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ABSTRACT 

Motion is widely used in modern data visualizations, serving as a 
means for transitioning views and as a primary channel for convey-
ing information. Particle flow maps have become a popular means 
for communicating the speed and direction of wind in engaging 
and informative ways. Yet there is little empirical design guidance 
supporting the multiple encodings these maps use, such as particle 
speed, particle density, and color saturation. In this paper, we inves-
tigate multiple encoding wind maps using a staircase methodology 
to estimate just-noticeable differences for a range of speed values 
across visualizations with or without motion encodings. Results 
suggest: 1. the multiple encodings designers use are not only aes-
thetically engaging– they also improve speed discriminability for the 
average participant. 2. The speed of particle motion should be con-
trolled under a certain range for good information retrieval accuracy. 
These findings contribute empirical guidance for particle motion 
encoding design, and lay groundwork for future investigations as 
motion becomes more widely used in visualization practice. 

Index Terms: Human-centered computing—Visualization— 
Visualization techniques—Empirical study 

1 INTRODUCTION 

While static visual encoding channels dominate the modern data 
visualization landscape, motion-based encodings such as movement 
and rotation continue to be used in interesting and novel ways. Sev-
eral studies and applications have demonstrated the value of motion 
in information visualization. Franconeri et al. find that visuals using 
motion are perceived as more aesthetically pleasing, and hold the 
viewers’ attention longer [12]. Robertson et al. show that motion 
can highlight differences between data elements, and help viewers 
anticipate and understand trends in data [30]. Focusing on interac-
tion, Bartram and Ware apply motion to enhance filter and brush 
operations [3]. 

However, beyond serving as secondary facets in a visualization, 
motion channels can also be used as a primary channel to commu-
nicate data. Recently, popular particle-based wind flow maps have 
illustrated the promise of motion as a primary encoding (see Fig. 1). 
In such maps, motion encodes wind speed and direction simultane-
ously, arguably both more informative and enjoyable compared to 
traditional static maps. These maps use different combinations of 
static channels alongside the motion channel, including brightness, 
density, particle length, color saturation and color hue. However, 
while Birkeland et al. provides some empirical guidance about how 
well people interpret individual particle motion encodings [5], de-
signers lack empirical evidence on whether adding multiple static 
encodings alongside motion encodings might aid or hinder how well 
people interpret the underlying data. 
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Fig. 1: Examples of particle wind flow maps. Left: Hint.fm windmap 
has a minimalistic style, using a grey-scale color scheme to highlight 
the fastest moving wind. Right: Windy, another particle-based wind 
map, using color hue to encode wind data. 

In this paper, we contribute an empirical study exploring and 
modeling how people judge differences in particle-based motion 
visualizations across baseline and multi-encoding conditions. To 
model the performance of the particle-based motion encodings, we 
adapt staircase procedures and model fitting techniques, used in 
prior work to evaluating encodings of correlation judgments, e.g. 
[14, 29, 38]. We construct two conditions: a baseline condition 
encoding speed values as particle motion, and a multi-encoding 
condition with additional static channels, adapted from wind maps 
used in practice such as Hint.fm/wind [35]. Encodings of interest 
include particle length, density, and color saturation. 

In a randomized crowdsourced study of n = 50 participants on the 
Prolific platform [27], participants provide judgments across multi-
ple pixel-speed values. The results of these experiments suggest that 
just-noticeable differences indeed vary at different visually encoded 
speeds, consistent with perception studies targeting motion. In terms 
of visualization guidance, the additional static channels are found to 
significantly improve participant accuracy across tested speed levels, 
demonstrating the value of carefully designed encodings. 

2 BACKGROUND 

2.1 Motion Perception and Visualization 

Perceptual studies outside visualization have long established that 
peoples’ judgments of motion follow systematic perceptual patterns 
[6, 8, 23, 24]. In particular, Zanker used random-dot kinematograms 
(RDKs) to evaluate participant judgements of motion. Calculating 
just-noticeable differences from these judgments, Zanker provides 
evidence that motion perception can be modeled using Weber’s law 
and similar models (e.g. Steven’s Power Law) [39]. 

