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Figure 1: Overview of the proposed visual analytics system that fosters trust into clinical transformer models, consisting of multiple
interactive views: (D Trust in dataset with feature distribution plots and coordinated hierarchical medical code visualization &
co-occurance diagrams @ Trust in model architecture & training with architecture diagram and training loss graph @ Trust in
validation with precision-recall/ROC curves & baseline benchmarks and @ Trust in prediction with Shapley-values to display feature

importance for individual predictions.

ABSTRACT

Clinical decision support systems based on machine learning are a
rising application in healthcare. Early detection of deteriorating con-
ditions provide the opportunity for medical intervention in hospital
patients. Recent approaches increasingly rely on Large Language
Models such as BERT, because patient data is often in the form
of structured temporal data. These models are notoriously hard to
interpret and therefore to trust, while precisely trust is an essential
principle for technology in healthcare. We develop a visual analytics
system to inspect, compare, and explain pre-trained transformer
models for a given clinical outcome prediction task. The work is
developed on the basis of a large hospital patient dataset and pre-
diction tasks for acute kidney injury and heart failure. Discussion
with healthcare professionals confirms that our system can lead to a
faster decision process and improved modeling results.
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1 INTRODUCTION

Predicting clinical risk for patients in hospital wards is a highly
sought after goal for healthcare information systems [13]. Con-
ditions like acute kidney injury (AKI) or heart failure (HF) affect
more than half of adult patients in the intensive care unit [16]. In
recent years, machine learning based Clinical Decision Support
Systems (CDSS) have seen a rising interest and a promising track
record of partial success in clinical use [32]. Designing, developing,
implementing, and using these systems is a complex interplay of
technological, social, economical, and regulatory challenges. The de-
velopment phase includes the consolidation of practical requirements
with technical feasibility, and should incorporate both computer sci-
entists and healthcare professionals. Typical challenges from the
viewpoint of clinicians include i) the need for high accuracy to com-
bat alert fatigue [8], ii) the ability to examine and understand the
decision process of a system [33], iii) the usage of medical codes
stemming from complex hierarchies not intended for that purpose,
and iv) the black box nature of Large Language Models (LLMs).
Multi-task transformer models are of special interest, because
they can learn to achieve multiple objectives at once using shared
representations. In healthcare applications specifically, objectives
can include predicting risk, length of stay, selecting the principal
diagnosis, or identifying missing medical codes as well as other



tasks that may arise in the future [18]. This model class often
involves multi-billion parameter-size neural network architectures,
which are inherently hard to understand for humans. We observe
that i) and ii) call for an appropriate balance between trust and
knowledge on limits towards a newly developed model, while iii)
and iv) increase the difficulty of achieving that. Visual analytics
systems enable users to explore datasets, models, and outcomes of
machine learning models and have been shown to increase trust in
them [9]. In healthcare specifically, previous work has shown that
visual analytics enables domain experts to identify better performing
models based on high-dimensional data [20]. Therefore, we aim to
answer the following research questions:

Qy: How can visual analytics support healthcare professionals and
data scientists to build trust in multitask transformer models?
Q,: How can we visualize the dependencies between data, model,
and output within complex medical hierarchical terminologies?

We introduce a visual analytics dashboard which addresses these
questions. It includes four separate but interlinked views, which
guide users through all major machine learning model development
phases and are tailored specifically towards transformer models as
well as hierarchical medical data. Our proposed system is appli-
cable to different use cases, as many current healthcare analytics
applications rely heavily on structured temporal information to pre-
dict clinical outcomes and need to deal with hierarchical medical
data. We display an overview of our proposed system in Fig. 1. To
summarize, our main contributions are:

* We introduce an interactive visual dashboard to support health-
care professionals and data scientists to assess multi-task trans-
former models.

* We design a trust-building approach along the development
steps of a clinical outcome prediction model.

* We describe the utilization of our framework to the real-world
use case of predicting AKI and HF from medical code sets.

* We conduct qualitative interviews with health professionals as
to clinical applicability and discuss our lessons learned.

The rest of the paper is structured as follows: review of related
publications (Sec. 2), characterization of the dataset used in de-
velopment (3.1), specification of the model (3.2), identification of
appropriate users and tasks (3.3) as well as a detailed description
of the proposed system (4.1). An exemplary workflow showcases
the usage in practice (4.2). We conclude with final remarks and an
outlook of future research (5).

