Parallel Graphics and Visualization, 2007.

[9] G. ElKoura, S. Grassia, S. Boonyatera, P. Jeremias-Vila, M. Kuruc, and
A. Mohr. A Deep Dive Into Universal Scene Description and Hydra,
2019. SIGGRAPH ’19 Course Notes.

[10] P. Fischer, S. Kerkemeier, M. Min, Y.-H. Lan, M. Phillips, T. Rath-
nayake, E. Merzari, A. Tomboulides, A. Karakus, N. Chalmers, et al.
Nekrs, a gpu-accelerated spectral element navier–stokes solver. Paral-
lel Computing, 114, 2022.

[11] S. Fouladi, B. Shaklett, F. Poms, A. Arora, A. Ozdemir, D. Raghavan,
P. Hanrahan, K. Fatahalian, and K. Winstein. R2E2: Low-Latency Path
Tracing of Terabyte-Scale Scenes using Thousands of Cloud CPUs.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH),
2022.

[12] B. Foundation. Blender–Free and Open 3D Creation Software, 2024.
https://www.blender.org.

[13] VisIt/Libsim Data/Simulation Examples. https://github.

com/visit-dav/visit/tree/develop/src/tools/data/

DataManualExamples/Simulations, 2006.
[14] P. Grosset, M. Prasad, C. Christensen, A. Knoll, and C. Hansen. TOD-

Tree: Task-Overlapped Direct Send Tree ImageCompositing for Hybrid
MPI Parallelism and GPUs. IEEE Transactions on Visualization and
Computer Graphics, 23(6), 2017.

[15] M. Han, I. Wald, W. Usher, N. Morrical, A. Knoll, V. Pascucci, and C. R.
Johnson. A Virtual Frame Buffer Abstraction for Parallel Rendering
of Large Tiled Display Walls. In IEEE VIS 2020 - Short Papers, 2020.
doi: 10.1109/VIS47514.2020.00009

[16] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen. Scalar
mixing in direct numerical simulations of temporally evolving plane
jet flames with skeletal CO/H2 kinetics. Proc. Combust. Inst., 31(1),
2007.

[17] W. Humphrey, A. Dalke, and K. Schulten. VMD – Visual Molecular
Dynamics. Journal of Molecular Graphics, 14, 1996.

[18] S. Ibrahim, T. Stitt, M. Larsen, and C. Harrison. Interactive in situ
visualization and analysis using Ascent and Jupyter. ISAV ’19, 2020.
doi: 10.1145/3364228.3364232

[19] T. Ize, C. Brownle, and C. D. Hansen. Real-Time Ray Tracer for
Visualizing Massive Models on a Cluster. In Eurographics Symposium
on Parallel Graphics and Visualization, 2011.

[20] W. Kendall, T. Peterka, J. Huang, H.-W. Shen, and R. Ross. Accelerat-
ing and benchmarking radix-k image compositing at large scale. EG
PGV’10, 2010.

[21] Kitware. Catalyst2: GPU resident workflows, 2024. https://www.

kitware.com/catalyst2-gpu-resident-workflows/.
[22] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci,

and C. Harrison. The ALPINE In Situ Infrastructure: Ascending from
the Ashes of Strawman. In Proceedings of the In Situ Infrastructures
on Enabling Extreme-Scale Analysis and Visualization, ISAV’17, 2017.
doi: 10.1145/3144769.3144778

[23] K. Ma. Parallel volume ray-casting for unstructured-grid data on
distributed-memory architectures. In Proceedings of the IEEE Sympo-
sium on Parallel Rendering, 1995. doi: 10.1145/218327.218333

[24] K. Moreland, W. Kendall, T. Peterka, and J. Huang. An image com-
positing solution at scale. In SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage
and Analysis, 2011. doi: 10.1145/2063384.2063417

[25] K. Moreland, C. Sewell, W. Usher, L.-t. Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-M. Chen,
R. Maynard, and B. Geveci. VTK-m: Accelerating the Visualiza-
tion Toolkit for Massively Threaded Architectures. IEEE Computer
Graphics and Applications, 36(3), 2016. doi: 10.1109/MCG.2016.48

[26] P. A. Navratil. Memory-Efficient, Scalable Ray Tracing. PhD thesis,
University of Texas, Austin, 2010.

[27] P. A. Navrátil, H. Childs, D. S. Fussell, and C. Lin. Exploring the
Spectrum of Dynamic Scheduling Algorithms for Scalable Distributed-
Memory Ray Tracing. IEEE Transactions on Visualization and Com-
puter Graphics, 20(6), 2014.

