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Fig. 1: The physicalization of potato-shaped biological structures. Back row: SARS-CoV-2 virion membrane (left), SARS-CoV-2
virion membrane with smooth triangle patches (right), and front row: cell nuclei membrane (left), SARS-CoV-2 virion membrane
(center), mitochondria outer membrane (right).

Abstract—Dr. KID is an algorithm that uses isometric decomposition for the physicalization of potato-shaped organic models in a
puzzle fashion. The algorithm begins with creating a simple, regular triangular surface mesh of organic shapes, followed by iterative
K-means clustering and remeshing. For clustering, we need similarity between triangles (segments) which is defined as a distance
function. The distance function maps each triangle’s shape to a single point in the virtual 3D space. Thus, the distance between the
triangles indicates their degree of dissimilarity. K-means clustering uses this distance and sorts segments into k classes. After this,
remeshing is applied to minimize the distance between triangles within the same cluster by making their shapes identical. Clustering
and remeshing are repeated until the distance between triangles in the same cluster reaches an acceptable threshold. We adopt a
curvature-aware strategy to determine the surface thickness and finalize puzzle pieces for 3D printing. Identical hinges and holes
are created for assembling the puzzle components. For smoother outcomes, we use triangle subdivision along with curvature-aware
clustering, generating curved triangular patches for 3D printing. Our algorithm was evaluated using various models, and the 3D-printed
results were analyzed. Findings indicate that our algorithm performs reliably on target organic shapes with minimal loss of input
geometry.

Index Terms—Physicalization, Physical visualization, 3D printing, Isometric decomposition, Direct remeshing, Biological structures,
Intracellular compartments.
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INTRODUCTION

Physical models are powerful tools for understanding and comprehend-
ing complex objects and systems. They provide a simplified repre-
sentation of an object’s shape, structure, function, and inner compo-
sition, making it easier for individuals to grasp the intricacies of the
object [3,5]. Physical visualization bridges the gap between digital data
and its physical composition [2]. This is especially true for objects that
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are too large to take in all details at once, too small to depict their inner
structure, or too complex to fully understand the interconnectedness
of their parts and how they work together. Physical visualizations are
often implemented as 3D puzzles.

3D puzzles, in particular, offer an engaging and challenging form
of entertainment that can help improve spatial reasoning and problem-
solving skills [24,35,44]. They illustrate the real-world object’s inner
structure in a way that can be easily understood, allowing individuals
to gain a deeper understanding of the object and its workings. In
addition to being a source of entertainment, 3D puzzles can also be
used in education as a tool to teach how things are built and how they
function [5]. They can also be used in outreach to attract people’s
attention and ignite an interest in a specific topic. For such use cases,
puzzles are actually data physicalization [10,11,20,21,32,49] intended
to familiarize the users with the data they are based on.

A world of mesoscale biological models is an appropriate domain


https://orcid.org/0000-0001-5864-1888
https://orcid.org/0000-0002-9015-2897
https://orcid.org/0000-0003-4248-6574

for such puzzles representing the intricate and detailed structures of
living organisms at the cellular and subcellular levels. Mesoscale
biological structures are typically very complex and are built of many
small building blocks. Assembling such puzzles allows individuals to
gain a deeper understanding and appreciation of biological systems’
complex and dynamic nature. Furthermore, the physical nature of
these puzzles provides for a hands-on learning experience, helping
to make the information more memorable and engaging [12], which
is beneficial in educational settings as a tool for teaching anatomy,
physiology, and biology [18]. They can also be beneficial for research
purposes, for example, to help scientists study the structure of proteins
or viruses [34].

For a 3D puzzle to be suitable for injection molding production, it
is important to minimize the number of different parts in the design
because the cost of producing the molds for injection molding is directly
related to the number of elements in the puzzle and is the costliest part
in the pipeline. It is also important to keep in mind that the puzzle’s
design should be optimized for the injection molding process to ensure
that it can be produced efficiently and with minimal defects. This could
include simplifying the puzzle’s geometry, avoiding deep undercuts
and sharp corners, and ensuring that the puzzle’s parts can be easily
removed from the mold.

To enable scalable generation of 3D puzzles representing biological
systems such as viruses, organelles, or cells, it is meaningful to use the
molding process for generating all the building blocks. Often, these
potato-shaped structures are surrounded by a membrane formed by a
lipid bilayer. The membrane is richly decorated with macromolecular
protein complexes, which are also forming the lumen of the biological
system. Additionally, there are numerous fibrous structures, such as
microtubules, actin fibers, and genetic macromolecules, that contribute
to the internal ultrastructure of the biological system. In a viral particle,
for example, a few unique protein structures form the mature virus,
which are instantiated in the virus numerous times. This is ideal for the
molding process for the purposes of data physicalization. One of the
main problems is how to represent the lipid bilayer, which is the basis
of the shape of the biological system. In the case of an ideal sphere, the
surface can be assembled from identical spherical triangular patches.
However, real biological structures are never perfect spheres. Their
shapes are more similar to a potato, cucumber, or bean. Tesselating the
surface of such 3D shapes results in a set of unique triangles, i.e., every
triangle is different. Such tessellation is prohibitive in the context of
scalable 3D puzzle generation, as the number of unique pieces is too
high for viable puzzle production. Therefore, we need a tessellation
that approximates the shape well and, at the same time, is made out of
very few distinct classes of triangle patches. This problem constitutes
the intellectual challenge of this paper.

We present a puzzle-generation system called Dr. KID, which gen-
erates a surface mesh of biological structure and decomposes it into
reconfigurable puzzle components (segments). The segments can be
either planar triangles (planar patches) or curved triangular patches
(curved patches). We focus on the isometric decomposition of the
surface, where we take the surface mesh of the model and decompose
it into a set of k isometric segments (identical components). Follow-
ing the surface thickening stage, we create connector structures for
assembling and disassembling the puzzle segments. We use unique
hinge joint connector parts for connecting the segments. For these
connector hinge joints, we created identical holes on each side of all the
triangle segments. Dr. KID solves a geometric problem and provides a
real-world prototype for scientific outreach using data physicalization.
It is scoped for depicting a micron-sized biological system but can be
used for creating 3D puzzles of any potato-like shapes.

