
Efficient Analysis and Visualization of High-Resolution Computed
Tomography Data for the Exploration of Enclosed Cuneiform Tablets
Stephan Olbrich,
Andreas Beckert*
Universität Hamburg

Cécile Michel

Centre National de la Recherche Scientifique
(CNRS – ArScAn), Nanterre, and Universität Hamburg

Christian Schroer, Samaneh Ehteram,
Andreas Schropp, Philipp Paetzold
Deutsches Elektronen-Synchrotron (DESY),

Hamburg, and Universität Hamburg

Figure 1: Steps of processing density data on a regular 3D grid, acquired by high-resolution computed tomography of an enclosed

cuneiform clay tablet: Volume data denoising, surface reconstruction, smoothing, segmentation, and feature-enhanced rendering.

ABSTRACT
Cuneiform is the earliest known system of writing, first developed
for the Sumerian language of southern Mesopotamia in the second
half of the 4th millennium BC. Cuneiform signs are obtained by im-
pressing a stylus on fresh clay tablets. For certain purposes, e.g.
authentication by seal imprint, some cuneiform tablets were en-
closed in clay envelopes, which cannot be opened without destroy-
ing them. The aim of our interdisciplinary project is the non-inva-
sive study of clay tablets. A portable X-ray micro-CT scanner is
developed to acquire density data of such artifacts on a high-reso-
lution, regular 3D grid at collection sites. The resulting volume data
is processed through feature-preserving denoising, extraction of
high-accuracy surfaces using a manifold dual marching cubes algo-
rithm and extraction of local features by enhanced curvature ren-
dering and ambient occlusion. For the non-invasive study of cunei-
form inscriptions, the tablet is virtually separated from its envelope
by curvature-based segmentation. The computational- and data-in-
tensive algorithms are optimized for near-real-time offline usage
with limited resources at collection sites. To visualize the complex-
ity-reduced and octree-based compressed representation of sur-
faces, we develop and implement an interactive application. To fa-
cilitate the analysis of such clay tablets, we implement shape-based
feature extraction algorithms to enhance cuneiform recognition.
Our workflow supports innovative 3D display and interaction tech-
niques such as autostereoscopic displays and gesture control.

Index terms: Computed tomography, Parallel data analysis, Sci-
entific visualization, 3D presentation and interaction, Application
case study.

1 INTRODUCTION
Cuneiform is the earliest known system of writing. This word
means wedge-shaped and describes the appearance of the signs,
which combine various wedges obtained by impressing a stylus
into the fresh clay of a tablet. It was first developed for the
Sumerian language in Southern Iraq during the second half of the
4th millennium BC and was in use during more than three millennia

for a dozen different languages. Cuneiform signs are written from
left to right, and all the sides of the clay tablet are successively
covered by rotating it along a horizontal axis [31]. Today, hundreds
of thousands of cuneiform texts have been deciphered and studied
by Assyriologists in order to write the history of the ancient Middle
East.

Clay cuneiform tablets written for practical purposes, such as
letters or legal documents, were sometimes enclosed in clay
envelopes [5]. The purpose of the envelope was to protect the
confidentiality of the text and the material integrity of the tablet.
The envelope of the legal text certified the validity of the document
[30]. For legal documents, a summary or the transaction was copied
on the envelope, and parties and witnesses unrolled their cylinder
seals on the surface of the clay leaving miniature scenes with the
value of signatures. When the envelope of a contract was broken, it
lost its legal validity. Hundreds of such legal tablets have been
discovered, still encased in their clay envelope, and thus the content
remains invisible to Assyriologists. However, there may be
important information on the tablet that has not been included on
the envelope.

These enveloped cuneiform tablets are interesting objects of
research in Assyriology, but could so far only be studied if the
envelope would be broken (Figure 2).

Figure 2: Cuneiform tablet and envelope, Old Assyrian,
1927-1836 B.C. (www.harvardartmuseums.org).

* {stephan.olbrich, andreas.beckert}@uni-hamburg.de

The aim of our project is to extract cuneiform text non-destruc-
tively from enclosed tablets and to reconstruct how they were made.
The workflow to be designed must be applied at the collection site,
as it is not permitted to take these ancient, unique artifacts outside.
This is the case for the Louvre Museum (Paris), where one of the
world-wide most relevant collections of cuneiform tablets exists.

To study enclosed tablets non-destructively, the idea is to scan
the tablets using computed tomography (CT) and to reconstruct the
artifacts on a high-resolution regular 3D grid. X-ray micro-CT in-
struments exist, but they cannot easily be brought to a collection
(e.g. in a museum), due to their size and weight. For these reasons,
as part of our interdisciplinary project, a portable high-energy X-
ray CT system has been developed. The system must be completely
self-contained, with control and data processing working offline.
This comprises compute resources, data capacities, visualization
facilities, and its efficient exploitation on location, where no inter-
net connection can be expected. The CT scanner weighs about
420 kg. For transport, it can be disassembled into several parts,
each of which can be carried by two or three people if necessary.
The system can be assembled and operational in less than two hours
(Figure 3).

Figure 3: Individual modules of the ENCI X-ray system: (1) Sup-
port frame with lower radiation box, (2) Upper radiation box, (3) X-
ray tube bottom, (4) X-ray tube, (5) X-ray tube shielding, right side,

(6) X-ray tube shielding, left side, (7) Back-side wall, detector.

The micro-CT scanner is named ENCI (Extracting Non-destruc-
tively Cuneiform Inscriptions), in homage to ENKI, the Sumerian
god of water, knowledge, crafts, and creation. It fulfills the require-
ments of high resolution to reproduce details of inscriptions (mi-
crofocus X-ray source size: 20 µm, detector: 3072 x 1944 pixel,
74.8 µm pixel size), supports maximum sample dimensions of 10
cm x 20 cm x 5 cm, providing sufficient X-ray energy to penetrate
clay material with these dimensions (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 180 keV) in reason-
able tomographic recording time (26 frames per second, multiplied
by thousands of projections, resulting in measuring time of approx.
20 minutes), and appropriate radiation protection shielding to over-
come international certification requirements (< 0.5 µSv/h outside
of the instrument).

The measurement of the artifacts by ENCI results in a volume
representation, reconstructed on a regular 3D grid, provided in
HDF5, a scientific open file format, which is a convenient basis for
data analysis and visualization afterwards. The spatial resolution
varies, depending on the object, and the disposition in the instru-
ment. The dataset represents up to 3072 x 3072 x 1944 grid points
(approx. 18 billion voxels), where scalar values in 32-bit float pre-
cision are stored (approx. 72 GB).

However, the desired application scenarios, such as virtually un-
packing the enclosed cuneiform tablet and reading its inscriptions,
are not possible with direct visualization methods for volume data,
such as volume slicing (first step in Figure 1) or volume rendering.
Volume rendering requires sophisticated preprocessing and usually
manual efforts to support the segmentation of the tablet and the en-
velope. Also, 3D surface reconstructions usually require time-con-
suming, explorative manual operation. This approach could be use-
ful for material analysis to study the properties of the artifacts.
However, the method we present here includes automatic geomet-
ric surface extraction and separation of the tablet and the envelope,
as well as 3D rendering and 3D printing. Tight schedules for data
acquisition at the collection sites, directly followed by interactive
exploration of the artifacts, require time-efficient data processing
and rendering.