[28] H. Park, D. Fussell, and P. Navratil. SpRay: Speculative Ray Schedul-
ing for Large Data Visualization. In IEEE Symposium on Large Data
Analysis and Visualization, 2018.

[29] E. Reinhard. Scheduling and Data Management for Parallel Ray
Tracing. PhD thesis, University of East Anglia, 1995.

[30] A. Sahistan, S. Demirci, I. Wald, S. Zellmann, J. Barbosa, N. Morrical,
and U. Güdükbay. GPU-based Data-parallel Rendering of Large, Un-
structured, and Non-convexly Partitioned Data, 2022. doi: 10.48550/
ARXIV.2209.14537

[31] J. Salmon and J. Goldsmith. A Hypercube Ray-Tracer. In C3P: Pro-
ceedings of the third conference on Hypercube concurrent computers
and applications - Volume 2, 1989.

[32] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit
(4th ed.). Kitware, 2006.

[33] J. E. Stone, K. Griffin, J. Amstutz, D. E. DeMarle, W. R. Sherman,
and J. Günther. ANARI: A 3-D Rendering API Standard. Computing
in Science & Engineering, 24(02), 2022. doi: 10.1109/MCSE.2022.
3163151

[34] A. Stukowski. Visualization and analysis of atomistic simulation data
with OVITO-the Open Visualization Tool. Modelling and Simulation
in Materials Science and Engineering, 18(1), 2010. doi: 10.1088/0965
-0393/18/1/015012

[35] W. Usher, I. Wald, J. Amstutz, J. Günther, C. Brownlee, and V. Pascucci.
Scalable Ray Tracing Using the Distributed FrameBuffer. Computer
Graphics Forum, 38, 2019. doi: 10.1111/cgf.13702

[36] I. Wald, M. Jaroš, and S. Zellmann. Data Parallel Multi-GPU Path
Tracing using Ray Queue Cycling. Computer Graphics Forum, 42(8),
2023. doi: 10.1111/cgf.14873

[37] I. Wald, G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers,
J. Günther, and P. Navrátil. OSPRay – A CPU Ray Tracing Framework
for Scientific Visualization. IEEE Transactions on Visualization and
Computer Graphics, 2017.

[38] I. Wald and S. G. Parker. Data Parallel Path Tracing with Object
Hierarchies. Proceedings of the ACM on Computer Graphics and
Interactive Techniques, 5(3), 2022. doi: 10.1145/3543861

[39] B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System. In Euro-
graphics Symposium on Parallel Graphics and Visualization, 2011. doi:
10.2312/EGPGV/EGPGV11/101-109

[40] S. Zellmann, N. Morrical, I. Wald, and V. Pascucci. Finding Efficient
Spatial Distributions for Massively Instanced 3-d Models. In S. Frey,
J. Huang, and F. Sadlo, eds., Eurographics Symposium on Parallel
Graphics and Visualization. The Eurographics Association, 2020. doi:
10.2312/pgv.20201070

https://github.com/NVIDIA/VisRTX
https://www.blender.org
https://github.com/visit-dav/visit/tree/develop/src/tools/data/DataManualExamples/Simulations
https://github.com/visit-dav/visit/tree/develop/src/tools/data/DataManualExamples/Simulations
https://github.com/visit-dav/visit/tree/develop/src/tools/data/DataManualExamples/Simulations
https://www.kitware.com/catalyst2-gpu-resident-workflows/
https://www.kitware.com/catalyst2-gpu-resident-workflows/

	Introduction
	Background and Related Work
	Data Parallel Rendering
	Data Pararallel Ray Tracing
	ANARI

	Data Parallel ANARI (DP-ANARI)
	Object Locality and Consistency
	Globally Consistent Objects
	Locally Defined Objects
	Locally Mapped Frame Buffers

	Collaborative Operations
	How this works out in practice

	Evaluation Challenges and Methodology
	Example Realizations
	ANARI-Composite: Application-transparent compositing using an ANARI Pass-through Device
	Compositing
	Rendering

	Barney and (B)ANARI
	BANARI
	Local vs. Global Rendering

	Example Integrations
	Minimal, Proof-of-Concept Applications
	OSPRay and TSD Mini-Applications
	HayStack, and HANARI
	Data Parallel VTK Mini-Application

	Prototypical Production Integrations
	ParaView
	Ascent
	VisIt/LibSim

	A Case for Adopting this Paradigm
	Impact on Existing, Classic-ANARI Applications
	Benefits of Adopting a DP-ANARI Paradigm

	Discussion
	Limitations
	Scene/Data Partitioning
	Remaining Issues

	Conclusion