The technical contributions of the proposed work are summarized
below:

* A new distance measure for K-means isometric decomposition of

the surface into triangular patches.

* Surface remeshing with novel cluster-aware local operators for
within-cluster distances minimization and thus improving isome-
tries of within-cluster patches.

* A novel automatic process of curvature-aware surface thickening

of triangular patches and connector-placement design.
* Application of isometric decomposition for data physicalization
of potato-shaped objects showcased on biological structures.

2 RELATED WORK

This section presents related work from various domains, including
scalable physicalization, Isometric decomposition, 3D puzzles, and
surface remeshing.

Isometric decomposition of a surface is a challenging task that can
generate identical puzzle parts for reconfigurable 3D models. In addi-
tion to 3D puzzles, isometric decomposition plays an important role
in various fields of computational design, including architectural ge-
ometry, fabrication, modeling, surface reconstruction, and more. One
of its main uses is generating isometric segments of the input surface.
This complex geometric problem enhances reusability, reducing both
complexity and costs [19, 22,26, 50]. Isometric decomposition has
applications in tiling [16], modeling, and fabrication [26]. Depending
on the surface mesh and application, surfaces can be decomposed into
triangles [26,37], quads [16], or other polygonal segments.

To the best of our knowledge, the first attempt at the isometric decom-
position of curved surfaces was conducted by Singh and Schaefer [37].
They employed a set of template triangles called canonical triangles
and remeshed the model to make each triangle in the mesh identical
to one of those. Their method [37] does not allow topology change
and needs higher numbers of triangles to preserve the desired shape.
Furthermore, they start with a single cluster and add more clusters later.
They used global optimization instead of direct remeshing. Although
their method accommodates curved surfaces, the canonical triangles
remain planar, and there is no mechanism to address surface thickness.
Planar penalization [19] is another attempt to reduce complexity by
creating repetitive patterns. The work by Fu er al. [16] on K-set tileable
surfaces presents a similar approach for quad meshes, generating simi-
lar quads. This approach offers a fascinating solution for minimizing
the number of fabricated components into a given number of k£ quads.
However, using quad meshes can drastically alter the original shape
when minimizing the value of k. While the authors mention that this
idea can be extended for puzzle-like reassembleable applications, no
such extension currently exists.

Liu et al. [26] proposed a method for modeling and fabrication with
a minimal number of classes of equivalent triangles. This method is the
most relevant for our current work. However, this method uses existing
template triangles, which are meant for large fabrication models and
therefore do not require addressing their thickness. The connection
among the triangles is established via holes and nylon cable. Moreover,
the triangles are planar, and the curvature is created at connection points
among the triangles. Therefore, the smoothness of the models is not
realistic.

In summary, the literature review yields several methods for isomet-
ric decomposition. However, due to their limitations, these methods
are not practical for puzzles and physicalization. For example, all these
methods anticipate having existing templates rather than supporting a
dynamic number of pieces. The structures generated with them also rely
on external support to keep the individual surfaces in place. Further-
more, the existing methods have no mechanisms for surface thickness,
which is essential for the independent assembly of the models or surface
smoothness. The k-set tileable quads method by Fu et al. [16] drasti-
cally changes the input model if decreasing the number of segments.
Moreover, there is less attenuation toward biological models. Unlike
CAD models or general architectural geometry, biological models are
more challenging.

Isometric patterns are highly encouraged in architectural geometry
and civil engineering. In this regard, Jiang et al. [22] used isometric
bending of surfaces via a small set of molds to create manufacturable
tiles, which addresses the problem of representing free forms. They
only used constant Gaussian curvature for this paneling. Developability
of a B-spline surface [17] improves the paneling task and can reduce
manufacturing costs significantly. This paneling method [17] locally
approximates the 1-dimensional Gauss image with a circle. The method
gives smoother results with higher efficiency. However, it is limited to



the grid-like panel arrangement.

Zometool! is a mathematical and molecular modeling kit, which
is a popular visualization and physicalization tool with a specific fo-
cus on repetitive patterns such as molecular structures, crystal lattices,
and mathematical constructs. Further research [50,51] extended the
scope of Zometool toward free-form, disk-topology surfaces. The stud-
ies [50,51] provide an insight into utilizing Zometool for architectural
applications. Adopting the advancing front strategy, they start from a
single vertex and grow forward for the physicalization of the model.
They use hybrid meshes (mixed with quads and triangles) for surface
representation. They use nine different types of edges. Users, however,
cannot select the number of classes. Therefore, there is no option to
minimize the number of used polygon classes.

3D puzzles captivate the imagination with their wide-ranging and in-
tricate designs. They encompass an array of types, such as the essential
2-manifold jigsaw puzzles that form the surfaces of 3D objects, as high-
lighted by Coffin [8]. Polyomino puzzles, presented by Lo et al. [28],
reminiscent of intricate Tetris-like shapes, come together to create elab-
orate 3D objects. Burr puzzles delight with their interlocking pieces
that, when assembled, reveal complete 3D models, as presented by
Xin et al. [47]. The enchanting world of recursively interlocking puz-
zles, presented by Song et al. [39], takes the complexity of burr puzzles
to a higher level. Dissection puzzles offer a transformative experi-
ence, as they can be reassembled into various forms as presented by
Sequin [36]. Twisty puzzles invite engagement through their assembly
or disassembly via twisting motions, as shown by Sun and Zheng [41].
Elber and Kim [14] present some recent improvements, which address
the 3D jigsaw puzzles over 2-manifolds, while Tang et al. [42] present
a novel approach to the computational design of 3D dissection puzzles.

Fabricated 3D puzzles created based on scientific data exemplify
data physicalization, transforming abstract information into tangible
objects [9]. Tangible data visualization facilitates a more intuitive, en-
gaging, and immersive exploration of complex data structures [10, 15].
As users interact with the printed pieces and strive to solve the puzzles,
they actively decipher the encoded data, enhancing their cognitive un-
derstanding and promoting deeper insights. Consequently, 3D printed
puzzles, as a manifestation of data physicalization, offer an innovative
and accessible means of visualizing, analyzing, and comprehending
information, allowing users to connect with the data on a visceral level,
transcending the limitations of traditional, screen-based representations.