2 RELATED WORK

Our paper focuses on the intersection of clinical decision support,
visual analytics, and trustworthy machine learning, specifically the
class of transformer models. We divide existing approaches into the
following three areas of interest.

Transformer Model Visualization Since the birth of the Trans-
former architecture in 2017 [36] and its subsequent success story,
multiple attempts at visualizing the model and the corresponding
outputs have been made due to the nature of its complexity. For
the application area of NLP, a summarizing survey can be found
at [7]. Existing approaches can be roughly grouped into architecture-
agnostic [23] or dedicated to a specific component of the trans-
former architecture, e.g., the attention mechanism [12, 15, 37] or
the contextual token representations [34, 40]. Additionally, the
literature includes systems targeting the comparison of multiple
transformer models [38] or dedicated to certain data types [28].
Some of them have been successfully integrated into visual analytics
tools [1,21,22].

Visual Analytics for Clinical Outcome Prediction Within the
large body of work on healthcare-related visual analytics [25], we
identified approaches targeted at risk prediction visualization. They

include graphical representations of simple statistical models [6,26],
disease-specific approaches, e.g., for cancer [14,24], or infectious
diseases [3,29] and bespoke systems for specific model classes, e.g.,
rule sets [2]. Our approach is most closely related to VBridge [11],
which employs a hierarchical visualization to connect data, model,
and explanations for clinical machine learning models.

Trust & Explainability in Visual Analytics Trust is related but
not identical to explainability in machine learning [35]. Building
trust is a complex sociological and psychological challenge, that
can change dynamically and be highly personal [5]. As such, visual
analytics systems cannot entirely solve, but rather support this pro-
cess. Trust can be increased through transparency, robustness, and
fairness of a system [4]. Tangible measures within visual analytics
include displaying uncertainty [19], declaring data provenance [27],
or letting the user explore surrogate models [10,39]. Recent surveys
give an overview of present approaches [9,17].

The body of work presented is lacking several major requirements:
Firstly, it is not suited for the hierarchical feature sets prevalent in
medical applications. Secondly, it is insufficient in fostering trust
along the entire data science development process comprised of data
understanding, architecture selection, model training, and validation.
In contrast, our approach combines multiple customized views to
support users through the trust-building process.

3 CONTEXT
3.1 Data

Our real-world dataset consists of individual inpatient visits between
2011 and 2020 in multiple German hospitals. After cleaning, it
contains 24m samples that each include age, sex, attending depart-
ment, length of stay, admission year, principal diagnosis, and, most
importantly, two sets of medical codes describing diagnosis and pro-
cedures respectively. The former set is encoded as diagnosis codes
from ICD-GM-10! with 13.376 unique codes across all visits and an
average of 6.54 codes per visit. The latter set is encoded as operation
and procedure codes from OPS?, a German classification system
with 27.960 unique codes and an average of 3.04 codes per visit.
Additionally, it includes timestamps that date the code assignments
and patients’ admissions.

As the dataset covers a highly diverse set of patients ranging from
0 to 120 years of age, including both sexes and covering all hospi-
tal departments, the medical codes are not distributed evenly, e.g.,
15.7% of all samples have no associated procedure code at all and
40.7% of procedures are performed on the day of admission to the
hospital. Similarly, 73.3% of all samples have a length of stay (LOS)
of less than seven, while 6.7% stay more than 14 nights in hospital.
The departments most common in our dataset are internal medicine,
general surgery, and gynecology/obstetrics, which together cover
46% of all samples.

We preprocess the data for the classification tasks by creating
labels based on the definition of AKI and HF provided by a collab-
orating healthcare professional. The label definitions are rule sets
that each consist of the inclusion or exclusion of specific medical
codes. After computing both labels, we create two separate training
datasets where medical codes are excluded if they are part of the
label definition for each task respectively. The resulting datasets con-
tain 549.944 (2.3%) positive samples for AKI and 269.476 (1.1%)
positive samples for HF with 67.728 (0.3%) positive for both.

