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Figure 1: Mapping Area Deprivation Indices at the census block group (left), tract (middle), and county (right) levels of aggregation.

ABSTRACT 
The process of geospatial data aggregation provides a means for 
abstracting the complexity of urban systems to not just better 
understand them, but also protect the privacy of the individuals 
within them. However, level of aggregation and the arbitrary 
sizes, shapes, and arrangements of areal units may lead to 
statistical and visual bias that affects the reliability and validity of 
findings derived from the analysis of areally aggregated urban 
data. This bias and resulting analytical uncertainty – known as the 
Modifiable Areal Unit Problem (MAUP) – has implications for 
public policy implementation and allocation of critical resources 
in both urban and rural areas. Despite a wealth of geographic 
research on MAUP and development of advanced statistical 
approaches to quantifying its effects, many of these insights and 
techniques remain largely inaccessible and subsequently 
unadopted by GIS professionals working on city planning 
applications. This paper introduces a simple vector-to-raster 
choropleth mapping workflow that enables a broad range of urban 
analysts to visually assess the scalar effects of the modifiable areal 
unit problem. 
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1 INTRODUCTION AND BACKGROUND 
Making sense of urban systems oftentimes requires the analysis 
and visualization of areally aggregated data. The aggregation 
process makes spatial data more comprehensible and helps to 
maintain the privacy of individuals reflected in the data. 
Geographic boundaries, however, are commonly defined by 
historical or political processes that may lead to inaccurate and 
misleading analytical results. Both level of aggregation (i.e., the 
scale effect) and the arbitrary sizes, shapes, and arrangements of 

zones (i.e., the zoning effect) contribute to statistical and visual 
bias that affects the reliability and validity of findings derived 
from the analysis of areally aggregated data [4, 14]. This bias and 
resulting analytical uncertainty, known as the Modifiable Areal 
Unit Problem (MAUP), has implications for public policy 
implementation and the extent to which economic, health, and 
other resources are distributed (or not) to the individuals in both 
urban and rural areas [17]. 

Researchers have employed a wide range of global and local 
spatial statistical modeling techniques, such as geographically 
weighted regression [2], spatial autocorrelation analysis [11], and 
spatial aggregation entropy [18] to simulate, quantify, and better 
understand the effects of the longstanding and unresolved MAUP. 
Complex interactive visualization frameworks [5] and bivariate 
choropleth mapping techniques [13] have also been devised to 
help make sense of the dynamic interrelation of geographic 
phenomena across scale. Moreover, MAUP has been explored in 
many urban contexts, including socioeconomics and equity [7, 
10], health [9, 16, 17], and a variety of transportation applications 
[3, 12, 15]. The advancement of local statistical frameworks has 
further enabled new insights into why data are distributed over 
space in certain ways, reflecting a fundamental shift in examining 
MAUP through the lens of not just data properties but also 
process properties [1]. 

Despite an active and rich body of geographic research on 
MAUP and development of more advanced analytical approaches 
to quantifying and visualizing its effects, many of these insights 
and technical frameworks remain largely inaccessible and 
subsequently unadopted by GIS professionals working in the city 
planning space. This is problematic given the vital role these 
individuals play in translating urban data into insights for decision 
makers. This work presents a case study, introducing a simple 
vector-to-raster choropleth mapping workflow that enables a 
broad range of urban analysts to visually assess the scalar effects 
of MAUP in the context of socioeconomic disadvantage.  

