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Fig. 1: ARGUS is a visual analytics tool for real-time and historical evaluation of sensor and model outputs of AR task assistants.
Shown here are (A) 3rd-person perspective of a human (performer ) performing a task with AR headset guidance, (B) the AR GUI
from the perspective of the performer, (C) a snapshot of a visual perception model analyzing data from the headset camera. For each
time step, detailed information highlights the performer’s gaze direction and the corresponding frame recorded by the headset. (D)
heatmaps of the performer’s gaze projection onto the world point cloud allow for inspection and understanding of their attention over
time. The cluster on the left shows the performer finalizing a recipe. (E) object detection information from ARGUS Temporal View
illustrating that Plate was only detected towards the end of the task while Tortilla was detected throughout the whole session.

Abstract—The concept of augmented reality (AR) assistants has captured the human imagination for decades, becoming a staple of
modern science fiction. To pursue this goal, it is necessary to develop artificial intelligence (AI)-based methods that simultaneously
perceive the 3D environment, reason about physical tasks, and model the performer, all in real-time. Within this framework, a wide
variety of sensors are needed to generate data across different modalities, such as audio, video, depth, speech, and time-of-flight. The
required sensors are typically part of the AR headset, providing performer sensing and interaction through visual, audio, and haptic
feedback. AI assistants not only record the performer as they perform activities, but also require machine learning (ML) models to
understand and assist the performer as they interact with the physical world. Therefore, developing such assistants is a challenging
task. We propose ARGUS, a visual analytics system to support the development of intelligent AR assistants. Our system was designed
as part of a multi-year-long collaboration between visualization researchers and ML and AR experts. This co-design process has led to
advances in the visualization of ML in AR. Our system allows for online visualization of object, action, and step detection as well as
offline analysis of previously recorded AR sessions. It visualizes not only the multimodal sensor data streams but also the output of the
ML models. This allows developers to gain insights into the performer activities as well as the ML models, helping them troubleshoot,
improve, and fine-tune the components of the AR assistant.

Index Terms—Data Models; Image and Video Data; Temporal Data; Application Motivated Visualization; AR/VR/Immersive.
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The concept of an augmented reality (AR) assistant has captured the
human imagination for years, becoming a staple of modern science fic-
tion through popular franchises such as the Marvel Cinematic Universe,
Star Trek, and Terminator. The applications of such a system are seem-
ingly endless. Humans, even those with domain expertise, are fallible
creatures with imperfect memories whose skills deteriorate over time,
especially during repetitive tasks or under stress. An AR assistant could
help experts and novices alike in performing both familiar and new
tasks. For instance, an AR assistant could aid a surgeon performing a
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familiar yet complex procedure, who could benefit from a second set of
“eyes” due to the high-stakes nature of their task. Equally, it could walk
an amateur chef through the steps of an unfamiliar recipe. In an ideal
scenario, the AR assistant would become “invisible” in the sense that it
is seamlessly integrated into the task procedure, providing well-timed
audio and visual feedback to guide uncertain performers and correct
human errors while otherwise fading into the background. Overall,
the AR assistant would be able to reduce human error via correction,
improve performance by reducing cognitive load, and introduce new
tasks across a wide variety of applications.

While aspects of this vision are currently still aspirational, we
are finally beginning to develop the technology that allows concepts
once relegated to the world of science fiction to become reality. With
respect to machine perception, the recent explosion of research on
machine learning (ML), especially deep neural networks, has given
way to powerful models able to detect objects, actions, and speech
in real time with high accuracy. Ever-evolving implementations
of Bayesian neural networks, reinforcement learning, and dialog
systems (e.g., conversational agents) allow for task modeling and
transactional question answering. A rise in AR technology, especially
the commercial availability of headsets such as Microsoft HoloLens 2,
Magic Leap, Google Glass, or Meta Quest Pro (and soon, Apple Vision
Pro) has provided the hardware necessary for task guidance. The time
is ripe for the development of assistive AR systems.

Challenges in perceptually-enabled task guidance. Developing an
AR assistant, however, comes with a host of challenges. Such a system
requires several moving parts to work in tandem to perceive the per-
former’s environment and actions, reason through the consequences of
a given action, and interact with both the performer and the user (for the
sake of clarity, we will refer to subjects using the AR system to perform
tasks during a session as “performers” and subjects using ARGUS to
collect and analyze data as “users”). Creating these parts is a complex,
time and computational resource-consuming process. The challenges
include collecting, storing, and accessing a large volume of annotated
data for model training, real-time sensor data processing for action and
object recognition (or reasoning), and performer behavior modeling
based on first-person perspective data collected by the AR headset (see
Sec. 4 for a more detailed discussion of tasks and requirements).

Our Approach. We propose ARGUS: Augmented Reality Guidance
and User-modeling System, a visual analytics tool that facilitates mul-
timodal data collection, enables modeling of the physical state of the
environment and performer behavior, and allows for retrospective anal-
ysis and debugging of historical data generated by the AR sensors and
ML models that support task guidance. Our tool operates in two main
modes. The online mode (see Sec. 5.1) supports real-time monitoring
of model behavior and data acquisition during task execution time. This
mode displays tailored visuals of real-time model outputs, which allows
users of ARGUS to monitor the system during live sessions and facil-
itates online debugging. Data is saved incrementally. Once finalized,
all data and associated metadata collected during the task is seamlessly
stored to permanent data store with analytical capabilities able to handle
both structured data generated by ML models and multimedia data (e.g.
video, depth, and audio streams) collected by the headset. Our system
can be used to explore and analyze historical session data by interact-
ing with visualizations that summarize spatiotemporal information as
well as highlight detailed information regarding model performance,
performer behavior, and the physical environment (see Sec. 5.2).

Our design was inspired by requirements from developers of AR
systems and experts that create and evaluate these systems in the con-
text of the Defense Advanced Research Projects Agency’s (DARPA)
Perceptually-enabled Task Guidance (PTG) program [10]. These ex-
perts use ARGUS and have provided feedback throughout its develop-
ment. In summary, our main contributions are:

• ARGUS, a visual analytics tool tailored to the development and
debugging of intelligent assistive AR systems. It supports on-
line monitoring during task execution as well as retrospective
analysis and debugging of historical data by coupling a scalable
data management framework with a novel multimodal visualiza-

tion interface capable of uncovering interaction patterns between
performer actions and model outputs.