In visualization, one widely-used application of motion is to 
make animated transitions from one visualization state to another 
[9]. Motion has been shown to capture audience attention, and is 
associated with more enjoyable data presentations [12,30]. Filtering 
and brushing have also been shown to benefit from motion-based 
features [3]. Bartram et al. imply that motion should be investigated 
as a means for conveying information, as it can feasibly be used 
to increase the bandwidth of the visualization interface [2]. Along 
these lines, Romat et al. design animation techniques for node-link 
diagrams [31], while Shu et al. investigate and taxonomize animation 
in the context of Data-GIFs [32]. 
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Fig. 2: A: A trial example, with parameters: (local index: 1; direction: 
below; base speed: 80px/s (left); compare speed: 65px/s(right); 
condition: mixed encoding). B: Stimuli in the mixed encoding 
condition at different speed levels. The flow length, density and color 
situation contribute to the differences. (In the motion-only encoding 
condition, stimuli are identical in screenshots). 

2.2 Evaluating Competing Visualization Techniques 

Many studies targeting visual channels aim to compare visualiza-
tion techniques or variations of techniques. Cleveland and McGill’s 
graphical perception experiments quantify and compare participant 
accuracy across common visualization types [10]. Other visual-
ization studies have used two-alternative forced choice methods 
to control for estimation bias. In visualization, such studies have 
used a staircase approach to determine the minimum “difference” 
participants can reliably detect between two given stimuli. For ex-
ample, Rensink et al. model peoples’ perception of correlation using 
a staircase procedure, estimating just-noticeable difference (JND) 
values for varying levels of correlation, and fitting Weber models 
to make comparisons [29]. We draw on these and similar studies 
(e.g. [14, 33, 38]) in the design and methodology for comparing 
motion encoding techniques. 

2.3 Particle Wind Flow Maps 

Particle wind flow maps place discrete objects in a velocity field 
whose characteristics reflect the underlying properties of the flow 
[7, 25]. Many particle algorithms are based on regular grids, ran-
dom sampling and interactive seeding. Turk and Banks introduced 
image-guided streamline placement algorithm in 1996 to obtain a 
uniformly dense streamline coverage [34]. Following this study, 
many researchers have focused on improving the computational 
efficiency of streamline placement [17, 18, 21, 26]. Lefer et al. use 
color animation to represent motion information, by shifting color 
table values so that the changing color pattern through the streamline 
appears to encode velocity attributes. 

Several particle-motion visualizations are special thematic maps 
designed to show wind speed and direction across a certain geo-
graphic area. Traditional wind maps use color hue or color intensity 
channels to encode wind speed data, similar to other measures such 
as temperature. Recently, however, many map designers have begun 
using particle motion encodings to visualize wind speed data [28,37]. 
These particle wind flow maps have become popular tools for explor-
ing wind data, for example, Hint.fm [35], Windy [36], and Earth [4] 
encode wind data with motion channel and static channels. Even 
popular weather applications and TV broadcasts now provide wind 
motion visualizations to the general public (e.g. Wunderground [16] 
and AccuWeather [1]) (see Fig. 1). 

Birkeland et al.’s empirical study investigated four factors that 
could affect people’s estimation error on animated particle flow 
charts, namely global scale, speed multiplier, chroma contrast, and 
flow angle. Their study evaluated these factors as isolated stimuli, 
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Fig. 3: Illustration of the staircase procedure. In section A, the partic-
ipant consistently provided correct answers, reflected by the red line’s 
gradual approach towards the base value at a rate of 1px/s. Section 
B indicates the participant made an incorrect response, resulting in 
subsequent comparison values being adjusted 3px/s away from the 
base value. 

and developed a compensation model to help to decrease average 
estimation error. Building on these foundations, we extend both 
the methodology and stimuli set from Birkeland et al. to investi-
gate multi-encoding particle visualizations. In doing so, we form a 
connection to other recent perceptual studies in visualization inves-
tigating discriminability (e.g. [14, 29, 38], and use these models to 
compare the effectiveness of encoding combinations used in design 
practice against a baseline. 

3 METHODOLOGY 

To investigate how well particle-motion encoding techniques align 
with peoples’ judgements, we conducted a crowdsourced experiment. 
Specifically, we adapt a two-alternative forced-choice model from 
prior studies (e.g. [11,14,29,38]), along with a staircase procedure to 
calculate just-noticeable difference values between pixel-per-second 
(px/s) speeds. Stimuli are designed to emulate popular wind map 
designs while maintaining control over experiment factors. 