The dataset is of corporate nature and was provided anonymized
for scientific analysis within this research project.

nternational Statistical Classification of Diseases, German Modifica-
tion https://www.bfarm.de/EN/Code-systems/Classifications/
ICD/ICD-10-GM/_node.html

2Opf:rationen— und Prozedurenschliissel https: //www.bfarm.de/EN/
Code-systems/Classifications/OPS-ICHI/OPS/_node.html
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Figure 2: Detailed view of the model architecture diagram within our
system (@ in Fig. 1). It displays the flow of data from input data
via representation to pre-training and fine-tuning strategies within the
transformer-based model to finally the clinical tasks which can be
extended to address future problems.

3.2 Multi-Task Transformer Model

As outlined in Sect. 1, multi-task transformer models are of special
interest, because they can learn to achieve multiple objectives corre-
sponding to functionally related domain tasks at once using shared
representations. Instead of training multiple highly-specific models
that are dedicated to a single task, a multi-task model can easily be
adapted to novel tasks. This reduces training time and computational
resources required.

We use a BERT-based architecture to model our task of binary
classification based on patient data regarding a clinical outcome,
e.g., AKI (cf. Fig. 2). The available data per patient described
above is used to construct a single input sequence to the model.
We introduce the artificial tokens /[MASK] and [CLS] depending on
the selected pre-training task and fine-tuning strategy as suggested
in the literature. Pre-training tasks include masked code modeling
(MCM) as well as prediction of principle diagnosis (PD) and length
of stay (LOS). Our final multi-task model is trained with a weighted
average of all individual losses. After pre-training, we fine-tune the
model to our binary classification task. The architecture is imple-
mented in PyTorch, trained with mixed precision and smart batching
on hardware consisting of Intel(R) Xeon(R) Silver 4116 CPU @
2.10GHz, 377GB RAM, and two NVIDIA Tesla V100 GPUs. We
use hyperparameters suggested for the original BERT model and do
an 80/10/10% train-validation-test split. Our best performing model
consists of 117m parameters and obtains an Area under Precision
Recall Curve (AUPRC) score of 0.46% for AKI and 0.66% for HF
prediction respectively. Surprisingly, a smaller model of the same
architecture featuring 10 less trainable parameters achieves similar
performance (cf. Tab. 1). The larger model outperforms baseline
models including gradient boosted regression trees (GBRT), multi-
layer perceptron (MLP), and logistic regression (LR). It serves as
the use case for the development of our visual analytics system.

3.3 Users & Tasks

We are developing this approach for a user group consisting of
both data scientists and healthcare professionals working together.
It should facilitate cooperation and communication between the
members of the group towards the creation of a CDSS. We aim to
support the building of trust towards a model and lay the basis for
an informed discussion. Based on lessons learned from multiple
healthcare analytics projects and interviews conducted with domain
experts, we gathered a set of tasks:

Ty: Inspect hierarchical medical code datasets represented within
their respective classification systems

T,: Consult on different pre-training and fine-tuning strategies
within the transformer architecture

T3: Compare different model architectures and hyperparameter
settings regarding clinical outcome prediction quality
Ty: Verify factors of influence for individual predictions

It should be noted that currently employed tools do not sup-
port “cross-lingual” communication between medical and computer
science domains. During discussions with prospective users, we
identified the following requirements:

R;: Use of widely familiar visualizations that are accessible both
to data scientists and healthcare professionals

R,: Use of suitable terms and definitions for domain experts and
model developers

We will refer back to these users and tasks throughout the rest of
the paper to demonstrate how we address them.

4 PROPOSED VISUAL ANALYTICS SYSTEM

We developed our dashboard on the basis of the aforementioned
tasks and requirements. It is implemented as a web-interface to in-
crease accessibility via any browser. We use python in the backend,
the Streamlit library as a frontend, which together can be distributed
as a single Docker image to minimize implementation efforts. Our
goal is to foster trust into a trained transformer model by combin-
ing multiple trust aspects including i) increasing transparency ii)
surveying for fairness, and iii) ensuring robustness.

4.1 Dashboard overview

The dashboard is divided into four segments (Fig. 1, #1-#4) that
each address a specific process step along the model development.

@ Trust in Dataset (T7)

The quality of training data is a key factor for prediction quality. Bias
and imbalances in the data will impact the fairness of a system and
may also decrease its robustness and reliability in medical decision-
making due to epistemic uncertainty [30].