• The design of novel visual representations to support complex
spatiotemporal analysis of heterogeneous, multi-resolution data
(i.e., data streams with different frame rates). ARGUSnot only
supports the visualization of internal AR assistant ML states in the
context of the actions of the performer, but also the visualization
of the interactions of the performer with the physical environment.

• We demonstrate the usefulness of ARGUS by a set of case studies
that demonstrate real-world use of ARGUS, exhibiting how AR
assistant developers leverage the tool to improve their systems.

This paper is organized as follows: Sec. 2 reviews the relevant
literature on assistive AR systems and visualization of related data.
Sec. 3 provides background and context for ARGUS, including the
AR personal assistant framework and architecture it is designed upon.
Sec. 4 specifies the requirements we aim to achieve. Sec. 5 describes
ARGUS in detail, including all components of its online real-time
debugging mode and offline data analytics mode. Sec. 6 explores
two case studies in which ARGUS proves useful to AR task assistant
developers, ending with user feedback and limitations of our system.
Finally, we offer concluding remarks and future work in Sec. 7.

2 RELATED WORK

2.1 Assistive AR Systems
The idea of using AR technologies to build assistive systems that
have an internal model of the real world and are able to augment
what a performer sees with virtual content dates back more than three
decades [9]. Yet only recent advances in AR display technologies
and artificial intelligence (AI), combined with the processing power to
run the necessary computations in real time, have enabled us to start
building such systems. Referring to the terminology introduced by
Milgram and Kishino [34] in their seminal paper on Mixed Reality, this
not only requires a class 3 display—a head-mounted display (HMD)
equipped with see-through capability that can overlay virtual content on
top of the real world—but also a great extent of world knowledge. That
is, the environment should be modeled as completely as possible so that
the assistive system can react to objects and actions in the real world.
Simultaneously, the reproduction fidelity and the extent of presence of
an assistive system should be minimal, since the performer needs to
focus on the real world, not be immersed in virtual content. In addition,
the in-situ instructions help to reduce errors and facilitate procedural
tasks. To date, results are mixed for task completion time using an
assistive AR system versus not, with several studies finding longer times
with assistive AR systems [50,56] whereas others find the opposite [18].
Nevertheless, most studies agree that AR helps to reduce errors and
overall cognitive load as it provides in-situ instruction and guidance.

AR can be enabled by a multitude of different display technolo-
gies, ranging from handheld devices like smartphones and tablets to
projector-based solutions and heads-up displays found in airplanes
or modern cars. We, however, focus on see-through AR HMDs for
assistive AR systems, since these do not significantly encumber the
performer. These headset displays do not restrict performers to a lim-
ited space and leave their hands free to execute situated tasks in the
real world. Furthermore, they usually offer a wider range of built-in
sensors for modeling the environment and performer such as cameras,
microphones, or IMUs. See-through AR headset displays available
today include Microsoft HoloLens 2 (the hardware platform used in
our work) and Magic Leap 2.

As was proposed by Caudell and Mizell [9], a common use case
for such systems is to support performers in repair and maintenance
tasks [15, 20]. Similarly, AR assistants were proposed for manufac-
turing, e.g., training [27] or live monitoring of production lines [5].
Another prominent area for AR assistive systems is healthcare and
medicine [4], e.g., to assist surgery [40] or other procedures [22, 49].
Furthermore, digital assistants can also make use of AR to enable a
virtual embodiment of the assistant [25, 38, 44]. Most of the modern
systems mentioned above integrate ML methods for specific tasks, e.g.,



for object or voice command recognition. However, they are mostly
tailored to specific tasks and only have limited support for situated per-
former modeling and perceptual grounding. Integrating more complex
AI methods will make the development and testing of such systems
also more challenging.

To support the development of AR assistants, software toolkits have
been proposed, for example, RagRug [16], which is designed for situ-
ated analysis, or Data visualizations in eXtended Reality (DXR) [46],
which is specifically designed to build immersive analytics [30] ap-
plications. However, while such toolkits make it easier to develop
feature-rich assistive systems that use data from the multiple sensors
provided by the AR headset display and integrate AI methods, they
do not offer explicit tools for external debugging of the required ML
models and sensor streams. Our goal is to fill this gap with ARGUS.
This requires visualizing the multiple data streams from the sensors as
well as the output of the models.

2.2 Visualization of Multivariate Temporal Data
The visualization of multivariate temporal data is a very active field of
research. A plethora of different methods and tools have been proposed
which, for example, use multiple views, aggregation, and level-of-
detail visualizations to represent the data efficiently. A review of these
methods is beyond the scope of this paper, therefore, we refer to a
number of comprehensive surveys [1, 24, 28].

There have been recent attempts to develop visualization systems to
debug and understand the data acquired by multimodal, integrative-AI
applications. PSI Studio, a platform to support the visualization of
multimodal data streams [6] is able to provide useful visualization of
sets of recorded sessions. However, it requires the user to not only
compose their own visual interfaces by organizing predefined elements
in a visualization canvas, but also to structure the streaming data in a
predefined format, psi-store. Built with a similar goal, Foxglove [17]
requires developers to organize their data into a Robot Operating Sys-
tem (ROS) environment. Moreover, these tools focus on supporting the
visualization of the data streams and are not able to summarize long
periods of recordings with visualizations. To the best of our knowledge,
existing tools also lack the ability to debug associated ML models.
Other visualization tools, such as Manifold [54], are tailored to the
interpretation and debugging of general ML models. In our case, we
are interested in a narrower set of ML models, those that pertain to
the understanding the behavior of AI assistants, which have different
requirements than other visualization systems.

3 BACKGROUND: BUILDING THE TIM PERSONAL ASSISTANT

In this section we describe the context of the development of ARGUS.
This includes the ecosystem of components needed to support intel-
ligent AR assistant systems, ranging from software running on the
headset device to data management modules able to ingest data in
real-time.