3.1 Stimuli 
Visualizations using particle motion encodings differ from tradi-
tional visualizations using only static channels. We identified three 
challenges when designing the experiment stimuli for particle-based 
motion channels. First, there is often variation in flow and styling 
effects. For example, the particles themselves may have different 
shapes and sizes. Second, in all observed examples, wind speed is 
encoded by more than one visual channel. Together with particle 
motion, the particle color hue, size, and other factors are often used 
to redundantly encode data, plausibly for aesthetic effects. Finally, 
wind flow maps may leverage map reading skills, such as memory 
of weather patterns and geographic knowledge [13]. In our stim-
uli design, we sought to control these factors to mitigate possible 
confounds in the experiment. 

Towards this end, we design simplified experiment stimuli as a 
baseline, first by removing the map (see Fig. 2). Given the pervasive 
color, particle density, particle length and motion encodings, we 
extract and emulate the parameter values from the Hint.fm [35] map 
for a comparison condition to a motion-only baseline. Stimuli are 
200px × 200px, with gray backgrounds and white flow particles. 

In the single (motion-only) condition, wind speed is only mapped 
to particle speed, while all other parameters of flow particle remains 
identical. Particle flows are equally distributed in a fixed-width 
banded zone. The vertical location of this banded zone randomly 
moved up or down for each trial to prevent the side-by-side particle 
flows from flowing into each other. 

In the mixed-encoding condition, wind speed is mapped to parti-
cle speed, as well as three static channels, length, density and color 
saturation. Wind speed data is mapped to particle length by the 
equation: 0.2 × speed. The mapping equation for color saturation 
is 0.1 + speed/200. Density is controlled by the number of particle 
flows in fixed-width band zone, speed values have a 1 to 1 ratio to the 



number of flows (density, for example speed 60 would correspond 
to 60 particles in stimuli). Parameters were chosen based on a mea-
surement analysis of the popular Hint.fm wind map, which has been 
widely emulated in later maps (e.g. Earth [4] and Windy [36]]). In 
contrast, in the motion-only baseline condition, three static channels 
of stimuli use the same settings as the mixed encoding condition, at 
speed 80 pixels/second, which is the middle speed in the study1 . 

3.2 Trials 

Each trial contains two experiment stimuli side by side. Stimuli 
are similar, except that the data values they represent are different, 
which leads to different particle flow speed. In the mixed-encoding 
condition, the length, density and color hue of particle will also 
vary. Fig. 2 shows example trials. Participants select the left or 
right charts by clicking on one or pressing the LEFT/RIGHT key on 
the keyboard. We also set a 2-second delay to prevent participants 
from accidentally answering and moving to the next trial. When 
participants make a selection and the delay time is passed, they can 
click the submit button or use ENTER key to submit their answers. 
After each trial, data such as speed from two stimuli, experiment 
parameters (direction, index, etcetera) and the given answer are 
stored in a database for later analyses. 

3.2.1 Trial Sets & Experiment Procedure 

Adapting methodologies from prior visualization studies, e.g. [11,14, 
29, 38], we use a staircase procedure to estimate the just-noticeable 
differences (JNDs) for particle motion encodings at different speeds. 

Speed levels for trial sets are determined by the on-screen flow 
speed range in the Hint.fm wind map visualization [35]. To sample a 
space evenly while not overburdening participants, we investigate 6 
values equally, from 0 to 120 pixels/second (20, 40, 60, 80, 100, 120). 
(The original experiment included a speed of 140, but pilot testing 
showed high levels of participant error, so it was removed from the 
final study.) The sequence of base speed values is randomized at the 
beginning of each experiment. 

In the staircase procedure, participants are asked to select which 
stimuli represent higher (faster) value of data. In each trial, one chart 
uses a base value (e.g. 60 pixels/second) while the other one uses a 
comparison value (e.g. 75 pixels/second). Both values are randomly 
assigned to be either on the left or right side. If participants give a 
correct answer, the next trial will include a comparison value closer 
to the base value. If participants answer incorrectly, the comparison 
value will move further from the base value, by a predetermined 
amount. Assuming correct answers, after repeating this process 
across a trial set, the difference between the comparison value and 
the base value should approach the just-noticeable difference. 

Similar to previous studies, the comparison value can be above 
or below the base value. Therefore, in each trial set, we need repeat 
the staircase procedure twice, In one trial set, the comparison value 
starts below the base value (e.g. 60 vs 45, where 60 is the base and 
45 is the comparison), and on another trial set, the comparison value 
starts above the base value (e.g. 60 vs 75, 75 is the comparison). 