For these reasons, we set up the following requirements for the
processing of the acquired micro-CT data:

1. Automated parameterization of the compute- and data-inten-
sive processing algorithms, to avoid high-latency time-con-
suming manual operation, as far as possible

2. Efficient implementation for optimized workstation utiliza-
tion on location, esp. exploiting multi-level parallelization

3. Decomposition of high-resolution volume data preprocessing
(batch-oriented), and interactive visualization of extracts

4. Development and implementation of tools for interactive 3D
exploration of extracted, segmented, and attributed surfaces,
optionally supporting immersive 3D displays and interaction

5. Design of a compressed intermediate representation of sur-
faces, to support efficient transfer of data from the prepro-
cessing tool to the visualization application

6. Triangulated surfaces should satisfy topologically 2-mani-
fold criteria, to support universal mesh reuse

7. Support of open file formats, such as HDF5 for 3D micro-CT
data import, STL for 3D printing, TIFF export of screenshots,
image sequences of keyframe animations, and fat-cross ren-
derings, and export of OBJ and PLY files for photorealistic
rendering by using separate applications (e.g. Blender)

2 RELATED WORK
Specialized tools to analyze and visualize cuneiform tablets, have
been developed for more than two decades. First studies were based
on surface representations, i.e. by techniques such as laser-based
Light Detection and Ranging (LiDAR), Structure from Motion
(SfM) or Structured Light Scanning (SLS) [1][8][15]. However,
such approaches only digitize the exterior of the tablets and do not
allow the study of tablets and their inscriptions enclosed in a clay
envelope, since digitalization of the interiour would require
breaking the artifact.

First experiments of X-ray CT scanning to explore the interiour
of cuneiform tablets were performed at Delft University of Tech-
nology (Netherlands), where ancient artifacts of the Liagre Böhl
Collection of The Netherland Institute for the Near East (NINO,
Leiden, Netherlands) have been scanned and visualized [36][55].
Reconstructed triangulated surfaces have been analyzed and
rendered, which already enabled to read cuneiform signs of the
artifact and explore features, such as plant materials and holes in
the clay [32]. In [16], it was shown that these meshes can be
imported in GigaMesh [15], a software framework with focussed
on processing surface meshes as described above, and segmented
by interactively applying algorithms which result in virtually
unpacking a cuneiform tablet. However, this approach, as well as
generic tools (Avizo [3], VTK [48]), commonly applied for inter-
active visual data analysis, lacks automatic extraction, segmenta-
tion, and interactive visualization of the separate parts of the arti-
facts, its inscriptions and other features contained in the clay tablet.

Transfering methods from 2D image segmentation to 3D CT data
can be useful [43]. Alternatively, features in the 3D images, such
as ambient occlusion, could be exploited for classification and
separation [53]. This approach results in enumerated partition
information per voxel, thus does not provide hints for subpixel
precision, and it is computational- and data-intensive. We decided
to concentrate on segmentation of meshes. It has been shown that
automatic mesh segmentation requires exploitation of application-
specific characteristics, e.g. shape features [49].

To reconstruct the surfaces between clay material, surrounding
air, or other material inside, with less density than clay (air, organic
matter etc.), isosurface extraction methods can be applied. The
well-known marching cubes algorithm [25] creates a “triangle
soup”, and mesh structures have to be constructed in a subsequent
step. Ambiguous configurations can result in discontinuities or
violation of the 2-manifold condition, which is presupposed for
mesh processing, such as smoothing operations, and for 3D print.
Dual marching cubes algorithms [11][46] are advantageous
regarding resulting triangle quality and implicit neighborhood
information. Since they do not neccessarily fulfill the manifold
topology, the algorithms have been extended appropriately [47].
Ambiguities have been resolved, first by analyzing the cube faces
[35], and later based on volumetric models and analyzing
topological aspects [6][7][9][21][24][34]. This resulted in an
increased number of finally 37 unique topological cases [6].
Approaches for compressed and multiresolution of isosurfaces has
been presented, e.g. [12][22][43][45][52]. The best known
compression ratio is achieved in [19], but it finally depends on
context-based arithmetic coding, which is executed sequentially,
i.e. parallelization of it would be nontrivial.

Denoising raw 3D CT data is required to achieve good results
from contouring (Figure 4). For this purpose, median and bilateral
image filtering algorithms are commonly used [10][42][54]. In
joint bilateral filtering, the range weights are calculated from other
image data than the original image to be filtered. Instead of the
original gaussian range weighting function, alternatives have been
suggested, that can be more effective regarding denoising quality,
at the same time significantly reducing the computational effort,
e.g. the Tukey weight function [10]. The fundamental concepts are
reused for feature-preserving smoothing of surface meshes. In
comparison to first approaches of filtering vertex positions [14],
processing of face normals in a first step, and adapting vertex
positions afterwards, is more effective, and usually performed
iteratively [20][26][51][59]. For median filtering, instead of
replicating normal vectors for higher weights, and sorting them (as
in [57][58]), an iterative method based on [50] can be used. The
evaluation regarding quality and performance, as well as further
improvements of this approach are addressed in our work.

For better recognition of inscriptions, conventional lighting and
material models are complemented by non-photorealistic rendering
of triangulated surfaces [13][41] and effective shadowing, e.g. by
applying the method of ambient occlusion [28][29].

The algorithms implemented in available applications, lack in
consequent integration of multi-level parallelism in all processing
stages, in considering all special cases of data configurations for 2-
manifold marching cubes, in exploitation of implicitely existing
information by combining operations instead of reconstruction
afterwards, and in chosing most effective algorithms, resulting in a
tradeoff, regarding run time and quality of the results.

To overcome the insufficiencies of existing algorithms and
applications, we developed an integrated workflow, implemented
and customized for efficient support of the cuneiform exploration
scenario, and meeting the requirements stated at the end of our
introduction (Chapter 1). First results, based on CT data of a
cuneiform replica by the use of a preliminary CT scanner, were
presented in [36][37].

(a)

(b)

(c)

Figure 4: Isosurface of a cropped section of a preliminary 3D CT
data set (512x512x512 from 1607x1950x2301 voxel, at offset

(512, 512, 512), resulting in 65,835,427 triangles (a)),
isosurface of Gauss-filtered and 2:1 resampled, same section

(256x256x256, resulting 1,165,482 triangles (b)), and
isosurface of the same Gauss-filtered section, denoised by

iterated, joint bilateral filtering (result: 1,002,374 triangles (c)),
all thresholding at the same scalar value.

3 IMPLEMENTATION
The workflow of processing of 3D volume, geometric, and feature
data consists of the following steps:

1. Import (HDF5) and preprocessing (cropping, low-pass
filtering, resampling, and denosing) of 3D volume data

2. Creation of an octree-based, compressed representation of
isosurface and per-vertex data (we call it EXA file format)

3. Triangulation of the isosurface, implementing a 2-manifold
dual marching cube algorithm (creating a mesh)

4. Postprocessing of the triangle mesh (smoothing, feature
extraction, segmentation, and ambient occlusion)

5. Interactive 3D visualization of the segmented triangle mesh
and per-vertex feature data (with optional stereoscopic
rendering, head-tracking, gesture control)

All methods are implemented in C, taking advantage of multi-
core parallelization in OpenMP and autovectorization. We utitlize
OpenGL 4.6 for 3D rendering purposes, implementing fragment,
vertex, and geometry shaders. GTK 3 is used for abstraction of the
user interface. The modules are tested in Linux (Ubuntu/gcc) and
Windows environments (MSYS2/gcc and MS Visual Studio).