3.1 Motivating Context
The development of ARGUS is driven in large part by the requirements
of the DARPA PTG program [10]. PTG aims to develop AI technolo-
gies that help users perform complex physical tasks while making them
both more versatile by expanding their skillset and more proficient
by reducing their errors. Specifically, the program seeks to develop
methods, techniques, and technology for AI assistants that provide just-
in-time visual and audio feedback to help with task execution. The goal
is to utilize wearable sensors (head-mounted cameras and microphones)
that allow the AR assistant to see what the performer sees and hear what
they hear, so that the assistant can provide helpful feedback to the per-
former through speech and aligned graphics. The assistants learn about
tasks by ingesting knowledge from checklists, illustrated manuals, train-
ing videos, and other sources of information (e.g., making a meal from
a recipe, applying a tourniquet from directions, conducting a preflight
check from a checklist). They then combine this task knowledge with a
perceptual model of the environment to support mixed-initiative and
task-focused performer dialogs. The dialogs may assist a performer in
completing a task, identify and correct errors during a task, and instruct

Fig. 2: TIM’s architecture proposes a data communication service be-
tween the system components: the Hololens, AI modules, and ARGUS.

them through a new task, taking into consideration the performer’s
level of expertise. As part of PTG, our team has been building TIM,
the Transparent, Interpretable, and Multimodal AR Personal Assistant,
which is described below.

3.2 Overview of the TIM Personal Assistant
Our assistive AR framework (TIM) integrates perceptual grounding,
attention, and user modeling during real-time AR tasks, and is com-
posed of multiple software and hardware components. TIM perceives
the environment, including the state of the human performer, by using
a variety of data streams (details below) which are the input to the task
guidance system. TIM communicates with the performer through the
HoloLens 2 headset display.

The task guidance system is primarily composed of three AI compo-
nents that interpret the incoming data streams: (1) Perceptual Ground-
ing utilizes information from historical instances of actions from similar
tasks and makes its best prediction of what the current action and ob-
jects are. (2) Perceptual Attention takes the objects and transforms them
into 3D coordinates and contextualizes objects over time in the 3D en-
vironment. (3) Reasoning then uses the objects and actions returned
by perception to identify which step of the task the user is in and to
understand whether or not they are performing the task correctly. Any
of these data can be ingested and displayed on our platform, ARGUS.

3.3 System Architecture
Since the computational resources on HoloLens 2 are limited, TIM is
implemented as a client-server architecture. To enable data streaming
capabilities, the system utilizes server-side infrastructure that provides
a centralized data communication hub and real-time ML inference to
facilitate ingesting, operating over, and contextualizing the produced
data streams. A system diagram can be seen in Fig. 2.

Data Orchestration and Storage. The core of our architecture is
Redis Streams, which we use as our data message queue. A REST +
Websocket API provides a uniform abstraction layer for components to
interact with. The HoloLens streams its sensor data to the API where it
is made available to all other components in the system. The user is
able to record data streaming sessions, which will listen and copy all
data streams to disk. Later, users can selectively replay that data in the
system as if the HoloLens was running, for easy offline testing.

Communication. TIM uses the REST API to stream onboard sensor
data (i.e., gaze, hand tracking; see details in Section 3.4) in real-time.
This allows us to shift the computation-heavy tasks to the server while
keeping the essential tasks on the HoloLens to improve responsiveness.
TIM also collects the ML prediction results from the server and updates
the AR interaction and interface accordingly. The AR client running on
the HoloLens ingests two streams to support contextual interaction: a
perception stream that recognizes objects in the scene and a reasoning
stream that recognizes performer actions. On average, these streams
take about 100 ms to complete one update cycle to the AR client.

3.4 Data
The HoloLens 2 can provide various data from multiple sensors. With
Research Mode enabled [52], we stream data from the main RGB
camera, 4 grayscale cameras, an infrared depth camera, and an IMU
that contains an accelerometer, gyroscope, and magnetometer. Details
of the camera data can be found in Table 1. Although it is theoretically
possible to stream some of the data at higher resolution or frame rate,
the need to run a user interface on the HoloLens creates a practical limit.



Table 1: Description of streamed data from HoloLens 2 visual sensors.

Sensor Resolution Format Framerate

RGB camera 760 × 428 RGB8 7.5 fps
Grayscale camera 640 × 480 Grayscale8 1 fps
Infrared active brightness 320 × 288 Grayscale8 5 fps
Infrared depth 320 × 288 Depth16 5 fps

Not only are the computational resources limited, but streaming extra
data consumes more energy and may result in headset overheating.

The streamed frame rate in practice may be lower due to the packet
drop during streaming. Hand tracking and eye tracking data are also
streamed. The eye tracking data consists of 3D gaze origin positions
and directions. The hand tracking data consists of 26 joint points for
each hand. Each joint point contains a 3D position and a quaternion
that indicates the orientation. In our system, the per-frame point cloud
which consists of RGB and depth frames can be integrated into a holistic
3D environment. Performer sessions can vary in size. For instance, the
recording of a simple recipe (preparing pinwheels [35]) usually takes
∼6 min and results in ∼600 MB data without the point cloud data, but
3 GB with the point cloud data.

Privacy and Ethical Considerations. While AR provides incredible
opportunities, performer privacy must be protected during data col-
lection and utilization [39]. Our experiment protocol is approved by
an Institutional Review Board (IRB). It ensures data is never directly
linked to an individual identity, code numbers, rather than names or
other identifying information, are used for video recordings in ARGUS.
Names or any other identifiable information are not collected and do
not appear in any part of the system. Despite these efforts, it is theo-
retically possible to re-identify performers, see, e.g., [37], where it is
shown that motion data can be used for identification. Another path to
re-identification is the audio produced by the voice interactions.

3.5 AI Task Guidance System

Perceptual Grounding. To connect what the HoloLens sees and hears
to task knowledge, the AR assistant needs to be equipped with models
to recognize physical objects, actions, sounds, and contexts needed
to complete a specific task. TIM uses multimodal machine-sensing
models to detect human-object interactions in the environment. The
output is real-time estimations with model confidence levels of three
environmental elements: object categories, object localizations, and
human action detections. We modulate object outputs via text instruc-
tions, allowing us to selectively detect objects and actions that are
part of a particular procedure (e.g., recipe) and disregard everything
else. To achieve this, our models generate and compare text and sensor
representations. The models have the following main features:

Object detection and localization. We use “Detector with image classes”
(Detic) [58] to generate these estimations, since it is a model that pro-
duces RGB frames and free-form text descriptions of objects of interest
(e.g., “the blue cup”) with bounding-box and object mask estimations
for the regions in the frame where the objects are detected. Its direct
comparison of RGB and text modalities is enabled via Contrastive
Language-Image Pretraining (CLIP) [42].