Following pilot studies to examine participant performance, study 
length, and to determine an appropriate step size, we set our experi-
ment parameters below: 

• Stair length: 25. In each staircase procedure for one direction, 
participants complete 25 trials. 

• Correct Step: 1. If participants give correct answers, the 
comparison value will move 1 pixel/second towards the base. 

• Incorrect Step: 3. If participants give incorrect answers, the 
comparison value will move 3 pixels/second away from the 
base value. The ratio between correct step and incorrect step 
1:3, based on the definition of the 75% JND. 

1Animations of experiment stimuli can be found in supplementary material 

Model Intercept Speed[2.5%,mean,97.5%] R2 RMSE 
Single 2.800 [0.091, 0.103, 0.115] 0.974 0.581 
Mixed 0.312 [0.055, 0.082, 0.108] 0.825 1.313 

Table 1: Coefficient for linear model fits. Note the difference between 
single encoding and mixed encoding slopes and intercepts, suggest-
ing differences in performance across these conditions, both p<0.001. 

Intercept Speed Encoding(single) R2 RMSE 
-0.278 0.091 3.978 0.880 1.360 

Table 2: To statistically compare mixed versus single encodings, JND 
values were combined in a single model with encoding type as an 
independent variable. Results show encoding is a significant factor 
(p<0.001). 

• Initial offset: 15. On the first trial, the comparison value will 
begin 15 pixels/second smaller or larger than the base. 

To complete the assigned experiment, a participant completes 
300 trials (6 base value × 25 stair length × 2 direction). In this 
setting, the smallest JND value our experiment can detect is close 
to 1 px/second. If participants give the correct answer when the 
difference between base and comparison values is 1 (a near perfect 
observer), the next trial will use the same comparison values. 

We run simulations with experiment parameters to find the chance 
cut-off value for the staircase procedure. Simulating a participant 
guessing randomly at chance (50% accuracy), we ran the simu-
lation 10000 times, finding the resulting chance cut-off value in 
our experiment is JND = 34.5, meaning any resulting JNDs at or 
above this boundary would imply either the JND cannot be captured 
by our experiment parameters or participant has a ”click-through” 
behavior [22]. 

3.2.2 Conditions 

We investigate motion channel performance of wind map in two 
conditions. The motion-only encoding condition and mixed encod-
ing condition as we developed two sets of stimuli. Considering 
the length of experiment, each participant only be assigned to one 
condition. 2 

3.3 Participants 

Crowdsourcing platforms have been shown to be a reliable testbed 
for visualization studies, e.g. Heer and Bostock [15]. Many prior 
studies collect data from Amazon’s Mechanical Turk. Recently, 
researchers have also started using Prolific, a new platform for run-
ning scientific crowdsourcing experiments e.g. [20]. To decrease 
confounds from different devices, we applied a filter to participant 
recruitment: only participants on desktop machines could take this 
experiment. In this IRB-approved study, we aimed to recruit 25 
participants for each encoding condition resulting 50 participants 
in total (not counting pilots). Participants were paid $3.50 USD for 
about 20 minutes of effort, which equates to an $10.50 USD hourly 
rate, commensurate with US minimum wage. 

4 RESULTS 

After launching our experiment, all responses were complete within 
7 hours. 55 participants began the experiment, and 47 completed all 
trials. Based on the pre-defined chance cut-off, 3 participants are 
excluded from data analysis due to at least one of their JND values 
exceeding the chance cut-off, indicating potential inattention on the 
experiment. In total, we have 44 valid participants (23 in the mixed 
encoding, 21 in single encoding) 

2Experiment, stimuli details and analysis plan are preregistered at AsPre-
dicted https://aspredicted.org/blind.php?x=PYT_GXT 
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In prior studies, e.g. Rensink et al. [29], each trial set included 50 
trials. The JND value was determined from the last 24 trials, once 
a convergence criteria was met, otherwise the second half of trials 
was used [14, 29, 38]. To enable more values to be tested, we adopt 
a method from Yang et al. in which there is no convergence criteria, 
but rather all values from second half of trials are used in the JND 
calculation [38]. We use 25 trials for this purpose. To accommodate 
participants’ initial calibration, we use the second half (12) trials to 
calculate the JND values for each participant and trial set. 