The fabrication of 3D puzzles varies greatly depending on the puzzle
type. For different puzzle types, multiple factors must be considered,
such as printing 3D objects that exceed the printer’s working volume
and can later be assembled using custom connectors [31,48], need to
be optimally packed [7], or designed as interlocking parts [40]. Some
approaches also approximate 3D models using multiple planes, sim-
plifying the fabrication process to two dimensions [6], and utilizing
unique fabrication methods for the base structure and detailed sections,
which can then be merged into one piece [38]. Although cost optimiza-
tion is most significant in large-scale applications like architectural
design [13], it offers considerable savings by incorporating 3D printing
into the injection molding process chain [43].

Mesh processing has always been an effective way to represent sur-
faces [30], allowing a variety of surface analyses. They can provide
a base for accurate surface decomposition. Surface remeshing [1,23]
alters the meshes for their quality improvement and/or some other
remeshing objectives. Remeshing algorithms are either based on global
optimization or use selected local operators. Centroidal Voronoi tessel-
lation (CVT) [25,27] has been widely used for surface remeshing [23].
It is an improved type of Voronoi diagram, which relocates each seed to
the mass center of its Voronoi cell. Typically, this relocation is achieved
by minimizing the specific energy function.

Typically, isometric decomposition algorithms have two main tasks,
pattern matching to find the similarity among the patches and remesh-
ing to make the patches similar. Pattern matching quantifies the degree
of similarity among the patches, whereas remeshing alters their shapes
to make them identical to other shapes in the class. Mesh represen-
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Fig. 2: The overview of the presented method illustrating inputs and
outputs of the individual steps.

tation also provides opportunities for surface smoothing by triangle
subdivision [29]. We refer the readers to two comprehensive survey
articles on surface remeshing [1,23].

3 K-SET ISOMETRIC DECOMPOSITION

The domain of our algorithm is a family of biological structures having
a potato-like shape (e.g., mitochondria, lysosome, endosomes, cellular
nuclei, virus particles etc.). The goal is to create a cost-effective and
appealing physicalization of these shapes. To achieve this goal, we
address two challenges: (1) including isometric decomposition with
geometric fidelity and (2) curvature-aware modeling of decomposed
parts as assemblable parts. The problem is formally stated as follows:

Problem statement: Our goal is to decompose the surface mesh
M, of these structures into a given number of & classes of mesh segments
C ={cy,c2,¢3,...,c;}. Each class ¢; contains a finite number of mesh

segments P = { pi}l.ill satisfying the following requirement conditions:
 Similarity and distinctions: Any two patches belonging to the
same class should be identical to each other and different from
patches from other classes. Mathematically, if p; € ¢; and p; € ¢;,

then both p; and p; must be identical and distinct otherwise.

* Planar vs. curved segments: Depending on the user’s choice,
the patches can be planar (triangular patches) or curved mesh
segments (curved patches).

* Geometric fidelity and approximation: The segmented mesh (col-
lection of all patches) should preserve the input shape with an
acceptable approximation error.

* Reconfigurable objects: The patches are linked with identical
connectors and holes, yielding a set of reconfigurable 3D objects
(to be manufactured for the 3D puzzle).

* Patch thickness: Such reconfigurable patches require thickness
which is, in our case, provided by the user.

3.1 Method Overview

The method overview is presented in Figure 2 and in more detail by
algorithm 1, which presents a pseudocode for the overall physicaliza-
tion, starting with the 3D shape and ending with the puzzle pieces. The
algorithm takes input mesh (M;) generated from the input 3D structure,
error threshold (T), which represents the acceptable tolerance during
remeshing, and the value of k representing the number of classes. The
threshold (T) is the maximum permissible error for k-set isometric
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Fig. 3: Converting segmented volumetric data (left) to mesh representa-
tion using Marching Cubes (middle) and mesh refinement using CVT
(right).

decomposition. It provides a convergence point (stopping point) to
our iterative algorithm. The algorithm starts with mesh generation
and initialization (subsection 3.2). The overall idea is to remesh M;
and get a final mesh M satisfying the aforementioned conditions. For
clustering, we use a distance measure that maps the similarity among
triangles into square Euclidean distances in a 3D space. For K-set iso-
metric triangulation, we minimize the distance defined by Equation 1
by iteratively executing the two consecutive steps: (1) K-means clus-
tering (subsection 3.3) and (2) remeshing (subsection 3.4). Clustering,
remeshing, and updating each triangle’s position in our 3D space are
repeated until the algorithm converges. After this, the triangles are pro-
cessed for connecting structures consisting of a hinge joint (connector)
and corresponding holes in individual parts (holes). We present an au-
tomatic module for making curvature-aware thickness and connectors
and holes.

The default classification is for planar triangular patches. However,
we also support smoother curved triangular patches by applying the
Loop subdivision [29], which gives us a smoother surface (see sec-
tion 3.6). Again, we apply patch-wise classification with a higher
value of k using K-means with curvature information to get a final
classification of the curved patches.

s

Algorithm 1 K-Set Isometric Decomposition

Data: M;,T,k,3DShape

Result: My, k types identical thickened triangles and connectors
1: M; < SurfaceMesh(3DShape)

2: M Init(Mi)

3: My« Tnit(M;)

4: Virtual3Dspcae + CalculatePositionin3Dspace(M )

5: Convergence < False, Itr < 1

6: while (!Convergence) do

7. [Labels,WithinClusterDistances| < Clustering(My,k,T)

/l Calling algorithm 2

8: My «+ UpdateClusteringLabels(Labels, M)

9:  if (T > max(WithinClusterDistances)) then
10: Convergence < True // (see Equation 4 for convergence

point)

11:  else
12: My < Remeshing(My,k,T,Itr ++) // Calling algorithm 3
13: M < UpdatePositionin3Dspace (M)
14:  endif

15: end while

16: VNormals < VerticesNormals(M) // for surface thickness.
17: GenerateThickenedTriangles(M )

18: Make connector-placement and Hinges.