Action recognition. TIM supports three action-recognition models: Om-
nivore [19], SlowFast, [13, 23, 53] and EgoVLP [41]. These models
process video streams to output verb-noun tuples that describe actions.
Each model has its benefits and limitations. While Omnivore is consid-
ered state-of-the-art for action recognition, it is a classification model
with a fixed vocabulary. EgoVLP has a joint RGB-text representation
that, similar to Detic and CLIP, allows for the detection of free-form
text descriptions of actions. SlowFast integrates audio and RGB in-
formation, potentially allowing for the detection of actions outside the
RGB field of view. Therefore, the optimal model to use is dependent
on the deployment conditions.

Reasoning and Knowledge Transfer. Reasoning and knowledge
transfer first preprocess the input task description and create the cor-

responding objects and actions needed for each step [26, 55]. In each
frame, it takes the object and action outputs from the perceptual com-
ponent, along with the processed input task description, and makes
two decisions. First, the reasoning module performs error detection,
in which it attempts to determine if the performer has made an error in
the current frame based on how much the objects and actions detected
through perception align with the preprogrammed knowledge of the
step. Second, it performs step prediction, in which the system predicts
whether the current step is complete and should move to the next step.
This decision is governed by a hidden Markov model (HMM) [3]-like
approach that primarily uses the probability of each action to appear in
a given step of the task. These probabilities are calculated beforehand
on a training dataset.

4 TASKS & REQUIREMENTS

ARGUS was developed to support the development and operation of the
AR personal assistant outlined in Sec. 3. On top of the obvious need
to visualize the multitude of raw data streams, ARGUS was designed
to enable the real-time and post-hoc visualization of ML models and
performer interactions in the context of the physical environment, all in
a time-synchronized fashion. To summarize, such a system should have
the following design requirements (R1-R5). These requirements were
created by working side-by-side with the developers of the AR assistant
components described in Section 3 (i.e., perception, reasoning), and
with end users through interviews and feedback sessions during and
after use of TIM and ARGUS. For context, the AR-enabled tasks that
ARGUS aims to support include, but are not limited to: making a
meal from a recipe, applying a tourniquet, repairing an engine, and
completing an aircraft preflight check.

[R1] Live monitoring: The ability to visualize the output of the various
components of the system during task execution. This is crucial to
understand possible system failures before completing recording
sessions and gaining real-time insights about model outputs.

[R2] Seamless provenance acquisition: The future availability of the
multimodal dataset produced during a recording session. This
supports developers in improving algorithms and debugging sys-
tem outputs and researchers in retrospectively investigating user-
generated data. Therefore, automatically storing the acquired data
(and metadata) into databases is important for such a system.

[R3] Retrospective analysis of model performance: The ability to
visualize and inspect large chunks of the acquired data and model
outputs to uncover relevant spatial and temporal trends.

[R4] Physical environment representation: A representation of the
physical environment where the performance occurs. This repre-
sentation should support data exploration tasks by explaining most
of the observed user-generated data (e.g., performer movement
patterns limited by physical constraints).

[R5] Aggregated and detailed visualization performer behavior: A
summary of the global interaction patterns of the user with the
environment. This is key in analyzing general performer behavior.
Aggregating large chunks of data temporally and spatially can
hide important details, thus, the system should provide both global
and local perspectives of performer behavior data.

5 ARGUS: AUGMENTED REALITY GUIDANCE AND USER-
MODELING SYSTEM

As described in Sec. 4, we developed ARGUS concomitantly with TIM
to meet the development needs of building an effective AR task assistant.
In total, ARGUS enables the interactive exploration and debugging of
all components of the data ecosystem needed to support intelligent task
guidance. This ecosystem contains the data captured by the HoloLens’s
sensors and the outputs of the perception and reasoning models outlined
in Sec. 3. ARGUS has two operation modes: “Online” (during task
performance), and “Offline” (after performance). Users can use these
two modes separately if needed, for instance, to perform real-time
debugging through the online mode. In another usage scenario, users
may start by using the online mode to record a session and then explore
and analysis the data in detail using the offline mode. We describe
additional usage scenarios in Section 6 through two case studies.



Fig. 3: The online component of ARGUS for real-time debugging. (A) Streaming Video Player: users can inspect the output of the headset’s camera
overlayed with bounding boxes representing the detected objects. Users have the option to record any session. (B) Confidence Controller: a slider
that allows the user to control the threshold model confidence. (C) Perception model outputs, including target and detected objects. “Target Objects”
represent the objects needed in the current step (from recipe instructions) while “Detected Objects” shows all the objects identified by the perception
models and their corresponding number of instances (e.g., multiple knives may be detected in a frame). (D) Reasoning model outputs, including the
step and error predictions, step description, and the performer’s status. (E) Raw data views, showing the raw data collected by the system. (F)
Widgets showing the predicted actions with their probabilities. In this example, the model predicts that the current action is “Take Toothpick” with 48%
likelihood, followed by “Apply spreads” with 24% and "wrap wrap" with 18%.

5.1 ARGUS Online: Real-time Debugger

Real-Time Debugging. The ARGUS architecture allows streaming
data collection and processing in real-time, which makes instantaneous
debugging and data validation possible [R1]. As depicted in Fig. 3, the
online mode provides information on the outputs of the reasoning and
perception models using custom visual widgets. The caption of Fig. 3
describes each component. Since what the HoloLens main camera
sees (and thus what is analyzed by the models) is not the same as what
the performer sees (due to different fields of view), having a real-time
viewer such as (A) can help ensure the HoloLens is capturing what the
performer and user wish to capture. Additionally, components (C) &
(F) provide information that can help validate the objects and actions
identified by the models in real-time (as opposed to having to do so
post hoc). We note that these features are primarily intended to aid a
user in analyzing performer behavior and model performance in real
time, rather than to aid the performer as they complete a task.

Data collection. Users of ARGUS can decide when to save the record-
ing for future analysis. By clicking the Start Recording button, all data
captured and generated by the sensors and models from that point on are
redirected from the online streaming database to the historical database
until the user clicks Stop Recording. The data migration process is
transparent to the user [R2].