3.1 Import and preprocessing of 3D volume data
The raw volume data, as result of CT, previously reconstructed on
a regular 3D grid, is preprocessed, using methods of 3D image pro-
cessing. Due to our decision to apply surface-orientated segmenta-
tion, it is more important to provide good course of the signal in-
stead of remaining full resolution, which would be necessary for
volume-oriented segmentation. Since our surface reconstruction
stage achieves sub-voxel precision based on continuous signals, we
consider low-passed filtering and 2:1 sampling (in all 3 dimension)
the 3D volume data. This first step leads to 8:1 reduction of the
volume. In the next step we perform edge-preserving denoising.
We implemented several algorithms, based on median, bilateral,
and joint bilateral filtering, which were tested. We also provide op-
tionally iterative execution of bilateral filtering, since it is well-
known that converges to a piecewise constant signal, which is ad-
vantageous in our use case.

Our tools support flexible configurations of the filter kernels
(window size and functions) and its parameters. To exploit multi-
level parallelism of modern workstation architectures, we tuned our
software for efficient use of multi-threading (OpenMP) and vector-
ization (SIMD). To avoid conflicts in caching, and to enable au-
tovectorization (gcc), we pay attention to memory locality and lin-
earity of the data to be processed in the computationally intensive
kernel operations.

Furthermore, we compared alternative filter kernels regarding
computational effort and quality of the results. By replacing the
usually applied Gaussian function for range weighting in the bilat-
eral filtering by the Tukey function [10], we reduced the run time
significantly, while the differences of the results – regarding the
surface reconstruction – are negligible. We scaled the Tukey in re-
lation to the Gaussian function, presuming to achieve the same at-
tenuation for a σ’ value in the Tukey as for the σ value in the Gauss-
ian weighting (Figure 5).

This leads to

Figure 5: Gaussian vs. Tukey range weighting function.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) = �1 − �
𝑥𝑥
𝜎𝜎′
�
2
�
2

 for 𝑥𝑥 < 𝜎𝜎′; otherwise 0

with 𝜎𝜎′ = 1

�1−�𝑒𝑒−
1
2

= 2.1262

where 𝑥𝑥 is the difference between the image value at the currently
focused location and the image value at the individual location of
the considered window of the filter kernel.

By exploitation multi-level parallelism, memory locality and
caching, as well as selection of effective, computationally less ex-
pensive methods, we achieved a speed-up of two orders of magni-
tude, compared with naïve implementation, which enables applica-
tions on mobile workstations equipped with modern processors.

Essential for successful automation of the processing pipeline is
an appropriately estimated value of σ. In our approach, we assume
Gaussian noise characteristics of the measured data. We analyzed
its histogram curve, where typically two local maxima can be ob-
served for our type of materials. After each of the filtering steps,
the local maxima of the probability density are raised, and the
standard deviation (= noise) is reduced (Figure 6).

Figure 6: Histograms of measured CT data from an enclosed
cuneiform clay tablet: (a) original values (orange),

(b) low-pass filtered and 2:1 resampled (green), and
(c) denoised by joint bilateral filtering (blue).

To estimate the σ value, we calculate the difference of the loca-
tion of the upper maximum (representing clay material) and the lo-
cation were the probability density falls to 𝑒𝑒−1 2� of the probability
density of the upper local maximum, according to the Gauss func-
tion. We decided to analyze the slope towards the local minimum
(Figure 7).

Figure 7: Estimation of the standard deviation σ,
assuming Gaussian noise

(zoomed cutoff of histogram, see Figure 6).

Pr
ob

al
ity

 d
en

sit
y
→

Scalar values →air

0,6065306
6

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,5 1 1,5 2 2,5 3

Gauss (σ = 1) Tukey (σ' = 2.1262)

𝑒𝑒− �1 2

clay

Pr
ob

ab
ili

ty
 d

en
sit

y
→

Scalar values →local
minimum

upper local
maximum

𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑒𝑒−1/2

𝑚𝑚𝑚𝑚𝑚𝑚

σ

3.2 Compressed representation of isosurface
For extraction of the clay surface, we implemented an advanced
isosurface algorithm. The aim of this method is to create a contour-
ing representation in 3D. This results in reduction of the complexity
from 𝑂𝑂(𝑛𝑛3) to 𝑂𝑂(𝑛𝑛2), where 𝑛𝑛 is the resolution of the volume data
in each dimension. Successful application of this approach depends
on the appropriate parameterization of the iso-threshold value τ. To
further automate the processing pipeline, we developed an estima-
tor for τ, which is optimized for our use case, where clay tablets are
surrounded by air. The clay material itself may embed small areas
of air or other material – e.g. organic – with less density than clay.
However, τ should especially resolve the interspace between the
tablet and the envelope.

Instead of implementing straightforward methods, such as using
the mean of the values of the two peaks in the histogram, or adapt-
ing methods of image segmentation for our purposes, we developed
a special method. In our experiments, we discovered that threshold
values at the slope of the upper peak towards the local minimum of
the histogram show good results. To estimate an appropriate thresh-
old value, one can use the mean value where clay exists (= upper
local maximum of probability density 𝑝𝑝𝑝𝑝), minus 𝑓𝑓 ∙ 𝜎𝜎, with 𝑓𝑓 as a
given constant (e.g. 𝑓𝑓 = 3). In our case study, we implemented an-
other approach: we identify the location in the histogram, where the
𝑝𝑝𝑝𝑝 just exceeds its local minimum, multiplied by a given factor 𝑓𝑓
(e.g. 𝑓𝑓 = 2, Figure 8).

Figure 8: Estimation of the thresholding value τ, looking for the
location at the left slope of the upper peak where the probability

density approaches its local minimum, multiplied by a given factor f
(zoomed cutoff of histogram, see Figure 6).

As common in most isosurface algorithms, signs at each point of
the regular 3D grid are analyzed, indicating if the respective scalar
value at its position is less or greater than 𝜏𝜏. Active edges are de-
fined where the sign changes along the edge. By considering simi-
lar aspects of parallelization as in section 3.1, we developed an ef-
ficient implementation. Our implementation avoids incremental al-
location of memory by malloc(), e.g. where active cells etc. are
identified. We replace this strategy by two passes. First, we count
the number of required data elements and allocate sufficient
memory afterwards. Second, we create the content of the elements
on data locations we get by atomic capture operations. With the
parallel implementation of theses steps, we get a speed-up of up to
two orders of magnitude.

Inspired by [19], we integrate an efficient isosurface extraction
algorithm, which prepares an octree-based representation, and fi-
nally creates an intermediate file in a format, which we call EXA.
In contrast to [19], where sequential, context-based arithmetic com-
pression is used, our demand was to develop parallel algorithms.
Due to this requirement, we developed a static code table, using the
8-bit sign pattern of the cube vertices at the next course level of the
octree at the respective location as context. This results in a transfer

table to code the 8-bit signs, consisting of 65,536 entries. Each of
them provides the number in a set of possible 8-bit signs which
most likely can be predicted, resulting in a variable-length code.
Moreover, only one octet of potentially eight children must be
coded at each level of the octree, since all other seven sign patterns
can be reconstructed from its neighborhood (Figure 9).