2 APPROACH AND CASE STUDY 
The proposed vector-to-raster choropleth mapping workflow is 
designed to support GIS professionals in making more informed 
decisions on which scales to aggregate, analyze, and represent 
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urban data for problem-specific city planning applications. In 
addition to serving as a spatial decision support tool at earlier 
stages in the analytical process, the workflow also aims to enable 
GIS professionals to recognize and more effectively communicate 
to stakeholders the underlying reasons for conflicting results when 
spatial analysis is conducted at different levels of aggregation. 
The workflow can be performed using common desktop GIS 
mapping software applications (e.g., QGIS and Esri ArcGIS Pro) 
and consists of four major steps: 
 

1. Aggregate variable-of-interest (VoI) to all levels of 
aggregation deemed relevant for comparison. 

2. Create choropleth maps depicting VoI values at selected 
levels of aggregation. 

3. Rasterize choropleth maps.  
4. Generate difference maps depicting the magnitude and 

direction of change in VoI values between selected 
levels of aggregation. 

 
The following subsections expand on each major step using a case 
study to illustrate the approach. 

2.1 Data Selection and Aggregation 
Data used to illustrate this workflow come from the 
Neighborhood Atlas Project [8]. The VoI is the area deprivation 
index (ADI) aggregated to census block groups across Wisconsin 
State (USA). ADI is a metric used to rank “neighborhoods” based 
on socioeconomic disadvantage at the state or national level. ADI 
considers factors such as income, education level, employment 
status, and housing quality and aims to inform healthcare delivery 
and policy. This dataset was selected to demonstrate this 
methodology because [8] explicitly state that ADI was constructed 
at the census block group level and is not valid if aggregated to 
other geographic units, thus offering a helpful framework for 
comparatively visualizing mapped depictions of ADI at a valid 
level of aggregation versus other common but invalid levels of 
aggregation (e.g., census tract and county). The decision to 
demonstrate this methodology using Wisconsin as the area-of-
interest (opposed to other US States) was arbitrary and inspired 
solely by the Neighborhood Atlas Project originating from the 
University of Wisconsin School of Medicine and Public Health. 
Tract and county level enumeration units were selected for 
comparative analysis due to prevalence of use in a wide range of 
urban analytical applications and because census block groups 
nest neatly within tracts and tracts nest neatly within counties, 
making the aggregation of ADI values across these enumeration 
units straightforward to conduct, visualize, and interpret. 

2.2 Create Choropleth Maps 
Next, choropleth maps were created to visualize ADI values at the 
census block group, tract, and county levels of aggregation (Fig. 
1). ADI scores range from 1 (least disadvantaged area) to 10 
(most disadvantaged area), thus a divergent color scheme was 
employed with darker shades of blue representing areas least 
disadvantaged and darker shades of red representing areas most 
disadvantaged. An Albers Conic projection was applied to ensure 
equal area representation of all enumeration units and facilitate a 
more honest interpretation and comparison of mapped values. A 
visual comparison of the three choropleth maps quickly conveys 
the diminishing variance as level of aggregation increases and that 
local patterns appear more pronounced and similar at the block 
group and tract levels of aggregation in comparison to patterns 
reflected at the county level. 

2.3 Rasterize Choropleth Maps 
The third step in the workflow is to convert the choropleth maps 
from vector to raster format in preparation for creating difference 
maps (see following subsection). While difference maps can be 
created using vector data, the process is more convoluted, 
involving a series of spatial joins and field calculations. Another 
advantage of raster conversion is it enables the creation of 
choropleth difference maps between both nested and non-nested 
aggregation structures, the latter being very challenging to create 
in vector format. 

As part of the raster conversion process, it is critical to ensure 
that the VoI is selected as the value to burn into the raster output 
(in this case ADI) and the output raster size aligns with the 
resolution of the geometrically most detailed enumeration unit 
considered in the analysis (in this case census block groups). The 
goal is to select a raster resolution that achieves visual consistency 
with the detail present in vector choropleth map input. Figure 2 
provides a side-by-side comparison of vector (left) and raster 
(right) map outputs to illustrate a geometrically complex urban 
area of Wisconsin at a map scale of 1:50,000 and raster resolution 
of 100,000 x 100,000 pixels. 

Figure 2: Establishing visual consistency between vector (left) and 
raster (right) choropleth map depictions. 