In order to facilitate trust into the underlying training dataset, we
provide a set of complementary views (#1). Histogram plots (R{)
show the distribution of user-selected features (#1.1). Feature distri-
butions are split along the outcome classes to showcase differences,
i.e., between AKI positive and the general patient cohort. Users in-
cluding healthcare professionals can assess whether the distribution
of input data contains any inherent bias and conforms to the local
conditions of a healthcare facility [32]. E.g., the age distribution
severely differs depending on the location and has an influence on
model congruence.

Core data features are the hierarchical ICD and OPS codes. Both
hierarchies are very familiar to health professionals (R;), however
this is typically constrained to their specific medical department.
The chapters directly correspond to related groups of diagnosis
or procedures. Medical coding is affected by official guidelines,
local customs, as well as personal preference. Thus, it is relevant
to discern common from unusual code combinations, especially
regarding risk prediction. The two complementary views (#1.2, #1.3)
support users in exploring possible causal relationships between
codes, even within unfamiliar chapters.

A tree-based view (#1.2) allows to explore both medical code
hierarchies, as selected by the drop-down in the top right. Interaction
is simplified in that it is limited to only two types of actions, either
selecting a lower level node to expand the hierarchy at this point, or
using the “home” button at the lower right to reset the view. This is
an effective way to traverse the seven or five hierarchy levels of ICD
or OPS respectively (Ry).

The current selection in the hierarchy view also updates the co-
occurence sankey diagram of medical codes (#1.3). Each segment
represents a single medical code and two codes are connected via
link whenever patient stays contain both of them. The weight of the
link is determined by the relative count of co-occurances, normalized



Table 1: Comparison of transformer models with different sizes to pre-
dict acute kidney injury (AKI) or heart failure (HF) for hospital patients.
Selected pre-training and fine-tuning strategies are masked code
modeling (MCM) and code-wise prediction. Training time includes
pre-training and fine-tuning. Hyperparameters refer to embedding
size M, attention heads H, and transformer encoder layers L.

Transformer size AUPRC Train time  #params
M,H,L AKI HF
66.4% 35h+10h 117.6m

768,12,12 46.3%

192,8,8 45.6%  65.7% 7h+2h  11.9m

to the current selection. The user can further filter by chapters or
subchapters of interest from the pre-selection done via view #1.2
using the dropdowns in the top right.

@ Trust in Model Architecture & Training (7»)

For any machine learning application, it is crucial to assess whether
a particular architecture class is suitable among available choices.
This typically also includes considering tradeoffs between model
performance and explainability, with implications on robustness and
transparency facets of model trust. While transformers are currently
one of the most popular choices in the machine learning community,
many healthcare professionals have yet to encounter them in practice.
We visualize the selected model architecture and training strategy
via a flow-chart style diagram (#2.1). This follows the objective to
at least partially illuminate the interaction between the main compo-
nents of a transformer model, the input representation, encoder, and
fine-tuning tasks.

Alongside, we include a logarithmic line chart showing train
and test loss across training epochs (#2.2). This targets two goals:
Checking convergence of the training scheme as well as assessing
the model’s generalizability through the difference between train
and validation loss.

@ Trust in Validation (73)

Datasets in healthcare are often highly imbalanced, e.g., in our use
case only 2.3% of patients are positively labeled for AKI. This not
only influences model training, but also model validation. Chosen
evaluation metrics must be capable of uncovering potential impacts
on robustness and fairness of model predictions. Metrics like preci-
sion or recall should always be assessed in combination with another.
Although the area under the receiver operating characteristic (AU-
ROC) does satisty this requirement, it is unsuitable as a singular
metric for situations with uneven class distributions, as is in many
medical use cases. The precision-recall curve on the other hand bet-
ter distinguishes models for unbalanced datasets, albeit it requires
the calibration of the threshold parameter. Therefore, we employ
a combination of multiple evaluation metrics available to the user
(#3.1). Through switching between the precision-recall curve and
the ROC-curve, the model performance can be investigated thor-
oughly. In healthcare machine learning, there is often a trade-off
between model complexity and performance. To this end, our pro-
posed system supports the comparison of the current transformer
model with a fixed set of established baselines.