Figure 9: Signs at 8 grid points of a cell or octree cube (red) are
encoded, based on a code table considering 8 context signs (blue)
at the parental level of the octree hierarchy. 11 further grid points

are reconstructed from the neighborhood (white).

Based on our precalculated code table, multi-level compression
is not only parallelized by parallel prefix-sum scanning for calcula-
tion of the individual bit position, and afterwards atomic code writ-
ing. Furthermore, we get topology compression ratios similar to
those mentioned in [19] (0.53 bit per vertex for a spherical volume
data set on a 257³ grid). In Table 1, we show results, compressing
an isosurface of a spherical scalar field. For example, in a
256x256x256 test case, we need approximately 0.87 bit per vertex,
which means 0.435 bit per triangle in a mesh, without sub-voxel
precision. Our code is complemented by 1 bit per ambiguous cell
facets, which are resolved by “The asymptotic decider” [35]. Due
to the rareness in practical use cases, its overhead is neglectable.

Grid resolution
(float values)

Number of
vertices

Topology bits
per vertex

Compression
factor

256x256x256 248,426 0.869 2,487 : 1
512x512x512 996,842 0.871 4,949 : 1

1024x1024x1024 3,994,274 0.866 9,936 : 1
2048x2048x2048 15,994,154 0.868 19,791 : 1

Table 1: Compressed isosurface of a spherical field (values:
radius from center of volume, threshold: 90 % of max. radius).

To add geometric information, we quantize the normalized loca-
tions where the edges of the cells cross the isosurface, which results
in approximately 𝑁𝑁 bits at each “active” edge, where 𝑁𝑁 is the pre-
cision in bit (max. normalized error: 0.5 ∙ 2−𝑁𝑁). For a triangle mesh,
this results in approximately 𝑁𝑁/2 bit per triangle. Due to the con-
stant amount of precision data per edge, parallel coding is trivial.

By default, we use 8 bits. It makes sense to adapt this precision
to the characteristics of the data set analyzed, e.g. noise and overall
resolution. In our case study, where we process CT data from an-
cient cuneiform tablets, it turns out that a precision of 4 bits is suf-
ficient, representing 16 equidistant steps along each active edge.

Our code is complemented by compact delta representations of
vertex positions and normal vectors, which is used to store results
of surface smoothing. We apply some sort of predictive coding,
taking advantage of a variant of Simple8b for parallel variable-
length encoding, using 64-bit and 128-bit words for delta compres-
sion of positions and normal, respectively. Each of them is filled
with codes of constant length, specified in a selector [2]. Additional
per-vertex data – e.g. for logarithmically quantized curvatures and
classified shapes, partition numbers from segmentation, and precal-
culated ambient occlusion – are typically coded in 16-bit words:
7 bits for shape characteristics (14 curvature classes, multiplied by
9 shape classes, plus 1 for “flat”), 3 bits for up to 8 partition classes,
and 6 bits for discretized ambient occlusion.

Pr
ob

ab
ili

ty
 d

en
sit

y
→

Scalar values →local
minimum

upper local
maximum

τ

𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓 � 𝑚𝑚𝑚𝑚𝑚𝑚

3.3 Triangulation of the isosurface
To enable the application of mesh smoothing algorithms and to cre-
ate watertight surfaces for 3D print in STL file format, we aim to
create triangle meshes with 2-manifold characteristics. In principle,
isosurfaces can fulfill this prerequisite. But in detail, it is not
straightforward to avoid violations. We develop a novel, table-
based 2-manifold dual marching cubes algorithm, based on the
isosurface data extraction described before. Our algorithm pro-
duces a quadrilateral around each active cell edge, as in [11]. As in
previously developed dual marching cubes algorithms, one vertex
is usually used for each of the four cells that are incident on the
active edge, e.g. by calculating the centroid of all edge crossings
connected to this part of the isosurface. To avoid non-manifold sit-
uations, at the respective cells we create two dual vertices. This is
consequently done where ambiguous cell facets are detected while
walking around the cell, connecting the edge crossings. This con-
figuration occurs where all 4 edges are crossed (Figure 10) without
the need to consider the neighborhood.

Figure 10: 9 cell facet configurations (0 = empty cell, 1-6 = unam-
biguous, 7-8 = ambiguous). Blue lines show active edges, where

the sign changes between the vertices and the isosurface crosses.
The black lines connect two crossings at active edges.

This leads to an extended quadrilateral (we call it “x-quad”),
where each of the four vertices is potentially splitted into two, re-
sulting in 4- to 8-sided polygons, which are represented by 2 to 6
triangles.

We precalculated a table consisting of all cell configurations, to
accelerate our mesh generation and triangulation algorithms. By
considering all combinations of cell facets, we identified 328 pos-
sible cases, which can be reduced to 27 basic cell configurations by
omitting mirrored, rotated, or inverted variants. In Figure 11, all
visualized x-quad faces are clipped to its respective quarter parts
inside the cell. The configurations are sorted by number of 1 to 4
positive (or negative) cell vertices (5, …, 8 are equivalent to 3, …,
0), and by the number of faces crossing the cell. Its maximum is 4
(configuration 4N). The maximum number of dual vertices inside
a cell is 4 (configuration 4J, with 2 faces, both consisting of 2 dual
vertices). In several cell configurations (2B, 3B, 3C, 3E, 4D, 4E,
4F, and 4G, 4J, 4M), two dual vertices are created for a respective
face, to avoid situations where non-manifold meshes could be pro-
duced. Even in cases were the neighborhood does not require it, this
approach also leads to better reproduction of features in these cases,
avoiding sharp crease angles. Depending on the respective active
edge, one or two dual vertices are used for the mesh as part of the
x-quad which is produced by our algorithm around the active edge.
Even in the case of three dual vertices for one face (4E), no more
than two dual vertices are necessary to represent the quarter part of
each of the x-quads in this cell configuration.

In the initial publication of the marching cube algorithm, 15 basic
cases were presented [25]. As later published, these can be reduced
to 14, since one case can be removed by reflectional symmetry. The
ambiguity of several of these cases can lead to cracks at ambiguous
cell facets. This issue and the topologically correct construction of
isosurfaces in general have been addressed in [7][9][21][24][34],
resulting in 33 fundamental configurations.

Figure 10 illustrates our approach by walking around the con-
touring lines around the cell facets. This results in cyclic paths sur-
rounding each of the up to 4 faces shown in Figure 11. Surface el-
ements representing a tunnel-shaped topology inside the cell cannot
be identified by this algorithm. Using the notation in [7], this re-
gards to the cases 4.1.2, 6.1.2, 7.4.2, 10.1.2, 12.1.2, and 13.5.2.

Subtracting these six cases from the 31 basic cases (two cases
from “Marching Cubes 33” can be removed by reflection sym-
metry), results in 25 cases. We identified 27 basic cases, i.e. two
more, which had not been published at the time of implementing
our algorithm. Meanwhile, these two additional cases (4F and 4J in
Figure 11) were presented in [6] (cases 13.7 and 13.6.1 in their pa-
per), and also two additional cases containing tunnels (cases 13.3.2
and 13.6.2 in their paper).

Figure 11: All 27 basic cell configurations we identified.