5.2 ARGUS Offline: Visualizing Historical Data

The offline mode’s main goal is to enable analysis of historical data gen-
erated by the models and performer actions in the physical environment
[R3]. To allow for easy exploration of this large and heterogeneous data,
ARGUS provides a visual user interface that enables querying, filtering,
and exploration of the data. Due to the spatiotemporal characteristics
of the data, we provide both spatial and temporal visualization widgets
to allow users to analyze the data from different perspectives. Fig. 4
shows the components composing ARGUS in offline mode. In the fol-
lowing, we describe the main components of the offline mode: the Data
Manager, the Temporal View, and the Spatial View. We highlight the
interaction flow a user is likely to follow, and for each component, we
describe the visualizations, the interactions provided, and their goals.

5.2.1 Data Manager

Users start the exploration by using the Data Manager shown in
Fig. 4(A) to filter the set of sessions available in the data store. Our
data is organized as sessions (each session contains all recordings, data
streams, and model outputs for a performer executing a task). The Data
Manager enables data retrieval by allowing users to specify filters and
select specific sessions from a list of results.

Data Querying. Users can query the data by specifying various filters,
as shown in Fig. 4(A1). Filters are presented in the form of histograms
the users can brush to select the desired range.

Query Results. The results component displays the retrieved sessions
in a list format. Fig. 4(A2) shows the results for a given query specified
by the user. Each element represents a session showing key features,
including name, duration, date, recorded streams, and available model
outputs. Once an element of the list is selected, the corresponding data
will be loaded into the views of the system.

5.2.2 Spatial View

As described in Section 3.4, the spatial nature of some of the streamed
data demands a 3D visualization to allow users to meaningfully explore
the data. For this, ARGUS provides a Spatial View shown in Fig. 4(B)
that allows users to analyze how performers interact with the physical
environment in conjunction with the spatial distribution of model out-
puts. The Spatial View can help resolve where performers were located,
where they were looking during specific task steps, where objects were
located in the scene, etc. Below, we describe the elements of the Spatial
View and its interaction mechanisms tailored to support the analysis of
the spatial data following well-established visualization guidelines [45]
to provide both overview and detailed information.

The basis of the Spatial View is a 3D point cloud (or world point
cloud) as shown in Fig. 4(B) representing the physical environment
where the performer is operating [R4]. This representation helps us
interpret different aspects of the space, such as physical constraints
imposed by the environmental layout. However, the point clouds gen-
erated based on the data acquired by the headset cameras can easily
contain millions of points, making it unfeasible to transfer them over the
web and render them within most web browsers. To give an overview
of the whole task, all point clouds of one recording are merged to
obtain a temporal aggregation. Hololens 2 generates approximately
one point cloud per half second, which creates redundancy. This re-
dundancy can be removed by creating a union of all point clouds and
then downsampling it using voxelization. However, selecting imprecise
parameters can lead to a subrepresentation of the physical space, losing
important information and, consequently, hindering analysis. Thus, we
parameterize the voxel-based downsampling to create voxels at 1 cm
resolution, providing enough detail for the purposes of our tool. In
our experiments, the downsampled point clouds had less than 100,000
points even in the worst case, leading to reasonable transfer and ren-
dering times. With the world point cloud representing the physical
environment, we are able to visualize performer activity in context.

As illustrated in Fig. 4, eye position, hand position, and other data
streams can be represented as 3D points in the same scene. The blue



Fig. 4: Overview of the user interface and components of ARGUS Offline. (A) The Data Manager shows the applied filters (A1) and the list of
retrieved sessions (A2). (B) The Spatial View shows the world point cloud representing the physical environment, 3D points for eye and hand
positions, and gaze projections and heatmaps. (B1) Render Controls allow the user to select the elements of the Spatial View they desire to see. (C)
Temporal View: (C1) The Video Player is the main camera video output of the current timestamp selected by the user. (C2) The Temporal Controller
controls the video player and updates the model output viewer as well. (C3) The Model Output Viewer displays the output of the machine learning
models (reasoning and perception) used during execution time.

dots show the eye position of the performer during a session, while
the green dots show the hand position. For each collection of 3D
points representing a data stream, users can retrieve more detailed
information by interacting with the points. For example, if the user
hovers their mouse over the points representing the eye position, a line
representing the gaze direction will automatically be rendered in the
scene, representing what point in space the performer was looking at
from their current position at a specific timestamp. This is possible by
calculating the intersection of the gaze direction vector with the world
point cloud. This gaze information can also be represented as a 3D
point cloud to provide a visual summary of the areas the performer was
focused on [R5]. This interaction also updates the corresponding video
frame in Fig. 4(C1) and highlights the models’ outputs in Fig. 4(C3).

Although the point cloud provides a summarization of the spatial
distribution of these data streams, this representation fails to convey
aggregated statistics of the data, such as the density of points in a given
region which is proportional to the amount of time the performer spent
in a given location of the scene. For this purpose, a 3D heatmap is a
more suitable visualization. The Spatial View can create 3D heatmaps
of each data stream. The heatmap in Fig. 4(B) shows the distribution
of the gaze data during the session. We leverage the voxel information
created during the downsampling to calculate the density of points
within voxels. Using an appropriate color scale, we render cells with
non-negligible densities to create the 3D heatmap. Every data stream
containing spatial information can be incorporated into the Spatial
View as 3D point clouds or heatmaps in ARGUS. Information regarding
perception and reasoning models are also available in this view. By
combining bounding boxes generated by perception models and depth
information captured by the headset, we reconstruct the center point of
each detected object, helping users understand the spatial distribution
of objects. Also, occupancy maps representing the density of objects
in different regions can be derived as presented in Fig. 8. Moreover,
the Spatial View provides a summarization of gaze information by
rendering sets of vectors representing gaze directions over time. Users
can control the style (e.g., size and opacity of points) and visibility of all
data streams, choosing what data should be visible for analysis. Lastly,
point clouds can also be filtered based on timestamp ranges, allowing
for focused analysis of specific task steps (“Visibility” in Fig. 4(B1)).

5.2.3 Temporal View

ML models are a core component of an AI assistant system. While the
field of ML has seen many recent advancements to support assistive
AR applications [5, 15, 40], the need for tools to improve them remains.
Model debuggers are powerful tools used to analyze, understand, and
improve these models by identifying issues and probing ML response
functions and decision boundaries. This helps developers make models
more accurate, fair, and secure, promoting trust and enabling under-
standing which is highly desirable in intelligent AR assistants. ARGUS
provides a model debugger based on temporal visualizations to debug
the ML models used in AI assistant systems [R5]. We describe the
different temporal components in detail in the following subsections.