19: END

3.2 Mesh Generation and Initialization

For input, we take segmented volumetric data of biological structures
such as mitochondria, viral virions, intracellular compartments etc. The
segmented structures are converted from voxelized to mesh represen-
tation (see Figure 3). We use the Marching cubes algorithm [30] for
generating our first raw mesh (M;) from the 3D structure. However,
this raw mesh has several defects, including self-intersections, higher
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Fig. 4: Triangle distance metric based on the sorted lengths of individual
edges.

complexity, and redundant elements. Therefore, prior to actual classifi-
cation and remeshing, careful refinement is required. We refine M; in
initialization step using CVT [25,27]. The initialization step not only
improves mesh quality but also simplifies the mesh by setting the num-
ber of seeds in CVT. This refined and simplified mesh is denoted by M,
throughout this paper. More specifically, the raw mesh is remeshed with
two different implementations of the CVT, including 5 iterations of the
Lloyd algorithm [27] followed by 30 iterations of the quasi-Newton
optimization [25]. With CVT initialization, we also specify the number
of vertices for the surface mesh, through which we can simplify mesh
(reduce the total number of vertices). CVT [25,27], being efficient
and easy to implement, has been widely used in surface remeshing and
related research [23]. It simply relocates each seed toward the center of
mass of the Voronoi cell.

3.3 K-means Clustering

‘We map the triangles into a 3D space according to the lengths of their
edges (see Figure 4). Each triangle ¢#; is placed at point p(x;,y;,z;)
such that x;,y;, and z; represent the length of shortest, middle, and
longest edge of the triangle #; respectively. In this way, the position
of each triangle in the 3D space shows the parameter of the triangle.
Similarly, the Euclidean distance d|; ; between any two triangles ;
and ¢; represents their degree of similarity. The smaller the distance
more similar the triangles are, and vice versa. The two similar triangles
will lie on the same point, yielding zero distance. Mathematically, the
algorithm attempts to minimize the following energy function:

Zdl], 9 (1)

,G,

Mf:

It

where F;(My) is the energy function (accumulative distance), k is
number of clusters, # is the total number of triangles/patches, c; is the
'h cluster, ¢ ; is triangle in ¢;, and ¢ is the centroid (mean) of cluster c;,

calculated as: {

— Y i 2)

|Ci| tjec;

k
l‘if

Similarly, d(t;,t; ) is the value indicating the degree of dissimilarity
between ¢; and ¢, which is calculated as square Euclidean distance
between their positions (p(xj,yj,zj) and p* (x},¥7,zf), respectively) in
our 3D space. Mathematically,

dtj17) =

In other words, |x; — x|, |y; —y/|, and |z; — z}| are the differences
between the shortest, middle, and longest edges of the two triangles,
respectively. An abstract view of our clustering scheme is presented in
algorithm 2.

For clustering, we first create a n X n matrix where each cell (i, j)
contains the value of d(#;,7;) calculated via Equation 3. Then, we apply
K-means clustering to the matrix, which classifies the triangles into k
clusters, where the user specifies k. Each triangle is labeled with its
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Algorithm 2 Clustering

Algorithm 3 Remeshing

Data: My, k, T
Result: Labels, WithinClusterDistances
1: Matrix[n X n] < Virtual3Dspace
2: for each cell(i, j) of Matrix[n x n] do
cell(i,j) < d(t;,t;) /I Dissimilarity between #; and ¢; (calcu-
lated via Equation 3).
: end for each
: [Labels,WithinClusterDistances) < K-means (Matrix[n X n], k)
. Label each triangle according to its Cluster number.
: return [Labels, WithinClusterDistances|

N N B

value of k representing its class. For each cluster, the central triangle
is calculated via Equation 2. Then remeshing operators are applied to
minimize the distance, defined with Equation 3, of any triangle of the
cluster to its cluster’s central triangle.

Convergence point and clustering error:  The convergence point
of algorithm 1 is reached when the maximum value of the within-cluster
distances (Equation 4) reaches a given threshold. This maximum value
indicates the highest difference among the triangles in the same cluster.
We define our clustering error of any triangle as the Euclidean distance
from its cluster’s central triangle. The maximum error (Error,,y) and
mean error (Error) can be calculated from Equation 3 as follows.

Errormax = max(d(t;,t})),¥Y1 < i <k,tj € ¢;, “)

and,
Error = mean(d(t,1;)),V1 <i < k,tj € c;. Q)

3.4 Remeshing Pipeline

Local operators (edge flip, edge collapse, and vertex translation) are
used for surface remeshing (see algorithm 3). The objective of remesh-
ing is to minimize the distances between the triangles in each cluster
(i.e., to make them similar). The objective is achieved by minimizing
the energy function defined with Equation 1. The algorithm works
as follows: starting with a CVT-initialized mesh, the algorithm first
improves the regularity of vertices by making its valency (number of
adjacent edges) optimal. Edge flip operators make the valencies of the
vertices equal to or near 6 (a regular vertex). Regular vertices converge
quickly during surface remeshing [23,46].

As stated in subsection 3.3, the shape of each triangle is mapped into
a single point in a virtual 3D space. The central triangle of each class of
triangles (from surface mesh), which is calculated using Equation 2, is
presented by a central point of the cluster (in the virtual 3D space). The
distance from each triangle to the corresponding centroid is calculated
using the degree of similarity between the two triangles (Equation 3).
Making triangles similar in the surface mesh brings the corresponding
points in 3D space closer to the central point. To minimize this distance,
the algorithm applies direct remeshing operators, including edge flip,
edge collapse, and vertex translation.

Edge flip and collapse: Remeshing algorithm (algorithm 3) is
called from the main algorithm (algorithm 1). For the first iteration
of the main algorithm, the edge flip and edge collapse operators are
applied in algorithm 3 if this improves the similarity values. Next is the
vertex translation, which is applied in each iteration.