Juxtaposed is a table comparing combinations of pre-training
and fine-tuning strategies (#3.2) with top-performing entries printed
in bold. We opted for a structured depiction, as it is easily com-
prehensible (R;), superior to more complex visualizations when
portraying slight differences, and simple to extend. Note, that the
left panel shows the best-performing model, while the table on the
right displays values attained by smaller models due to computa-
tional overhead.
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Figure 3: Detail view from our proposed system: Histogram plots
showing the distribution of lengths of stay for hospital patients in the
cohort . Cases that are positive for either acute kidney injury (AKI)
or heart failure (HF) show a distinctive pattern, correlating with longer
stays, especially for patients with > 50 medical codes.

@ Trust in Outcome Predictions (7;)

Finally, after inspecting the architecture, training, and evaluation of
an entire model, the remaining trust uncertainty concerns individual
predictions. Patients and clinicians alike expect models to explain
their outputs in order to explore decision paths, alternatives, and
reasoning. We employ a SHAPIley value visualization [31] to inform
users about feature contributions when considering an individual
patient (#4.1). Users can select a prediction class (true/false, posi-
tive/negative) and within the class from a set of exemplary patients to
explore relationships between medical codes and model predictions.
From discussions with healthcare professionals in multiple projects,
we observed a high accessibility of SHAPIley plots due to their sim-
plicity (R). Co-occuring codes can be cross-referred with view #1.2
to check for atypical combinations across chapters. Additionally, the
influence of demographic features like age, sex as well as categorical
features like admission type and medical department is visualized.

4.2 Workflow

In the following, we want to detail an exemplary workflow from
clinical practice. We consulted healthcare professionals (HCPs) and
data scientists through structured interviews to discuss our proposal,
expectations of users, and to gain further insights into the practical
usage. The workflow is explicitly motivated by and detailed along
the real-world dataset and transformer model described in Sections
3.1 and 3.2.

(D Initially, the users wanted to inspect the training dataset. One
mentioned question asked for a comparison of the local patient co-
hort to the model’s training data to identify systematic biases, such
as a shifted age distribution towards younger patients or a higher
mean disease severity typically present in urban hospitals. In our
instance, healthcare professionals would like to explore the distri-
bution of length of stay, comparing AKI patients with the general
cohort. After selecting “Length of stay” as the relevant feature,
the user reconstructs two facts from the visualization (cf. Fig. 3):
Existence of both AKI and HF correlates positively with length of
stay and patients with a large (> 50) number of medical codes are
especially affected. This resulted in an increase in reported trust into
the model, as this confirmed pre-existing assumptions. Afterward,
the users moved to views #1.2 and #1.3. Through the tree visualiza-
tion, they navigated to the chapters “E” (endocrine, nutritional, and
metabolic diseases) and “J” (diseases of the respiratory system) of
the ICD hierarchy. Within the sankey diagram the users explored
co-occurances and amongst others identified a strong connection
between codes “E87.6” (hypokalemia) and “J91” (pleural effusion),
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Figure 4: Detail view from our proposed system: The tree visualization
for the ICD hierarchy next to the sankey diagram displaying the co-
occurance of codes during patient stays D

both well-known comorbidities, further increasing trust (cf. Fig. 4).

2 With the second component, the attention shifts towards the
model architecture. During the interviews, it became clear that an
overview of the main model components was necessary. Within the
view #2.1, users can retrace the choices that were needed to select a
specific model architecture. From user feedback, we gathered that
two insights were particularly helpful: First, the fact that all available
patient data, including admission dates and diagnosis/procedure
codes were combined into a single representation and secondly, that
more clinical tasks are viable for future modeling. In combination
with the evaluation of performance in the following section, this
boosted trust into the architecture choice, as it became clear, that this
flexible framework was able to solve multiple challenges at once.
Moving to #2.2, users performed a quick glance to assess that the
training loss converged steadily. During an exchange between HCP
and data scientist, the graph was used to assert that generalizability
was achieved, i.e., similar loss on validation compared to training
data. Both views were more easily approached by data scientists as
anticipated, yet HCPs could apprehend all major conclusions during
the interdisciplinary discussion due to the clear visuals and labeling.