Video Player. The object detection model not only recognizes all ob-
jects in an image but also their positions. To inspect these outputs,
ARGUS contains a video player component that identifies the spatial
location of detected objects over time, as shown in Fig. 4C. This com-
ponent allows the user to toggle between two views: 1) the raw main
camera video stream and 2) a panoramic mosaic view which consists
of a sequence of panoramic mosaics generated from this main camera
stream. We highlight all detected objects with bounding boxes, which
are provided by the object detection model.

The first view of the video player, which displays the raw main
camera video stream collected by HoloLens, enables a highly gran-
ular level of model debugging. This allows the user to note specific
frames where object detection failed or yielded unexpected results.
However, the main camera of the HoloLens has a limited field of
view. Often objects that the performer sees at a given timestep cannot
be seen in the frame of the raw main camera video at that timestep.
Therefore, we aggregate frames into a series of panoramic mosaics in
the second view of the video player component, capturing a broader
scope of what the performer sees at each timestep. We generate these
panoramic mosaics by sampling frames from a temporal window cen-
tered around the current timestep. We then compute SIFT features for
each frame [29], match them using a Fast Library for Approximate
Nearest Neighbors (FLANN)-based matcher [36], and filter for valid
matches by Lowe’s ratio test [29] before warping and compositing the
frames into a panoramic mosaic. We observe that these panoramic
mosaics expand the view of the scene significantly, revealing objects



Fig. 5: A visual representation of frame selection for the panoramic
mosaic view of the video player (top) and comparison of these panoramic
mosaics with corresponding frames from the same timestep of the raw
main camera video for reference (bottom). Each panoramic mosaic is
composed of several frames sampled from a window around the current
timestep of the raw main camera video. In both examples, we highlight
objects that are visible in the panoramic mosaic but not in the raw main
camera video (toothpick, floss, and jar of jelly, respectively) in red.

within the field of view of the performer at a given timestep that were
not captured by the main camera at that same timestep (see Fig. 5).

We note that in much of the existing literature on panoramic mosaics,
the goal is to capture a seamless wider view of an (often static) scene at
a single point in time. In these cases, previous works have endeavored
to work around both in-scene and camera motion by excluding moving
objects within the scene [21] or only addressing simple, slow camera
panning motions [48]. When capturing video from an AR headset of a
performer completing a task, however, unpredictable and rapid motion
is not only unavoidable, but a valuable indicator of performer behavior.
Therefore, our goal extends beyond the typical spatial expansion pro-
vided by a panoramic mosaic; we also aim to show how objects move
around the complete scene over time, and how the object detection
model performs over the given time range in order to facilitate both
temporal and spatial analysis of a scene. We note that in our example
task shown in Fig. 5 (cooking), the performer will often remain in
the same position for many consecutive timesteps, consequently, the
panoramic mosaic may not significantly expand the field of view at
every timestep. Nevertheless, for tasks where the performer traverses
a larger area or turns their head in a wider range (and at timesteps
where that behavior occurs in this task), the panoramic mosaic will
significantly increase the portion of the scene shown at a given timestep.

Model Output Viewer. During the debugging process of AR assistant
models, the need for model output summaries is key to starting an
analysis or evaluation. However, the temporal aspect inherent to these
kinds of models makes this task more challenging since they often need
to manage the sequence of actions or events chronologically. The Model
Output Viewer provides a summarization of the temporal distribution
of the ML models outputs across the whole session (see Fig. 4(C3)).
This visualization is especially useful to find salient patterns, such as
quick transitions between steps in step detection models, or to evaluate
prediction consistency across time, allowing users to quickly have
a global picture of the model behavior, something that could not be
achieved by analyzing specific time frames.

As mentioned in Section 3.5, for AR assistive systems, the most
relevant model outputs are the objects, actions, and steps. Once these
model outputs are available, they are used to create the matrix visual
representations for temporal model analysis. Fig. 6 illustrates the Model
Output Viewer, where three main components are highlighted: the
model outputs, the confidence matrix, and the global summaries. The
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Global SummariesModel Outputs Confidence Matrix

Fig. 6: Illustration of the Model Output Viewer applied to the analysis of a
cooking recipe session. To the left, the model outputs are listed vertically.
The bars depict the confidence score of the detected outputs’ labels
at the specific time picked on the timeline. In the middle, the temporal
distribution of ML model output confidences across the whole session
is displayed. To the right, two summaries are shown: the average
confidence and detection coverage for each output across the entire
session. Color darkness is proportional to confidence value: .

Model output view presents all the model outputs grouped by category.
For example, as shown in Fig. 4(C3), there are three categories listed
vertically: Objects, Actions, and Steps. The object, action, and step
sections have multiple rows, each of them listing the model outputs for
each category, e.g., the detected objects identified by the perception
model. Confidence matrix: The x-axis (or columns) indicates the time,
from 0 to the total duration of the session (video). Each cell of the
matrix is colored according to the confidence score of the detected
item at time t (0% 100%). If no action, object, or step is present,
the matrix cell is left blank (white). The total number of cells is
proportional to the size of the session (seconds), and all cells are equal
in height. Users can hover over the cells to see additional details.
Global summaries: The Model Output Viewer also provides summaries
of the average confidence and detection coverage for each row on the
right side of the view so users can quickly evaluate them. The average
confidence only takes the confidence value of detected objects, actions,
or steps into account. Detection coverage refers to the total number of
detections available for each model output (objects, actions, and steps).

Even though the Temporal View representation can provide a visual
summary of the temporal distribution of the model output, details-
on-demand functionalities remain crucial for debugging. The Model
Output Viewer allows users to do a focused analysis by letting them
explore the model output results at specific points in time for further
analysis. The user can use the temporal controller or the 3D viewer to do
this selection. After this, all the objects, actions, and steps detected for
that specific point in time that meets the confidence threshold are high-
lighted, as shown in Fig. 4(C3). Users can adjust the confidence thresh-
old value using the slider to investigate the object detection results. We
also display object and action labels with bars depicting the confidence
value for each label following guidelines of Felix et al. [14] (see Fig. 1).