Vertex translation:  Vertices are translated using algorithm 3. The
algorithm requires information on whether to increase or decrease the
edge length (see Figure 5 (left)). Equation 3 puts pressure on each
edge, indicating the magnitude of change in edge length to make it
similar to the corresponding edge of the cluster’s central triangle. The
pressure is divided on both side vertices of each edge. Since each
vertex is connected to multiple edges, it is affected by pressure from
different side edges (see Figure 5 (right)). Figure 5 (right) shows 1-ring
neighborhood of vertex v.. Each vertex v; from the neighborhood of v,
puts pressure on v., attempting to bring it to a new position p;. For a
vertex with n adjacent vertices, Equation 6 calculates the average of n

Data: M, k,T,Itr

Result: M with k classes of identical triangles
1: if Itr=1 then
2: My < ValenceOptimization(Mj)

3.  if CollapseImprovesClusteringDistance then
4: Collapse()
5. endif
6:  for each edge ¢; € My do
7: if EdgeFlipImprovesClusteringDistance then
8: EdgeFlip()
9: end if
10:  end for each
11: end if

12: for each edge ¢; € My do

13:  Calculate required new length of e;
cluster’s center via Equation 3

14:  Calculate its pressure on both side vertices

15: end for each

16: for each vertex v, € My do

17:  Calculate pressure from each adjacent edge

18:  Calculate new position p*  //i.e., mean of the pressures from
adjacent edges (see Equation 6)

19:  if ShapelsPreserved then

20: Translate v, to new position p*

21:  endif

22: end for each

23: return My

// i.e., difference from
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Fig. 5: Pressure calculation for vertex translation. Left: three cases of
pressure direction. The current edge length is increased/decreased/kept
unchanged depending on the required edge length. Right: 1-ring neigh-
borhood of a vertex v, and calculation of accumulative pressure.

new positions to find the final position (p*) for v.. The above steps are
applied iteratively until the algorithm converges.

*

p:

™=

1
- ). Di (6)
ni3

To ensure geometric preservation and avoid possible deformation, we
put restrictions on vertex translation. The vertex translation is only
allowed if new position (p*) is inside the predefined limit. In case it
lies outside, the value of p* is recalculated as a middle point between
p* and the current position of the vertex. This limit is defined on each
side of the surface. Typically, this limit is kept as 0.25"" of the mean
edge length. However, for a quicker convergence, this value can be
increased.

3.5 Puzzle and Assembling

we aim to generate reconfigurable puzzle segments from the input
surface. To ensure that segments are reconfigurable, we thicken the
surface by adding a new surface layer and connecting it with the existing
one resulting in a triangle patch with user-defined thickness as shown
in Figure 6. The thickened triangle patches are processed for female
connections (holes), allowing interconnection with other segments via
a hinge joint connector.
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Fig. 7: Thickness layer: (a): The outer layer is created via face normal.
(b): The outer layer is created via the vertex normal (Curvature-aware
extrusion). (¢) Smoother with subdivision.

Thickening: For creating an external surface layer, we calculate
the vertex normals (irrespective of its clustering). The vertex normal is
calculated as the mean of the normals of the adjacent triangles. Next,
we insert a new vertex (v}, v5, v4) on the normal of each vertex at a
distance of user-given thickness. We connect the corresponding vertices,
which make quad patches at three sides of the thickened triangle (see
Figure 6). This thickened triangle patch is a closed mesh having two
triangles i.e., a bottom triangle (v{, v, v3) laying on the inner layer and
an upper triangle (v}, v, v4) laying on the outer layer and three quads.
Finally, for a unique thickened triangle for each cluster, we calculate
the mean of possible variations in the vertices’ normals.

The new vertices (v}, v5, ;) added for the thickness also define the
curvature. If we use the vertex normal, the outer layer (v}, v}, v}) of
each part (thickened triangle) will be bigger, equal, or smaller than
inner one (v1, v, v3) depending upon its position on the surface, which
can be concave, planar or convex. Face normal, on the other hand,
yields similar sizes for both layers without regard to curvature.

Figure 7 shows the thickened triangle patches using different ap-
proaches (see Figure 7a and 7b) on a full surface. In the case of face
normals (perpendicular extrusion), for each triangle patch, the inner
and outer layers are the same; therefore, there is some free space be-
tween them in the composed model. We use the vertex normal instead,
which enables us to fill those spaces. Since the outer layer is dependent
on curvature, the thickened triangles from the same class might have
different sizes of the outer layer. To handle this issue, we find mean
curvature for all parts in each class to finalize the positions of the new
vertices (v}, v}, v4). The three quads on the sides of the triangle are
further processed for holes.

Subdivision smoothing gives even better results (see Figure 7c). The
inner and outer triangle surface patches are linked with quad strips
linking the corresponding vertices. The number of vertices along each
edge is defined by the level of the applied subdivision smoothing. These
thickened triangle patches are further processed for connection holes
before it is ready to be printed.

Connecting structures: Since the thickened triangle patches’
sides differ significantly between the planar and curved triangle patches,
we designed separate procedures for generating connecting parts for
them. The connecting structures consist of holes in the thickened
triangular patches and hinge joint connectors (see Figure 8).

Planar triangular patch: To preserve the structural strength of indi-
vidual pieces and provide some clearance tolerance for the connecting
structures, we create holes parallel to the inner and outer surfaces. To
achieve this, we calculate the center point (c) of the quad extruded from
vertices (e.g., vi and v;) perpendicularly to the inner surface touching

Fig. 8: Puzzle parts: A thickened triangle with and without holes and a
hinge joint connector.

Fig. 9: Outline of hole generation process for connecting neighboring
planar (left) and curved (right) triangle patches.

the outer surface (see top image in Figure 9). We define the position
of vertices q1,. . .,q4), which determine the hole boundary, according
to the size of the hinge joint connector defined by the user. Next, we
extrude the quad defined with vertices ¢y, ...,q4 inwards according to
the size of the hinge joint connector. We remesh the outer side surface
by connecting original vertices vy, v,v3,v|vh,vs with newly created
vertices ¢y, ...,q4. The top image in Figure 9 outlines the process. The
same process is repeated for all three sides of the triangular patch.
Curved triangular patch: Creating holes in the curved triangular
patches is a bit more challenging. We first align the triangular patch
so that the vertices vy, vy, v3 lie on the XY-plane. Next, we calculate a
projection point d of the midpoint between vertices (e.g., vi and v3) ¢
to the outer edge of the same side (see the bottom image in Figure 9).
We define the hole center point e at the half-thickness distance wy,
from point d to c. We define the positions of vertices ¢y, ...,q4, which
determine the hole boundary, with respect to the center point ¢ and the
size of the hinge joint connector, defined by the user, on a plane defined
with vertices v, v,,d. The quad defined with vertices g1, ..., g4 is then
extruded inwards according to the size of the hinge joint connector.
The side surface of the thickened curved triangular patch is remeshed
by incorporating the vertices ¢y, ...,q4. The same process is repeated
for all three sides of the triangular patch.