® Next, users explored the benchmark between the newly pro-
posed model against alternatives, namely established machine learn-
ing algorithms within view #3.1. During the interviews, we observed
that users checked the displayed curves for significant (e.g., trans-
former vs. LR) or insignificant differences (e.g., MLP vs. GBRT).
In addition, HCPs used the view to assess whether the model could
replace already existing deployed systems in terms of specific preci-
sion and recall combinations. It needs to be both robust enough to
identify most patients at risk and precise enough to limit alert fatigue
in clinical use. When viewing the AUROC curve by using the drop-
down selector, users were bewildered for a moment. It suggests, at
first glance, that all compared models performed nearly perfectly.
The confusion was fully dissolved after the switch to the AUPRC
curve and in exchange with the data scientists, as it is better suited
for highly-imbalanced data and clearly shows qualitative differences.
This is a cautionary example for possible overtrust into a model,
which our visual analytics system averts. To the right the view #3.2
was distinguished by both HCPs and data scientists for simplicity
and using the same visual ordering as in #2.1. In this specific case,
the choice of the pre-training strategy has only a minor impact on
model performance and should therefore play a secondary role in
selecting a model architecture.

@ Last, the user group turns to the view targeting individual
model predictions. They quickly recognize the separation into fea-
tures that increase and those that decrease the predication probability
via the colored arrow segments. The focus naturally shifted towards
high SHAPIey values, indicating larger relevance. Furthermore, data
scientists analyzed the view towards spurious correlations the model
might have picked up, as one user had experienced in a different
use case previously. With the limited number of examples, the lack
of such correlations, increased the trust of the model. HCP users
additionally asked for a colorization of features by hierarchy chap-

ter within ICD. We plan to integrate toggling as a feature in an
upcoming version.

4.3 Discussion

Our approach includes the visualization of aspects regarding dataset,
model architecture, pre-training tasks, model training, validation,
and prediction, thereby assisting users along the entire development
process. Each process step addresses different but interlocking facets
of trust, categorized into transparency, fairness, and robustness.

Interdisciplinary teams often face challenges in terms of different
vocabularies, expectations, and conventions. Our design strives
to bridge the gap between HCPs and data scientists in particular
by using established, accessible visualizations and interactions to
facilitate communication and mutual understanding. For example,
the model architecture view proved to be highly valuable to convey
to HCPs the essentials, role, and impact of various architecture and
fine-tuning variations of transformer models by the data scientist.
A lack of this common basis of understanding has proven to be
a roadblock in several of our previous projects. Overcoming this
roadblock increases the effectiveness of interdisciplinary discussions
regarding 3 trust in validation and @ trust in outcome predictions.

The utility of our approach and system have been checked during
an iterative design process involving HCPs. Unsurprisingly, findings
from interim interviews reinforced the notion that complex hierar-
chical data sets such as ICD and OPS must be made accessible to
HCP from multiple perspectives informed by domain conventions.
Specifically, we found that HCPs regularly expect CDSS to provide
the ability to confirm their prior domain knowledge and personal
empirical experience is captured in the model, to the point a positive,
if episodic, confirmation is a prerequisite for their willingness to
follow through with the process of CDSS evaluation/adaptation.

One concrete finding of the described use case was that applying
optimization through our approach resulted in a model that per-
formed less than 1% worse than the original model 10x larger. After
confirming they could indeed trust the smaller model with its perfor-
mance still sufficient, HCPs stated it would be the preferred choice
in clinical practice due to ease of deployment on restricted (and thus
often capability limited) hardware approved for medical use. This
further underlines the utility of our approach.

Our approach does have limitations, including the lack of labo-
ratory or vital patient data, as well as missing timestamps for ICD
codes. Medical codes are an imperfect representation of reality and
cannot capture the complexity of a clinical picture. Auxiliary data
is therefore desirable to close the gap between research and prac-
tice. We strive to include additional features such as medication or
pre-existing comorbidities in a prospective extension to our system.

5 CONCLUSION AND FUTURE WORK

In this paper, we contributed a novel visual analytics system to
enable healthcare professionals, with support from data scientists, to
inspect and evaluate CDSS based on multi-task transformer model
architectures with the overarching goal of facilitating trust building.

As further future work, we would like to augment our system with
additional views depicting prediction uncertainty and systematic
weaknesses of the model. Lastly, recent developments on all-purpose
clinical predictive engines should be evaluated against use-case
specific approaches not only regarding quality of prediction but also
explainability and robustness [18].
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