Fig. 3 is an example of how the comparison value changes during 
the experiment. Most appear to have a similar pattern as previous 
experiments targeting correlation [29]. However, in a few trial sets, 
the comparison values do not approach the base values. Instead, val-
ues through multiple incorrect judgements move away from the base 
value and meet the chance cut-off, which indicates the experiment 
cannot capture this JND value accurately. Given our experiment 
was modeled after real-world scales, this holds implications for 
particle-based scale design. 

Most trial sets in which the comparison values fail to converge 
fail to approach base values? R2 asked us about converge, but we 
don’t use them as we mentioned earlier. were at base level 120 
pixels/second. This implies the JND value at high speed for these 
participants are close to the detection limit of our experiment, and 
may have similar implications for design practice. Since this was 
not true of any other of these participants’ base levels, these partici-
pants remain in the analysis. Raw data including all participants is 
provided in the supplementary material. 

4.1 Model Fit 
We first build two separate models for two encoding conditions by 
adjusting our data following previously established linear model 
fitting procedures in similar visualization studies [14, 29, 38]. We 
calculate adjusted base speed using the equation: 

vad justi,d = vbasei ± 0.5 ∗ JNDi,d 

Each base speed value vbasei was moved by half of the average 
JND from the above or below direction(d) trial set. For the below 
approach, the speed value v was moved towards the smaller side, 
while for the above approach, v was moved towards larger side. 

Then we fit the data to a standard linear regression model: 

yi,d,c = β1,c + β2,cvad justi,d,c + εi 

εi ∼ N(0,σ2 
c ) 

For each encoding condition c, JND value is modeled as a linear 
function of adjusted base speed vad justi,d,c . 

The model fitting result is shown in Fig. 4, with all model coeffi-
cient are shown in Table 1. The R2 for single encoding condition is 
0.974, indicating a good model fit. However the R2 for mixed encod-
ing condition is 0.825, suggesting more participant variance. One 
possible reason for this difference is that people may use different 
channel(s) when reading particle wind flow stimuli, which would be 
a promising challenge to disambiguate in future work. 

To statistically compare conditions, we then use the same ap-
proach to fit all data to a multi-linear regression model, with the 
change of adding encoding condition (mixed/single) as an indepen-
dent variable. The model parameters are shown in Table 2. 

4.2 Residual Check 

We also examine the residuals of the fit. In Kay and Heer’s analysis, 
the result shows that the JNDs collected in Harrison et al.’s study on 
correlation visualization often had skewed shapes in residuals [19]. 
Thus, a log-linear model was found to more accurately describe the 
distribution of JNDs than a linear model. Following this procedure 
we plot the residual of distribution in Fig. 5 we observed that the 
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Fig. 4: Linear regression results for single encoding condition and 
mixed encoding condition. It appears mixed encoding outperformed 
motion-only single encoding, lower JND value indicates better percep-
tion accuracy 

Single Encoding Mixed Encoding

A

B

C

D

Residual ResidualFitted JND Fitted JND

Fig. 5: A&B: residual plot and Q-Q plot for single encoding condition. 
C&D: residual plot and Q-Q plot for mixed encoding condition. 

residual only shows a slightly skewed shape, the distribution matches 
the normal distribution overall. And the normal Q-Q plot indicates 
a good model fit. This suggests that a log-linear model may not 
be necessary for modeling particle motion channel performance in 
practical speed range. 

5 DISCUSSION & CONCLUSION 

We report several main findings from this initial investigation of 
motion encoding for particle-flow-based visualizations. First, we 
establish that peoples’ judgments of particle motion encoding fol-
lows a systematic linear pattern across a range of speed values, with 
differences in higher values are more difficult to detect than those 
in lower values. Second, we find that redundantly encoding speed 
through factors such as color saturation, density, and particle length 
enables the average participant to be able to distinguish between en-
coded values more clearly. For visualization design, these findings 
support the use of motion channels alongside static channels, when 
possible. Meanwhile, the JND modeling results also suggests that 
mapping data to lower on-screen speed ranges can result in better 
discrimination performance. In future work, there are still many op-
portunities to improve the current model. For example, an empirical 
study that investigates which solo static channels or combinations 
of static channels have the best performance could provide more 
refined recommendations, further supporting visualization design 
with motion. 
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