2.4 Generate Difference Maps 
The final step in the workflow is to use a raster calculator to 
generate difference maps that visualize the change in magnitude 
and direction of ADI values between the three levels of 
aggregation. Tract- and county-level rasters can be subtracted 
from the block group raster (Fig. 3a and b); the county raster can 
also be subtracted from the tract raster (Fig. 3c). Difference values 
are depicted using unique value, unclassed choropleth maps that 
communicate both subtle and more pronounced changes in ADI 
values across aggregation levels. A diverging purple-green color 
scheme is employed to emphasize areas where there is a negative 
(purple) or positive (green) difference in values between two 
different levels of aggregation. Darker shades of purple signify 
areas where ADI tended to be greater at the coarser level of 
aggregation, whereas darker shades of green signify areas where 
ADI tended to be lower at the coarser level of aggregation. For 
example, a dark purple polygon in Figure 3b reflects an area that 
would be deemed more disadvantaged (higher ADI value) at the 
county level compared to the census block group level. 
Conversely, a dark green polygon in Figure 3c reflects an area that 
would be deemed less disadvantaged (lower ADI) at the county 
level compared to the census tract level. Lighter shades of these 
colors reflect areas where ADI values were more stable between 
the different levels of aggregation. 

3 DISCUSSION, LIMITATIONS AND OUTLOOK 
The maps in Figure 3 communicate two important patterns. First, 
ADI values are relatively stable when aggregated to census block 
groups or tracts, but areas of local variation still exist (Fig. 3a). 
Second, the similarity in patterns shown in Figures 3b and 3c 
suggest that block group and tract ADI values differ from county 



ADI values in a similar way. These insights provide GIS 
professionals with a better understanding of the local (in)stability 
of ADI across scale and enable them to combine this 
understanding with domain knowledge to make more informed 
decisions on which level(s) of aggregation are most appropriate to 
use for analysis. 

(a) block group - tract                      (b) block group - county 

(c) tract - county 

Figure 3: Visualizing negative and positive differences in ADI 
values between levels of aggregation in the Milwaukee metropolitan 
area. 

 

Figure 4: Percent of total area by difference in ADI value for entire 
State of Wisconsin. 

A limitation of this workflow is that the resulting insights 
primarily support visual assessment rather than quantification. 
Raster summary statistics can be calculated to derive the 
distribution of area by difference in ADI value between any two 
levels of aggregation (Fig. 4); however, the workflow does not 
currently include any spatial statistical modelling techniques to 
more substantively quantify local stability across scale. Moreover, 
the workflow only enables analysts to visualize the scalar effects 
of urban data aggregation one variable at a time, thus does not 
shed light on how the dynamic interrelation among two or more 
urban phenomena may vary across scale. Thus, there is a trade-off 
between the accessibility and simplicity of the workflow versus its 
ability to support more advanced multivariate statistical analysis. 

In the context of the human-centric CityVis design space [6], 
this geovisualization workflow can help to inform data quality and 

reliability across different levels of aggregation (C1); prompt 
discussion about how to design data aggregation structures that 
more effectively reflect both the individual’s sense-of-place and 
the overall complexity of urban infrastructure (C2, C3); and equip 
a broad range of urban analysts with a simple approach to visually 
documenting the urban data aggregation process and assessing the 
appropriateness and validity of data representation at multiple 
scales and contexts (C4, C5, C6, C9). In summary, this vector-to-
raster choropleth mapping workflow aims to exemplify how 
geovisualization techniques can support urban data governance 
processes by broadening exposure to, and understanding of, 
MAUP effects, thus promoting data/visual literacy among analysts 
and decisionmakers and facilitating a more informed use of 
aggregated urban data. Piloting this workflow with GIS 
professionals working across a variety of city planning projects is 
a critical next step in assessing the usability and utility of this 
workflow and identifying opportunities to increase its relevancy 
and value. 
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