Hinge joint connectors: The holes are identical for all triangles. Sim-
ilarly, considering the box-like shape of the created holes defined by
eight vertices, we generate appropriate hinge joint connectors for all
edges to connect triangles with each other. The assembled hinge joint
connector fits inside two holes (with some spacing to compensate for
the printer inaccuracies). Its size is determined by the user, who must
also consider the possible overlaps of the holes within the individual
triangular patch if they are too big. The two parts of the hinge joint con-
nector are printed with a resin material (similar to triangles). However,
inside the connector is a metal rod (see Figure 8).

3.6 Flexibility and extendability

We mainly generate puzzle parts from planar triangular patches. How-
ever, we also implemented the support for curved triangles. Similarly,
our technique also provides the option of merging triangles into other
polygonal structures, which reduces the puzzle’s complexity if intended
by the puzzle designer.

Sub-division and Smoothing  The mesh complexity has been
reduced during the initialization step of our algorithm. However, the
simplified mesh has a rigid surface with discrete planar triangles. To
improve surface smoothing, we follow the approach by Loop [29] to
smooth the mesh by subdivision of triangles. The curved triangles are
easy to assemble and provide a smoother surface. However, it is very
hard to improve their isometric decomposition. Therefore, we only
create curved triangles and apply classification with a higher number
of k.



Curvature-aware patch classification: ~ With subdivision, each
planar triangle patch is divided into 64 triangles (in 3 iterations 4%),
making a curved patch. We store the boundaries of each patch and
calculate its curvature. Next, we apply patch-wise classification, which
applies not only the parameter but also the curvature. For curvature-
aware patch classification, we add a 4" dimension w to Equation 3 as
follows:

2 2 2 2
d'(th,1]7) = lwj = wi |+ |xj = xf [T+ |y =y "+l =215 (D

where ¢} and #!* are the j* curved triangle in i"" class, and center of the
cluster, respectively. To calculate w, we find the center of the planar
triangle (formed by three corner vertices of the curved triangle) and the
center of the central sub-triangle of the subdivided curved triangular
patch and calculate the square Euclidean distance between them. The
curvature-aware patch classification gives smoother results. However,
if two patches have an abrupt change from concave to convex (or
vice versa), the uniform width calculation for patch thickness becomes
challenging.

Merge Triangles For further flexibility, the user can also choose
to merge triangular patches into convex polygonal patches (full or parts
of the pentagons and Hexagons). Depending upon user choice, we
provide different merging options, including two, five, six, or seven
triangles. The merging strategy can minimize the puzzle’s complexity.

4 EXPERIMENTAL RESULTS

This section evaluates Dr. KID on different organic shapes such as
SARS-CoV-2 virions from the Electron Microscopy Data Bank? under
id EMD-33297 [33], mitochondria from the UroCell Dataset [52,53],
and cell nuclei from the WTC-11 hiPSC Single-Cell Image Dataset
v1 [45]. We show some assembled models of these shapes and compare
them with their 3D models in Figure 13. The proposed algorithm is
implemented in C++ and tested on Intel(R) Xeon(R) Gold 6230R CPU
2 x 2.10 GHz with 156 GB RAM and 64 bit Windows 10 operating
system.

4.1 Validation

In this section, we present empirical results to validate the applicability
and effectiveness of our algorithm. We calculated the actual cluster
error and a relative error, i.e., percentage of the mean edge denoted as
%(e). The relative error gives an easy judgment of the accuracy as it
considers the actual length. Typically, the remeshing algorithms and
isometric decomposition need only negligible (acceptable) geometric
loss. We calculate the geometric loss in the percentage of bounding
box value of the Hausdorff distance [4]. As stated in subsection 3.1,
our algorithm generates a raw mesh (M;), which is preprocessed and
simplified to M. The simple mesh M is then iteratively remeshed
consecutive with K-means clustering to reach a given threshold. Addi-
tionally, there may be some geometric loss during mesh simplification
dp (M;,M;) and in clustering/remeshing dy (Mg, My). Figure 10 shows
the clustering results for different models. Table 1 shows quantitative
results, including the geometric loss, efficiency, classification error, and
the number of iterations. Observing the numerical results, we can con-
clude that the geometric loss during the clustering is smaller than the
geometric loss in simplification. However, there is a trade-off between
the clustering threshold T and geometric loss (dy). The threshold T
given to the algorithm shows the limit of acceptable clustering error.
Since we are dealing with variable-sized models, the 7' shown in the
paper is the percentage of the mean edge length. The algorithm iterates
until the errors are under the threshold limit. Therefore, the average
clustering error is smaller than T (see Figure 11, and Figure 12).

The algorithm is iterative and proceeds toward its convergence by
minimizing the clustering error and the value of the accumulative energy
function. Figure 11 plots the energy minimization (Equation 1) and
shows the convergence of the algorithm with the number of iterations.
The clustering errors also decrease as the algorithm iterates.

2https ://www.ebi.ac.uk/emdb/EMD-33297

4.2 Printing Results

The prototypes were printed using two 3D printers: Stratasys J750, a
high-resolution full-color 3D printer’ and FormLabs Form3 SLA 3D
printer®. All the hinge joint connectors and most of the models were
printed using Stratasys 3D printer. Only triangles of the big SARS-CoV-
2 virion membrane model were printed using the FormLabs printer. The
printing resolution and precision of the FormLabs printer are not good
enough for the final model to be assemblable. These 3D fabrication
results are prototypes validating the plausibility of our method. The
envisioned production will use the molding process, where our low
demand on the number of required molds will secure the production
scalability.

The 3D-printed results of several models are displayed in Figure 1
and 13. Figure 13 also shows how the 3D models relate to their 3D-
printed versions. We show that the printed results are similar to the
original models. However, the tight connectors (hinge joints) are dif-
ficult to use for creating reconfigurable joints during the assembly
phase. Therefore, we used loose hinge joints, which create gaps near
the vertices with valence > 7. The size of the gaps also depends on the
printer’s accuracy.