In our triangulation, we consider the two possible cases of crease
orientations at each x-quad. We decide to use the most similar case,
compared to the curvature, estimated from normal vectors at single
dual vertices or using averaged positions and normal, where two
dual vertices represent a cell. Of course, this applies only for con-
vex quads. In case of a concave quadrilateral, we do not have an
alternative.

Figure 12: Result of our algorithm filling holes at segmentation
boundaries, in combination with our adaptive vertex clustering algo-
rithms, to reduce the polygon count at locations with less curvature.

Clockwise or counterclockwise ordering is chosen, depending on
the gradient sign at the active edge where the respective x-quad is
created. This guarantees consistent orientation throughout the
mesh.

Neighborhood information is created based on the configuration
table information on-the-fly, e.g. to link vertices to incident faces,
which is required for further processing, such as interpolation of
per-vertex normal vectors from per-face normal vectors at x-quads.

Finally, we implemented an option for adaptive vertex clustering,
considering angular and positional deviation criteria, to reduce the
number of polygons. Furthermore, we implemented a method based
on the algorithm in [4][23], to fill holes of the surface at boundaries,
which could caused by our surface-oriented segmentation
(Figure 12). These additional triangles can be generated optionally.

3.4 Postprocessing of the surface mesh

3.4.1 Feature-preserving smoothing
For smoothing the surfaces, while preserving the features which are
relevant in this application (here: high curvatures at the wedges of
the cuneiform symbols), we implemented an alternative approach
compared to existing methods. Instead of processing a triangular
mesh, our algorithm is based on a mesh of x-quad faces, which are
described in the previous section. We have tested a variety of iter-
ative, median, and bilateral filter kernels to smooth the face-ori-
ented normal vectors, assumed at the faces’ center. Like in feature-
preserving image filtering, the neighbored faces are considered.

Afterwards, the vertex positions are iteratively displaced, so that
the angle between the line from the face center to the respective
vertex position and the previously calculated face-oriented normal
vector converges to 90°.

Finally, the per-vertex normal vectors are calculated as a
weighted mean of the normal vectors of all faces which are incident
to the respective vertex.

One exemplary result of our method is shown in Figure 13.

(a)

(b)

Figure 13: Visualization of isosurface of denoised 3D CT data (a)
and smoothed isosurface mesh (b), using iterative weighted median

filtering of face normals, and iterative vertex updating, rendered
with a ambient/diffuse/specular lighting model shader in OpenGL.

3.4.2 Feature extraction
We decided that the most important feature to extract is the shape
characteristic of the surface. Based on the results of mesh smooth-
ing, we estimate the principal curvatures 𝑘𝑘1 and 𝑘𝑘2 at each vertex.

We apply a simple calculation of curvature between two vertices

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
(𝑛𝑛2 − 𝑛𝑛1) ∙ (𝑝𝑝2 − 𝑝𝑝1)

|𝑝𝑝2 − 𝑝𝑝1|2

We look for minimum and maximum values by using positions
and normal vectors at pairwise opposite positions of the respective
x-quad. At locations where a vertex at the x-quad is doubled, the
mean values of the respective positions and normal vectors are
used. The resulting face-oriented estimated principal curvatures 𝑘𝑘1
and 𝑘𝑘2 are used to create per-vertex curvature characteristics, by
calculating the median of the principal curvatures 𝑘𝑘1 and 𝑘𝑘2 at its
adjacent face, i.e. which are incident to the respective vertex, ap-
plying the iterative method presented in [50].

Figure 14: Illustration of curvature-oriented coloring (a) and dark-
ening and highlighting (black-white (b) vs sky-blue shadows/sun-or-
ange lights (c)), ambient occlusion (d), combination of both (e), and
application of a simple ambient/diffuse/specular lighting model (f).

(a) (b)

(c) (d)

(e) (f)

The two principal curvatures can be used to characterize the
shape. Our method of coloring or emphasizing the cuneiform sym-
bols by darkening and highlighting the shape characteristics is in-
spired by [17][18], where the shapes are classified according to

𝜑𝜑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑘𝑘1, 𝑘𝑘2).
We linearly discretize the range of possible values of 𝜑𝜑 into 9

categories. The most interesting cases of surface shapes are illus-
trated in Figure 15.

Figure 15: Main cases of convex and concave surface shapes.

Additionally, we calculate the curvedness value (total curvature)
𝑐𝑐 = �𝑘𝑘12 + 𝑘𝑘22,

which is discretized using 14 logarithmically scaled steps, each
representing a relative increase of √2. We found out, that in our use
cases, the range of 6.5 octaves and steps of ½ octave are sufficient.
In sum, this results in 9 ∙ 14 + 1 = 127 categories (one for “flat”).

As illustrated in Figure 14, we use this 7-bit attribute for (a) per-
vertex color-mapping, and for darkening and high-lighting in (b)
black/white or (c) sky-blue/sun-orange to emphasize the cuneiform
symbols. The latter is inspired by the paintings of the French artist
Édouard Manet (1832–1883). The result appears similar to radiance
scaling [13][56], but by using the precalculated 7-bit attribute, a
much simpler table-based mapping shader can be used, and we are
able to export precalculated colors as part of open file formats (e.g.
PLY) to be visualized or processed in other tools or platforms (e.g.
Sketchfab, which was tested in [37]).

3.4.3 Segmentation
Usually, the enclosed cuneiform tablet and the envelope are rep-

resented in one connected mesh at locations where they are touch-
ing or glued. To split the mesh into separate partitions, e.g. to visu-
alize these objects separately, an appropriate segmentation method
is required.

Our segmentation algorithm is based on a curvature threshold,
e.g. we apply a negative threshold value of the principal curvature
𝑘𝑘1, representing the magnitude of the concavity, to identify the
boundaries. As such, the extracted partitions of the surface can con-
tain holes, e.g. where the gap between the tablet and the envelope
cannot be resolved, or no gap exists at all (touched or glued).

3.4.4 Ambient occlusion
One further precalculated per-vertex attribute represents occlusion
of surrounding light. The usage of a discretized version of the value
is incorporated in the rendering process. It can be mapped directly
to the per-vertex intensity, as in Figure 14 (d), or combined with
other table-based mapping methods, as in Figure 14 (e). Both ex-
amples do not require any lighting calculation, in contrast to (f),
where a Phong lighting models is implemented for comparison.
Taking advantage of our octree-based representation, we imple-
mented a parallel ambient occlusion analyzer, based on [28][29].
Several rays, equidistantly distributed over a hemisphere are ana-
lyzed for crossing of another surface inside a given radius. In our
algorithm, we create the orientations of a given number of rays ac-
cording to a Fibonacci spiral method, to achieve uniform distribu-
tion of direction on the hemisphere [27].

As part of the integration process, a weighting function considers
the angle between the individual ray, which is not occluded, and the
normal vector at the considered vertex (𝜑𝜑).

For our use case, we developed a special weighting function,
which increased the recognition of shadows significantly. Instead
of Lambert’s cosine law commonly implemented as

𝑤𝑤1(𝜑𝜑) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑),
we use this function:

𝑤𝑤1(𝜑𝜑) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) ∙ �𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑).

Both functions are illustrated in Figure 16.

Figure 16: Weighting function to increase recognition of shadow-

ing (blue), in comparison with Lambert’s cosine law (orange).