5.3 Implementation and Performance Details
The implementation of ARGUS follows a set of constraints to allow
for interactive query and rendering times. The backend supporting the
rest API was written using Python and FastAPI [43]. The ML models
were trained and/or fine-tuned using PyTorch and serve predictions in
real-time utilizing the same streaming protocol used by ARGUS. The
interface was structured as a dashboard-like single-page application
built with React [47] and TypeScript [31]. The visualization of 3D
components uses Three.js [51] and D3 [7]. All the data consumed by
ARGUS online mode comes from querying our Redis database, while
the data available in the offline mode comes from the data store in
JSON format. All the code is open source and hosted on GitHub [2].

We have measured the latency of Microsoft’s Windows Device Portal
(part of their mixed reality capture [32]) at ∼1.3 s for streaming the
main Hololens 2 camera, while ARGUS has a lower latency of ∼300 ms.
Currently, during online use, we save the various data streams at they
get off the device. For the session in Section 6.2, which takes 1:42 min,
the streamed point cloud has more than 10 M points, and it is highly



Fig. 7: Analysis of actions, objects, and steps in the Model Output Viewer.
Color darkness is proportional to confidence value (0% 100%).
The confidence matrix and the average confidence views show that the
confidence scores for objects are higher than actions. The arrows show
the confidence scores for actions and objects at minute 0:14 of the video.
The detection coverage view shows that some actions (e.g., take jar ) are
rarely identified during the video.

redundant, since the same geometry is sampled over and over again.
After the performer finishes a recording, we merge and downsample
this data into a consolidated point cloud (see Sec. 5.2.2), in this case
with 70,000 points. We also create a voxel grid to generate the heat
maps, which take 2.3 s. After loading, all data is rendered in real-time.

6 CASE STUDIES & DISCUSSION

In this section, we present two case studies describing how model
developers have made use of some of the available features. The section
ends with feedback from domain experts who have used ARGUS while
developing AR task guidance software and a discussion of limitations.

6.1 Improving Step Transitions in Reasoning Module
To showcase how the Model Output Viewer supports the exploration
and analysis of AI assistant model outputs (objects, actions, and steps),
we describe how an ML engineer used this tool, the insights they gained,
and how the reasoning module of the AI assistant, TIM, was improved
through these insights. The ML engineer began by exploring the outputs
of the reasoning and perception modules of a recorded session where a
performer used TIM to follow a recipe [35].

Analyzing step transitions. The visualization of the entire cooking
session can help users find salient patterns, e.g., how the transitions
between steps were carried out. The first repeated pattern identified
by the ML engineer while using ARGUS’s Model Output Viewer was
the slow transition between steps (see Fig. 7). Investigating the “Steps”
reveals that steps 1, 3, and 4 were performed over unexpectedly longer
periods of time than steps 0 and 2. Also, the user noticed that the
model only identified 5 out of 12 steps. Clearly, these two observations
indicate that the reasoning module is making errors in identifying
recipe steps. This visual summary of the Model Output Viewer allows
developers to quickly possess a global picture of model performance
and assess errors. This could not be achieved as easily without ARGUS.

Exploring detected objects. Under “Objects” in the Model Output
Viewer (Fig. 7), the ML engineer noticed that the Detic model identified
most of the objects for the entirety of a recipe video. This is apparent
from the confidence matrix, where most rows are colored (meaning
an object was detected). The user also analyzed the confidence values
of each detected object. For instance, at the 0:14 mark of the video,
objects like board, nut butter, and knife had high confidence values,
indicated by the yellow background (see zoomed-in views in Fig. 7).

Table 2: Accuracy of the old and new version of the reasoning module
for recognizing the steps of the recipe.

Version S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Total

Old 1.0 0.9 0.3 0.9 0 0 0 0 0 0 0 0 0.35
New 1.0 1.0 0.5 1.0 0 0 0.4 0.9 0 1.0 1.0 0 0.73

They could also see this trend in the “Average Confidence” column,
which provides an average of confidence values throughout the video.

Identifying missing actions. The ML engineer also analyzed the
“Actions” section of the Model Output Viewer. They noticed that some
actions were rarely detected by the EgoVLP model. As we can see in
the “Detection Coverage” column, actions like put knife, move wrap,
and take cloth were detected an unusually few number of times. This
indicated that it was difficult for EgoVLP to detect those actions. They
also noticed that the confidence values for the actions were much lower
than the ones for objects. As is visible in Fig. 7, the predominant
color during the whole session was light purple, which represents low
confidence in detecting the actions. Also, at time 0:14 of the video,
the confidence values for “scoop spreads” and “apply spreads” were
low. In the “Average Confidence” column, we can see that actions
such as “wash knife” and “insert toothpick” had approximately 30%
confidence. This information led the ML engineer to hypothesize that a
decrease in the confidence threshold might be necessary to recognize
steps effectively. The visualizations provided by ARGUS also help to
investigate whether lowering the threshold would lead to false positives
in the step recognition.

Using insights to improve the reasoning module. After the analysis,
the ML engineer modified the reasoning module to handle actions with
low confidence. The reasoning module defaults to selecting actions with
greater than 70% confidence. The ML engineer used the confidence
slider of Model Output Viewer to tune this value. The most promising
value they found was 30%. They reran the new version of the reasoning
module for the same video. As shown in Table 2, the step estimation
accuracy increased for every step and from 35% to 73% overall. Also,
this new version was able to identify 8 out of 12 steps, while the
previous version only identified 4 out of 12 steps.

Interpreting the new results. The Model Output Viewer was also
useful for the ML engineer to understand why the reasoning module
failed to recognize some steps. As we can see in Table 2, steps 4, 5, and
8 were not recognized. For instance, step 5 (“Roll the tortilla from one
end to the other into a log shape”) is directly related to the action “move
wrap”, and this action was not identified at all during the entire session
(see “Detection Coverage” column). Since this action is necessary for
step 5, it was not identified by the reasoning module.

6.2 Using Spatial Features to Explain Failures

Although the Temporal View can help users uncover undesired patterns
in model performance, it does not paint the full picture of the situation,
as model failures might be related to spatial characteristics or performer
behavior. In this case study, we show how the Spatial View can provide
deeper insights into both reasoning and perception models by assisting
users in finding regions where the perception models underperform and
to correlate performer behavior with reasoning outputs.

A very common way to assess the quality of perception models is
by checking the spatial distribution of static objects. In other words,
the physical objects captured by the headset cameras can generally
be classified as either static objects (objects that will likely not move)
or dynamic objects. This classification can help users quickly iden-
tify regions where the perception model fails by detecting objects not
expected to move throughout a recording session. This case study
highlights how this sanity check becomes trivial in ARGUS.