Classification of the curved patches: In addition to planar tri-
angles, Dr. KID can be used for curved triangular patches. Figure 14
shows the results of a model composed of curved triangular patches.
For curved triangular patches, we only provide the classification of
the patches without any further remeshing. To reach a suitable clas-
sification, users must find an optimal combination between T and k.
For example, the model in Figure 14 can classify all the patches (116)
with T = 7.5% if k = 6. However, this patch-wise classification can
be achieved with a lower threshold T = 3.75% if we set k = 10. The
last row in Figure 13 shows a 3D-printed model with curved triangular
patches.

4.3 Comparison with related methods

In the domain of biological structures, there is no standard algorithm
that can be used for comparison with our approach. However, there are
few articles in other domains. We choose a most recent article [26] for
a short comparison using two models. Figure 15 shows the comparative
results. The results show that our method gives smoother results with a
lower dy. Moreover, our method is faster.

5 DISCUSSION

Dr. KID is the novel system for the physicalization of organic shapes.
It can be an effective tool for learning objects’ physical properties and
structure by providing a physical shape. The physicalization starts
from a 3D shape and ends with a physical model assembled from
reconfigurable parts. We provide a simple physical structure of small
biological structures so users can assemble and see the basic structure.
An abstract view of the structure is provided to the audience as a
physical model, whereas the detailed functionalities of these models
are not explored. We aim to attract the audience by providing a simple
reconfigurable model. The models can also play a vital role in scientific
museums or awareness conferences for public outreach.

The key goals of Dr. KID are: (1) to reduce cost by creating isometric
segments, (2) to provide a puzzle-like reconfigurable physical model,
and (3) to preserve the shape and curvature of the input shape.

For the isometric decomposition, we triangulate the surface mesh
and design an energy function to increase the degree of similarity
of triangles belonging to the same class. We proposed a simple yet
novel method of computing similarities between triangles. Previous
methods [16,26,37] used the vertex distances of two aligned triangles,
so they need optimization to find the best alignment transformation. On
the other hand, our method does not require this optimization of finding
the best alignment transformation and is, therefore, computationally
efficient.

3ht‘cps ://support.stratasys.com/en/Printers/
PolyJet-Legacy/]735-1750
4https ://formlabs.com/3d-printers/form-3/
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Fig. 10: Clustering results of 10 different models. From top left to bottom rigt, we name the models M1 to M10. For each model, the three
sub-figures (from left to right) are mesh generated from the 3D shape (M;), the simplified mesh (M;), and our results (M). The corresponding
numerical results are given in Table 1.

Table 1: Quantitative results. Here M; is the input mesh, M; is the simplified mesh, and M is the resulting mesh of our method. T is user given
threshold, and d(z,*) is the average Euclidean distance from the cluster centers. Here, Length(e) is the mean length of edges, %(e) is the percent
value of the mean of Length(e), dy is calculated in % bounding box. Error is the mean clustering error calculated via Equation 5.

Figure #/Model # Faces # Vertices k T Length(e) Error | dy(M;,My) | dpy(Ms,My) | dy(M;,My) | Time | Iterations
M;/M; /My M; /M /My actual/%(e) actual/%(e) | mean/max | mean/max | mean/max | Sec. #

Figure 10/ M1 | 21280/500/496 | 10642/252/250| 7 | 0.08/1.50 533 0.020/0.382 | 1.33/2.55 | 0.62/1.77 | 3.38/1.25 | 248 7893

Figure 10/ M2 | 10460/242/240 | 5232/123/122 | 9 | 0.08/1.57 5.08 0.026/0.519 | 2.60/4.33 | 0.49/1.87 | 2.46/4.44 15 993

Figure 10/ M3 | 14048/264/262 | 7026/134/133 | 8 | 0.06/1.03 5.79 0.018/0.317| 1.61/3.62 | 0.65/2.16 | 1.50/3.72 | 41 2385

Figure 10/ M4 | 5968/172/172 | 2986/88/88 | 7 | 0.08/1.53 5.20 0.025/0.475 | 0.50/1.47 | 0.72/3.27 | 0.83/2.71 15 1546

Figure 11/ M4b | 5968/172/172 | 2986/88/88 | 7 | 0.03/0.57 5.21 0.009/0.172 | 0.50/1.47 | 0.83/3.65 | 0.91/3.06 | 42 2933

Figure 10/ M5 | 16072/374/372 | 8038/189/188 | 11| 0.09/1.56 5.74 0.028/0.490 | 0.22/0.95 | 0.50/2.50 | 0.51/2.05 | 59 2349

Figure 10/ M6 9612/416/416 | 4808/210/210 | 11| 0.09/2.17 4.14 0.032/0.775| 0.23/0.71 | 0.83/3.15 | 0.98/3.45 | 48 1962

Figure 10/ M7 7280/196/196 | 3642/100/100 | 8 | 0.08/1.44 5.57 0.023/0.416 | 0.39/1.00 | 0.90/3.37 | 0.88/3.48 | 33 2894

Figure 10/ M8 | 21288/400/396 | 10646/202/200 | 11 | 0.09/1.39 6.49 0.023/0.355| 0.29/0.90 | 0.67/2.83 | 0.65/2.71 | 101 5134

Figure 10/ M9 | 10380/156/156 | 5192/80/80 | 6 | 0.07/0.98 7.12 0.023/0.320 | 0.39/1.07 | 0.90/3.20 | 0.84/3.58 | 33 3170

Figure 10/ M10 | 11496/196/196 | 5750/100/100 | 8 | 0.08/1.20 6.68 0.035/0.520| 0.36/1.72 | 0.67/2.38 | 0.72/2.57 17 1933

Figure 13/top 4807/172/170 | 2406/88/87 | 6 | 17.3/1.89 914 6.968/0.762 | 0.34/1.23 | 0.967/3.20 | 0.85/2.34 | 22 987

Figure 13/N-cell | 83040/136/136 | 41522/70/70 | 6 | 0.50/1.70 29.32 |0.180/0.613 | 1.33/0.49 | 1.24/2.94 | 2.11/4.17 | 51 4732

Figure 14/left 320/116/116 162/60/60 2 | 0.02/0.01 160 0.007/0.004 | 0.50/1.04 | 1.10/3.32 | 1.93/4.70 | 144 8349
40

physicalization using injection molds or 3D printing, the former espe-
3 @ cially if a large quantity is demanded. Similarly, for a small number of
30 prints, since we need to process each patch for holes and hinges, the
<« Accumulative distance . .