Its result is multiplied by a linearly decreasing value, which de-
pends on the distance 𝑑𝑑of the nearest surface, crossed by the re-
spective ray. This weighting function becomes 0 at a given maxi-
mal radius 𝑟𝑟:

𝑤𝑤2(𝑑𝑑) = 1 − 𝑑𝑑 𝑟𝑟� for 𝑑𝑑 < 𝑟𝑟, and otherwise: 𝑤𝑤2(𝑑𝑑) = 0

3.5 Interactive 3D visualization
We developed an interactive 3D visualization application, special-
ized for our use case. It supports real-time rendering of surface rep-
resentations, which can be imported in our proprietary file format
EXA, or in open file formats, such as PLY. The triangulated surface
is rendered by using geometry, vertex, and fragment shaders, taking
advantage of several features of OpenGL 4.6. For interactive navi-
gation of the 3D model (rotation, translation, zoom), mouse control
is used in conjunction with shift and control keys. Numerous menus
and dialogs have been implemented in GTK3, which abstracts the
underlying platform (operating system, window manager, etc.).
They allow to parameterize the shader functions, e.g. how the shape
features should be visualized (color-table mapping, contrast), to
configure the lighting model and further rendering options (e.g.
culling, clipping, fog, transparency), and creation of animations.
The partitions, as result of our segmentation, can be visualized sep-
arately, switching them on or off, and assigning separate colors.

We also support stereoscopic displays, either by using OpenGL
quad-buffering (e.g. for zSpace AIO) or by incorporating interfaces
for special devices. One example is the integration of an SDK to
support head-tracking autostereoscopic displays, such as the Spa-
tialLabs products from Acer (15,6“ 4K 3D laptops and displays)
and the SR Pro² from Leia (32” 8K 3D display). These displays
support head-tracked, glass-less stereoscopic viewing, based on the
SR technology by Dimenco/Leia. Additionally, we support the
Looking Glass display, which proves some sort of light field tech-
nology. Furthermore, we integrated gesture control, supporting the
LeapMotion hand tracking devices from UltraLeap.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0,
00

00
0

0,
10

99
6

0,
21

99
1

0,
32

98
7

0,
43

98
2

0,
54

97
8

0,
65

97
3

0,
76

96
9

0,
87

96
5

0,
98

96
0

1,
09

95
6

1,
20

95
1

1,
31

94
7

1,
42

94
2

1,
53

93
8

W
ei

gh
t w

1

Angle ϕ

4 RESULTS
The development and construction of a portable high-resolution X-
ray micro-CT scanner allowed us to transport and set up the scanner
at the Louvre Museum and scan a dozen ancient enveloped clay
tablets. Figure 17 shows one of the scans selected to present the
following results. Our visualization of the micro-CT data allowed
the Assyriologist to read the hidden text on the tablet, rotate the
object on a 3D screen to decipher all of its sides (Figure 18), and
even read the written artifact while holding its 3D print as if it were
the original tablet (Figure 19). The resolution of the details is very
fine, allowing for palaeographic analysis. In addition, the rendering
of the seal impressions on the envelopes reveals details that are not
always apparent to the naked eye. We provide a video clip in [39].

Figure 17: Envelope of a loan contract, Central Anatolia,
19th century BC (Musée du Louvre, photo: Cécile Michel).

Figure 18: Visualization of the segmented envelope (12.6 mio. tri-
angles) and hidden tablet (3.2 mio. triangles; sum: 20.0 mio. tri.).

Figure 19: 3D print of the tablet and its envelope.

To evaluate the performance of processing data acquired by X-
ray CT to prepare interactive visual exploration, e.g. virtual un-
packing of an enclosed cuneiform tablet, we use an HDF5 file
representing the tomographic reconstruction of the artifact AO8295
(Figure 17, 5.9 x 6.1 x 2.1 cm) on a regular 3D grid (resolution:
38 µm, 12.9 GB) [32]. Table 2 summarizes the run-time analysis
performed on an Acer SpatialLabs ConceptD CN715-73G mobile
workstation, consisting of an Intel i7-11800H CPU (8 cores,
16 threads), Nvidia GeForce RTX 3080 GPU, 64 GB memory, and
2 TB SSD (Samsung 980 Pro), using Windows 11 Pro 23H2. Our
software is compiled with gcc 14.2.0, and run under MSYS2, using
16 threads (OpenMP). The sources are publicly available in [40].

 Resolution / Volume Run time

Import of HDF5 file 1871 x 999 x 1723 6.699 sec
Low-pass filtering (Gauss, 3x3x3
kernel) and resampling (2:1)

→ 935 x 499 x 861
(SNR: 17 dB → 23 dB)

0.601 sec

Estimation of signal to noise ratio 935 x 499 x 861 0.233 sec
Cross-bilateral denoising (Tukey,
3x3x3 kernel, joint image: Gauss,
3x3x3 kernel), 2 iterations

935 x 499 x 861
(SNR: 23 dB → 28 dB)

5.757 sec

Estimation of threshold value 935 x 499 x 861 0.232 sec
Isosurface extraction
(threshold: 0.000839996)

935 x 499 x 861
→ 10,011,300 vertices

1.273 sec

Export of EXA file
(4 bit precision of normalized
positions of edge crossings)

6.448 MB,
1.168 bit/v. topology +
3.984 bit/v. precision

0.696 sec

Import of EXA file 6.448 MB, 5.152 bit/v. 1.277 sec
Initial creation of vertex
positions and normal vectors

10,011,300 vertices 1.770 sec

Smoothing of face normals,
using weighted median filtering,
32 iterations

10,011,300 vertices 9.636 sec

Calculation of vertex normals 10,011,300 vertices 0.224 sec
Updating vertex positions (8 it.) 10,011,300 vertices 2.663 sec
Calculation of vertex curvatures 10,011,300 vertices 0.425 sec
Mesh traversal, including
segmentation (k1 < –0.5)

10,011,300 vertices 1.639 sec

Export of EXA file, including
positional deltas (19.9 b/v),
normal deltas (19.1 b/v), and
additional features (16.1 b/v)

754 MB
60.223 bit/vertex

1.793 sec

Import of EXA file 754 MB, 60.223 bit/v. 1.476 sec
Initial creation of vertex
positions and normal vectors

10,011,300 vertices 0.927 sec

Decompression of vertex
positions and normal vectors

10,011,300 vertices 0.183 sec

Analysis of ambient occlusion
(160 rays per vertex, max.
distance: 64 grid steps)

10,011,300 vertices 28.6 min

Export of EXA file, with added
ambient occlusion values

759 MB
60.671 bit/vertex

2.058 sec

Table 2: Run times of the main processing steps (Sec. 3.1 to 3.4).

5 CONCLUSION
The methods we have developed and efficiently implemented, ex-
ploiting the multi-level parallel performance and cache architecture
provided by modern workstations, have proven to be useful for pro-
cessing micro-CT datasets at collection sites. Our visualization
component enables interactive 3D rendering, supporting virtual un-
packing of enclosed cuneiform tablets and interdisciplinary under-
standing. For intuitive usage, we support immersive techniques,
such as autostereoscopic displays and head/hand/finger tracking.