We start the exploration by first using the Data Manager to load
the parts of a recording where the perception model underperformed.
Once a recording from this period is loaded, we can use the Spatial
View to find regions of the space where the performer was interacting.
Fig. 4 shows points of performer positions (blue) and gaze projection



Fig. 8: Example of how the Spatial View can help users identify missing classes in the model’s vocabulary or find clusters of false positives. (A)
Points representing the 3D positions the object detection model identified as a "tortilla" during the session. Points on the left represent a bag of
tortillas, while points on the right represent a single tortilla. (B) Points representing the 3D positions the object detection model identified as a "cutting
board" during the session. The cluster on the left contains false positives, where the perception model generates wrong bounding boxes.

(orange). During an initial inspection, the user can quickly recognize
three darker regions projected in the world’s point cloud. The rightmost
region represents the time during which the performer was interacting
with ARGUS in online mode to start the recording, while the other two
regions are on the desk. The user then hovers the mouse over the points
on the 3D point cloud representing the gaze projection on the world
point cloud to look at the corresponding video frames in Temporal View.
This interaction reveals that the left region contains the ingredients for
the recipe, while the actions (e.g., “spreading jelly on the tortilla”)
happen on the right side. By highlighting the heatmaps only, it becomes
clear that the performer spent most of their time looking at the right side
of the table (darker region), meaning the performer spent more time
executing actions than selecting ingredients. With this understanding
of the spatial distribution of the performer’s attention, the user can infer
that the model outputs high confidence values for tortilla and cutting
board throughout the entire session as shown in Fig. 7, which makes the
user question the validity of the output. Then, the user displays the 3D
point cloud denoting the 3D positions of tortillas shown in Fig. 8(A).
Two clusters show up, allowing the user to look at the corresponding
frames, realizing that the left cluster represents a bag of tortillas while
the other is the tortilla used for the recipe. This process highlights
the need for a more comprehensive class vocabulary able to represent
both tortillas and bags of tortillas. Following that, the same process is
conducted for the cutting board class, and a similar pattern with two
clusters arises (see Fig. 8(B)). Since the cutting board was a static object
in the recording, the user can quickly realize that one of the clusters
may be representing a model failure. The corresponding video frames
selected interactively confirm that the left cluster contains only false
negatives. Lastly, inspecting the bounding boxes rendered on the video
frames (see Fig. 8) gives the user more detailed information about the
error. In this case, the user sees that the model is generating bounding
boxes covering almost the entire field of view of the performer.

6.3 Expert Feedback
The Model Output Viewer provides a visualization of object and action
detections with model confidence levels. Even if a model performs
very well on an offline evaluation dataset, when deployed in real-time,
it will inevitably be presented with previously unseen conditions such
as room lighting, skin pigmentation, or object angle. This is known as
the “domain-shift” problem [57], where a model fails to perform when
presented with data not well represented in its offline evaluation dataset.
ARGUS streamlines real-time deployment, and its Model Output Viewer
enables the evaluation of model confidence in a virtually unconstrained
domain. This sheds light on which conditions the models perform best,
and informs how model robustness could be enhanced by expanding
data with new collection or augmentation strategies.

ARGUS is also useful for scenarios where multiple information
sources must be analyzed at the same time. For TIM’s reasoning
module, which consumes multiple inputs in parallel (e.g., the detected
objects/actions and its confidence scores), ARGUS’s visualizations
allow the user to understand the reasons the system made the predictions
and under what circumstances it succeeded/failed. As shown in Sec. 6.1,
this tool helped the ML engineer to improve the system.

As ML models develop new capabilities and produce richer rep-
resentations, it becomes increasingly important to develop scalable

visualizations of those outputs. Conventionally, ML engineers either
log outputs to the terminal or use drawing libraries to bake the predic-
tions on top of the video. However, there is limited real estate when
drawing on a video, and often the predictions and their associated text
make it difficult to view the underlying image frames. In contrast, AR-
GUS provides a high level of interactivity, which allows it to selectively
visualize relevant information while allowing the user to change the
view and granularity of these information to suit their needs. Addition-
ally, being able to contextualize and explore ML model outputs in 3D
can lead to a better understanding of how model outputs can change
based on the perspective, and spatially grounds the predictions for an
entire recording in a single view. Overall, tools like ARGUS drastically
lighten the visualization load placed on ML engineers and provide a
convenient tool for understanding their models.

Limitations. While useful for exploration of spatiotemporal data cap-
tured by an intelligent assistant, ARGUSneeds more robust data pro-
cessing algorithms. For instance, in sessions where the performer’s
hands are recurrently in the field of view of the headset camera, the
point cloud generation process captures and transforms it into points of
the world space, resulting in potential noise that does not represent the
physical environment. To overcome this problem, we review recordings
with noisy point clouds and define bounding boxes representing regions
where these noisy points must be excluded from the final rendering. We
plan to explore methods [12, 33] to automatically remove point cloud
noise during run-time acquisition.

7 CONCLUSION & FUTURE WORK

We presented ARGUS, an interactive visual analytics system that em-
powers developers of intelligent assistive AR systems to seamlessly an-
alyze complex datasets, created by integrating multiple data streams at
different scales, dimensions, and formats acquired during performance
time. Furthermore, through interactive and well-integrated spatial and
temporal visualization widgets, it allows for retrospective analysis and
debugging of historical data generated by ML models for AI assistants.

We envision ARGUS to unlock several avenues for future research
connecting human-computer interaction, visualization, and machine
learning communities revolving around the goal of developing better
and more reliable AR intelligent systems. In the future, we intend to
conduct a deeper evaluation of our system’s performance metrics (e.g.
rendering times, stream latency). We also plan to explore how to extend
the system to support the comparison of sessions of multiple performers.
This includes the data and model outputs and will require registration of
the point clouds. User-generated data acquisition (annotation) and inte-
grated AI techniques during exploration time (segmentation and model
training based on the annotated data) are other fronts we would like to
cover. Since our Temporal and Spatial Views allow users to explore
data and output models across the entire session, adding annotation
capabilities is a natural next step. Furthermore, we want to investigate
privacy-preserving methods for storing and streaming the collected
data, similar to ones that have been proposed, e.g., for eye-tracking
data [8, 11], to prevent performer identification.
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