2 : L 1 isometric patches are easy to handle, where we process only one patch

Accumulative distance

500 1000 1500

Number of Itterations

2000 2500 2933

Fig. 11: Minimization of the accumulative distance (i.e., energy func-
tion Equation 1) with number of iterations. Here T presents the number
of triangles with error smaller than the threshold (0.03). E represents
the clustering error (meanlmax). The brown-colored triangles have
errors above the threshold.

Figure 11 shows the minimization of this energy by increasing the
similarities among the triangles. For this energy minimization, we
used surface remeshing, which can preserve the input shape. Figure 15
shows that our method provides smoother and more accurate results
than the existing method. For puzzle-like assembly, we provide an
automatic thickness and hole creation strategy. The thickness is created
in the direction of vertices’ normals and thereby preserves the curvature
during assembly. If there is a small error in the curvature estimation, it
can be compensated for by the freedom of hinge joint rotation.

The isometric decomposition provides a cost-effective solution for

from each class of isometric patches.

The holes and hinge joints provide a connection between the tri-
angles. The hinge joints can provide a certain degree of freedom to
recover the possible geometric loss/error in curvature during the puz-
zle parts generation. In other words, the angle between the two faces
(triangles) can be increased/decreased due to the use of hinge joints.
Figure 13 shows our printed results which show a similar visual result
to the input model.

The algorithm converges when the degree of similarities among the
triangles reaches its threshold. In other words, if the clustering error
goes below an error threshold. Typically, the parameters, including
threshold (T), the k value, and the dy have a trade-off. Selecting a
smaller value of 7' will increase the dy or require a higher value of k. If
we keep dy adjustable by the algorithm and set higher values of 7 and
k, the algorithm can reach convergence with a relatively smaller value
of dp. However, no mechanism exists to automate the optimal balance
among these three parameters. After convergence, the maximum error
cannot exceed a given threshold in each class of similar triangles. For
example, Figure 12 shows that only a few triangles are close to the
threshold.

To support extendability and give smoother results, Dr. KID uses
triangle subdivision followed by the classification of the curved triangle
patches (Figure 14). For curved patches, we used Equation 7. However,
this assumption of curvature estimation may fail in special cases such
as complex models.



008 0.09
T=0.08
008 0.08

T=0.08

S 006

8005

__007 007

8 o0 08

S 003 003

g VVVWWWH\H\NH\NHHHH
: D — Il

|” -

) [

Triangles

Triangles

18

T=15% T=1.56 %

IS
)

an Edge)

=
Tvalues (% of me:

ot 88 & K%

Tvalues (% of mean edge)

Triangles Triangles

Fig. 12: Histogram of clustering error for two models. Top actual
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Fig. 13: Printed results. Top to bottom: Mitochondria outer membrane,
cell nuclei membrane, and three models of SARS-CoV-2 virion mem-
branes. The bottom row shows a model with curved triangle patches.
The labels on the left column indicate the values of k£ and segment
colors. The number of colors of the printed models in the first and
third row is smaller than the number of classes due to the limited colors
available for 3D printing.

The scope of our study is limited to a small set of microbes, i.e.,
tiny models having potato-like curved surfaces (e.g., mitochondria,
lysosome, endosomes, cellular nuclei, virus particles, etc. ) without
sharp features. Complex structures such as models with sharp edges,

Fig. 14: Patch-wise classification: Left: Clustering of planar triangles
with k=2, T = 0.01%, Middle: Patch-wise classification with k = 6,
T =17.50%, Right: k=10, T =3.75%

Fig. 15: Comparison with a previous method [26] for k=9. Left (in each
pair): Fabrication method [26] with dy(%bb) = 1.62 and 1.33, and
with time taken 85.6 minutes, and 91.2 minutes. Right (in each pair):
Our with dg (%bb) = 1.53 and 1.31, and with time taken 38 seconds
and 27 seconds.

models with abrupt changes from concave to convex (for example, brain
surface), and generic CAD models are out of the scope of our algorithm.
Dr. KID can provide a baseline for several interesting future research
directions. For example, modeling realistic biological structures with
more detailed information.

6 CONCLUSION

We have presented Dr. KID, a new physicalization approach for potato-
shaped biological structures. Dr. KID generates the surface mesh of
the model, which is then decomposed into k types of identical triangle
segments. We used a novel mapping function that maps the degree
of similarity among the triangles into a virtual 3D space as a distance
metric. Next, K-means clustering is applied to classify the triangles into
k classes. We used surface remeshing to make all the triangles in the
same class similar. The segments are automatically generated as puzzle
parts and thickened with hinge joints and female connections to support
a reconfigurable assembly. We demonstrate how our approach can be
used for 3D printing the prototype models. Dr. KID is considering a
cost-reduction approach for the physicalization of small microbes. We
hope it to be a practical and useful tool for the community.

Our approach has the following limitations:

* We have evaluated our system empirically with different models,
however, we have no theoretical proof of the success in isometric
decomposition with an arbitrary model and a given number of
k, however, the hinge joint connectors compensate for a slight
imperfection in the fit.

¢ Although for our current domain, since the target organic shapes
are in several variations, we believe that the geometric loss is
acceptable. However, for generic use, the geometric loss should
be further considered.

* We only present a short comparison with another fabrication
method. However, we did not find any other relevant physicaliza-
tion algorithms for the biological domain for comparison.

For the future, we are working on designing a specialized mesh
generation algorithm to improve accuracy. We also plan to minimize
geometric loss during remeshing and extend the algorithm’s scope into
other domains. Additionally, we aim to fully automate the process
for hinge joint connectors without requiring user-defined dimensions.
Furthermore, remeshing the curved patches (Figure 14) to make them
isometric is also a future challenge. Finally, we aim to address other
parts of the structures apart from membranes.
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