ACKNOWLEDGMENTS
The project “Reading Closed Cuneiform Tablets Using High-Res-
olution Computed Tomography” (RFA09) was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany´s Excellence Strategy – EXC 2176 ‘Under-
standing Written Artefacts: Material, Interaction and Transmission
in Manuscript Cultures’, project no. 390893796. The research was
conducted within the scope of the Centre for the Study of Manu-
script Cultures (CSMC) at Universität Hamburg. Many thanks to
Ariane Thomas, head of the Département des Antiquités Orientales
at the Musée du Louvre, and Véronique Pataï who has assisted us
during the campaign in February 2024.

REFERENCES
[1] Anderson, E., S. and Levoy, M.: Unwrapping and Visualizing Cunei-

form Tablets. IEEE Computer Graphics and Applications, Novem-
ber/December 2002.

[2] Anh, V. N. and Moffat, A.: Index Compression Using 64-Bit Words.
Software: Practice and Experience, 40(2):131–147, 2010.

[3] Avizo Software. https://www.thermofisher.com/de/de/home/electron-
microscopy/products/software-em-3d-vis/avizo-software.html,
accessed 16.06.2024.

[4] Barequet, G. and Sharir, M.: Filling Gaps in the Boundary of a Poly-
hedron. Computer-Aided Geometric Design, 12(2):207-229, March
1995.

[5] Béranger, M.: Fonctions et usages des enveloppes de lettres dans la
Mésopotamie des IIIe et IIe mil. Av. J.-C. (2340-1595 av. J.-C.). Épis-
tolaire 44, Librairie Champion, Paris, pp. 25-43, 2018.

[6] Chen, Z. and Zhang, H.: Neural Marching Cubes. ACM Trans. on
Graphics, Vol. 40, No. 6, 2021.

[7] Chernyaev, E. V.: Marching Cubes 33: Construction of Topologically
Correct Isosurfaces. Technical Report CN/95-17, Institute of High
Energy Physics, Russia, Presented at GRAPHICON’95, Saint-Peters-
burg, 1995.

[8] CuneiformAnalyzer. www.cuneiform.de, accessed 16.06.2024.
[9] Custodio, L., Pesco, S., and Silva, C.: An extended triangulation to the

Marching Cubes 33 algorithm. Journal of the Brazilian Computer So-
ciety, 25:6, 2019.

[10] Durand, F. and Dorsey, J.: Fast Bilateral Filtering for the Display of
High-Dynamic-Range Images. SIGGRAPH 2002.

[11] Grosso, R. and Zint, D.: A parallel dual marching cubes approach to
quad only surface reconstruction. The Visual Computer 38, 1301-
1316, 2022.

[12] Engel, K., Westermann, R., and Ertl, T.: Isosurface Extraction Tech-
niques for Web-based Volume Visualization. Proc. IEEE Visualiza-
tion, 1999.

[13] Fisseler, D., Müller, G., and Weichert, F.: Web-Based Scientific Ex-
ploration and Analysis of 3D Scanned Cuneiform Datasets for Col-
laborative Research. Informatics 4(4), December 2017.

[14] Fleishman, S., Drori, I., and Cohen-Or, D.: Bilateral Mesh Denoising.
ACM Transactions on Graphics, 2003.

[15] GigaMesh. www.gigamesh.eu, accessed 16.06.2024.
[16] GigaMesh Tutorial 09. Unpacking a Cuneiform Tablet.

https://www.youtube.com/watch?v=0jqP_6jyjyo,
uploaded 26.07.2019, accessed 16.06.2024.

[17] Koenderink, J. J. and van Doorn, A. J.: Surface Shape and Curvature
Scales. Image and Vision Computing, Vol. 10, Issue 8, October 1992.

[18] Kindlmann, G., Whitaker, R., Tasdizen, T., and Moller, T.: Curva-
ture-Based Transfer Functions for Direct Volume Rendering: Meth-
ods and Applications. Proc. IEEE Visualization, 2003

[19] Lee, H., Desbrun, M., and Schröder, P.: Progressive Encoding of
Complex Isosurfaces. Proc. ACM SIGGRAPH 2003.

[20] Lee, Y. and Wang, W.-P.: Feature-preserving Mesh Denoising via Bi-
lateral Normal Filtering. Proc. IEEE International Conference on
Computer-Aided Design and Computer Graphics, 2005.

[21] Lewiner, T., Lopes, H., Vieira, A., and Tavares, G.: Efficient Imple-
mentation of Marching Cubes' Cases with Topological Guarantees.
Journal of Graphics Tools, 8:2, pp 1-15, 2003.

[22] Lewiner, T., Lopes, H., Velho, L., and Mello, V.: Simplicial isosur-
face compression. Proc. Vision, Modeling, and Visualization, 2004.

[23] Liepa, P.: Filling Holes in Meshes. Eurographics Symposium on Ge-
ometry Processing, 2003.

[24] Lopes, A. and Brodlie, K.: Improving the Robustness and Accuracy of
the Marching Cubes Algorithm for Isosurfacing. IEEE Trans. on Vis-
ualization and Computer Graphics, Vol. 8, No. 1, 2003.

[25] Lorensen, W. E., Cline, H. E.: Marching cubes: A high resolution 3D
surface construction algorithm. ACM SIGGRAPH Computer
Graphics, Volume 21, Issue 4, 1987.

[26] Lu, X., Liu, X., Deng, Z., and Chen, W.: An Efficient Approach for
Feature-preserving Mesh Denoising. Optics and Lasers in Engineer-
ing, Volume 90, pp. 186-195, 2017.

[27] Marques, R., Bouville, C., Bouatouch, K., and Blat, J.: Extensible
Spherical Fibonacci Grids. IEEE Transactions on Visualization and
Computer Graphics, Volume 27, Issue 4, 2021.

[28] Méndez-Feliu, A. and Sbert, M.: Efficient rendering of light and cam-
era animation for navigation a frame array. Proc. Computer Anima-
tion and Social Agents (CASA 2006), 2006.

[29] Méndez-Feliu, A. and Sbert, M.: From obscurances to ambient occlu-
sion: A survey. The Visual Computer, 25(2):181-196, 2009.

[30] Michel, C.: Making Clay Envelopes in the Old Assyrian Period. Inte-
grative Approaches to the Archaeology and History of Kültepe-
Kanesh, Kültepe, 4-7 August, 2017, Fikri Kulakoğlu, Cécile Michel,
and Güzel Öztürk (eds), Brepols, Turnhout, pp. 187-203, 2020.

[31] Michel, C.: Ecrire sur argile. La matérialité des textes cuneiforms.
Argiles. De la physique du matériau à l’expérimentation, Xavier
Faivre (ed.), Archaeopress Archaeology, Oxford, pp. 98-111, 2023.

[32] Michel, C., Schroer, C., Olbrich, S., Ehteram, S., and Beckert, A.:
AO 8295 (X-Ray Tomography 3D data of an Enveloped Clay Tablet,
Louvre Museum, Paris). Data set, 2024.
http://doi.org/10.25592/uhhfdm.14776

[33] Ngan-Tillard, D.: Reading 4000 years old clay tablet through intact
envelope using X-ray micro-CT scans. https://www.youtube.com/
watch?v=qvoZQVw6VKs, uploaded 30.04.2018, accessed
16.06.2024.

[34] Nielson, G. M.: On Marching Cubes. IEEE Trans. on Visualization
and Computer Graphics, 2003.

[35] Nielson, G. M., Hamann, B.: The Asymptotic Decider: Resolving the
Ambiguity in Marching Cubes. Proc. IEEE Conf. on Visualization,
1991.

[36] NINO Leiden (2018): Seeing through clay: 4000 year old tablets in
hypermodern CT scanner.
https://www.nino-leiden.nl/message/seeing-through-clay-4000-year-
old-tablets-in-hypermodern-ct-scanner, accessed 16.06.2024.

[37] Olbrich, S.: Reconstruction of enclosed cuneiform tablet.
https://sketchfab.com/3d-models/reconstruction-of-enclosed-cunei-
form-tablet-31b0b8e4073241ecbd82dc3764c1739b,
uploaded 10.09.2022, accessed 20.06.2024.

[38] Olbrich, S., Michel, C., and Schroer, C.: Non-invasive unpacking of
enclosed cuneiform tablets by visualization and printing of extracted
and segmented surfaces from 3D CT volume data. DOT 2022 –
Deutscher Orientalistentag, September 12 – 17, 2022, Berlin, Ger-
many.

[39] Olbrich, S. and Beckert, A.: Non-invasive, virtual unpacking of en-
closed cuneiform – 3D reconstruction and visualization of clay tablets
based on data acquired by portable micro-CT scanner. Video anima-
tion, 2024. http://doi.org/10.25592/uhhfdm.14772

[40] Olbrich, S. and Beckert, A.: EXAVIS42 – Efficient methods for crea-
tion, feature extraction, and interactive visualization of isosurfaces of
3D volume data. Software sources, 2024.
http://doi.org/10.25592/uhhfdm.14778

[41] Pacanowski, R., Granier, X., and Schlick, C.: Radiance Scaling for
Versatile Surface Enhancement. Proc. Symposium on Interactive 3D
Graphics, 2010.

[42] Paris, S., Kornprobst, P., Tublin, J., and Durand, F.: Bilateral Filter-
ing: Theory and Applications. Computer Graphics and Vision, Vol. 4,
No. 1, 2008.

[43] Poston, T., Wong, T.-T., and Heng, P.-A.: Multiresolution Isosurface
Extraction with Adaptive Skeleton Climbing. Computer Graphics Fo-
rum, Vol. 17, No. 3, September 1998.

[44] Rolff, T., Rautenhaus, M., Olbrich, S., and Frintrop, S.: Segmenting
Computer-Tomographic Scans of Ancient Clay Artefacts for Visual
Analysis of Cuneiform Inscriptions. Proc. 25th International Sympo-
sium on Vision, Modeling, and Visualization, 2020.

https://www.thermofisher.com/de/de/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
https://www.thermofisher.com/de/de/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
http://www.cuneiform.de/
http://www.gigamesh.eu/
https://www.youtube.com/watch?v=0jqP_6jyjyo
http://doi.org/10.25592/uhhfdm.14776
https://www.youtube.com/watch?v=qvoZQVw6VKs
https://www.youtube.com/watch?v=qvoZQVw6VKs
https://www.nino-leiden.nl/message/seeing-through-clay-4000-year-old-tablets-in-hypermodern-ct-scanner
https://www.nino-leiden.nl/message/seeing-through-clay-4000-year-old-tablets-in-hypermodern-ct-scanner
https://sketchfab.com/3d-models/reconstruction-of-enclosed-cuneiform-tablet-31b0b8e4073241ecbd82dc3764c1739b
https://sketchfab.com/3d-models/reconstruction-of-enclosed-cuneiform-tablet-31b0b8e4073241ecbd82dc3764c1739b
http://doi.org/10.25592/uhhfdm.14772
http://doi.org/10.25592/uhhfdm.14778

[45] Saupe, D. and Kuska, J.-P.: Compression of Isosurfaces for Structured
Volumes. Proc. Vision, Modeling, and Visualization Conf., 2001.

[46] Schaefer, S. and Warren, J.: Dual Marching Cubes: Primal Contour-
ing of Dual Grids. Proc. Pacific Conference on Computer Graphics
and Applications, 2004.

[47] Schaefer, S., Ju, T., and Warren, J.: Manifold Dual Contouring. IEEE
Transactions on Visualization and Computer Graphics, Volume 13,
Issue 3, 2007.

[48] Schroeder, W., Martin, K., and Lorensen, B.: The Visualization
Toolkit (4th ed.). Kitware, 2006.

[49] Seim, H., Kainmueller, D., Heller, M., Lamecker, H., Zachow, S., and
Hege, H.-C.: Automatic Segmentation of the Pelvic Bones from CT
Data Based on a Statistical Shape Model. Eurographics Workshop on
Visual Computing for Biomedicine, 2008.

[50] Spence, C. and Fancourt, C.: An Iterative Method for Vector Median
Filtering. IEEE International Conference on Image Processing, 2007.

[51] Sun, X., Rosin, P. L., Martin, R., and Langbein, R.: Fast and Effective
Feature-Preserving Mesh Denoising. IEEE Transactions on Visuali-
zation and Computer Graphics, Vol. 13, Issue 5, pp 925-938, 2007.

[52] Taubin, G.: BLIC: Bi-Level Isosurface Compression. Proc. IEEE Vis-
ualization, 2002.

[53] Titschack, J., Baum, D., Matsuyama, K., Boos, K., Färber, C., Kahl,
W.-A., Ehrig, K., Meinel, D., Soriano, C., and Stock, S. R.: Ambient
occlusion – A powerful algorithm to segment shell and skeletal intra-
pores in computed tomography data. Computers & Geosciences, Vol.
115, June 2018.

[54] Tomasi, C. and Manduchi, R.: Bilateral filtering for gray and color
images. Proc. IEEE Conf. on Computer Vision, 1998.

[55] TU Delft (2018): Cuneiform in a scanner. https://www.tudelft.nl/en/
delft-outlook/articles/cuneiform-in-a-scanner, accessed 16.06.2024.

[56] Vergne, R., Pacanowski, R., Barla, P., Granier, X., and Schlick, C.:
Radiance Scaling for Versatile Surface Enhancement. Proc. Sympo-
sium on Interactive 3D Graphics, 2010.

[57] Yagou, H., Belyaev, A. G., and Wie, D.: Mesh Median Filter for
Smoothing 3-D Polygonal Surfaces. Proc. Conf. Cyber Worlds, 2002.

[58] Yagou, H., Ohtake, Y., and Belyaev, A. G.: Mesh Smoothing via Mean
and Median Filtering Applied to Face Normals. Proc. Geometric
Modeling and Processing (GMP 2002), 2002.

[59] Zheng, Y., Hongbo, F., Au, K.-C., and Tai, C.-L.: Bilateral Normal
Filtering for Mesh Denoising. IEEE Transactions on Visualization
and Computer Graphics, Vol. 17, Issue 10, 2010.

https://www.tudelft.nl/en/delft-outlook/articles/cuneiform-in-a-scanner
https://www.tudelft.nl/en/delft-outlook/articles/cuneiform-in-a-scanner

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Import and preprocessing of 3D volume data
	3.2 Compressed representation of isosurface
	3.3 Triangulation of the isosurface
	3.4 Postprocessing of the surface mesh
	3.4.1 Feature-preserving smoothing
	3.4.2 Feature extraction
	3.4.3 Segmentation
	3.4.4 Ambient occlusion

	3.5 Interactive 3D visualization

	4 Results
	5 Conclusion
	Acknowledgments
	References

