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Abstract—
Hairpin vortices are one of the most important vortical structures in turbulent flows. Extracting and characterizing hairpin vortices
provides useful insight into many behaviors in turbulent flows. However, hairpin vortices have complex configurations and might be
entangled with other vortices, making their extraction difficult. In this work, we introduce a framework to extract and separate hairpin
vortices in shear driven turbulent flows for their study. Our method first extracts general vortical regions with a region-growing strategy
based on certain vortex criteria (e.g., λ2) and then separates those vortices with the help of progressive extraction of (λ2) iso-surfaces
in a top-down fashion. This leads to a hierarchical tree representing the spatial proximity and merging relation of vortices. After
separating individual vortices, their shape and orientation information is extracted. Candidate hairpin vortices are identified based on
their shape and orientation information as well as their physical characteristics. An interactive visualization system is developed to
aid the exploration, classification, and analysis of hairpin vortices based on their geometric and physical attributes. We also present
additional use cases of the proposed system for the analysis and study of general vortices in other types of flows.

Index Terms—Turbulent flow, vortices, hairpin vortex extraction

1 INTRODUCTION

Turbulent flow arises in applications ranging from automobile and air-
craft engineering, climate study, and oil and gas engineering, to disease
diagnosis and drug development. Understanding turbulent flows is a
critical task for the success of these applications. Coherent structures
play a significant role in the understanding of various turbulent flow
mechanisms, such as energy transfer and dissipation [31, 32]. Among
all coherent structures, vortices are of particular interest to the experts
in various turbulent flow studies and applications. Vortices are flow
phenomena in which the flow particles move around some common
lines or curves. Vortices are one of the most important dynamics in
flow that often relate to energy/material transport and mixing [54].
There exist numerous techniques for the extraction and visualization
of vortices in different flows [16]. Due to the inherent complexity of
turbulent dynamics and the multi-scale nature of coherent structures in
turbulence, it is challenging to directly apply these techniques [7].

Among different vortices arising in turbulent flows, hairpin vortices
are of particular interest in the study of flow behaviors near the bound-
ary layers. Hairpin vortices (Fig. 1) are formed due to turbulence in the
vicinity of boundary layers in fluid flows [28]. Identifying and visualiz-
ing hairpin vortices provides crucial insight into the transition process
of fluid flows from laminar to turbulent around the fluid boundary lay-
ers [1]. Hairpin vortices are also important in other phenomena such as
material transport from the low speed fluid close to the boundary layer
towards the high speed fluid away from the boundary layer (e.g., the
lifting of dust from the ground for the formation of haze). However, in
practice, boundary layers in turbulent flows have complex configura-
tions, resulting in hairpin vortices in irregular shapes and varying sizes
(Sec. 6). They are also often tangled with other vortices, making their
extraction difficult. Existing methods that rely on thresholding strate-
gies applied to certain physical attributes usually lead to incomplete (or
disconnected) vortices due to the sensitivity of the selection of a proper
threshold value. There is currently a lack of a robust and automatic
framework to extract hairpin vortices.

To address these challenges, we develop a new and robust framework
for hairpin vortex extraction and characterization in shear driven tur-
bulent flows (e.g. channel, couette, wake and pipe flow). In particular,
our framework makes the following contributions.
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• We introduce a region-growing process, followed by a region-
splitting process for vortex detection and separation (Sec. 4) This
aids the selection of a global threshold for vortex detection and
yields a simpler tree than the conventional contour tree, represent-
ing the spatial hierarchy relationships among vortices.

• We build a profile for each vortex based on its physical and geo-
metric properties (Sec. 5), which can be used for the classifica-
tion, statistical analysis, and interactive exploration of individual
vortices. To extract the shape and orientation information of in-
dividual vortices, we adapt the recent skeletonization technique
from the geometry processing community.

• We define the first automatic pipeline to separate candidate hair-
pin vortices from all vortices based on experts’ knowledge of
hairpin vortices (Sec. 6). These candidate hairpin vortices contain
all important hairpin vortices. A subsequent clustering of them
separates them from other non-hairpin vortices.

• We devise an interactive visualization system (Sec. 7), allowing
the users to explore and inspect the extracted vortices in both
the physical space and the attribute spaces. The users can not
only inspect the detailed characteristics of the individual vortices
and their relations with nearby vortices but also select groups of
vortices for study.

We have applied our method and the visualization system to a num-
ber of flows to evaluate their effectiveness. In particular, we apply
our method to aid the extraction and study of hairpin vortices in the
stress-driven turbulent Couette flow [28] (Sec. 8). Our results show
that our system can robustly identify hairpin vortices with different
shapes, corresponding to different stages of the hairpin vortices, that
are hard to identify with the existing methods. Furthermore, our system
can also be applied to the study of other types of vortices in flows with
predominant streamwise direction. To demonstrate this, we present few
use-cases for several small scale flows.

2 RELATED WORK

Vortex extraction and analysis continue to be active areas of research in
fluid dynamics and scientific visualization [16,21,38,39]. Vortex defini-
tions [16] commonly involve two key components: the vortex coreline,
which represents the path around which fluid particles move [29], and a
reference frame that reveals circular or spiral patterns when streamlines
are projected onto a plane perpendicular to the coreline [40]. Different
methods have been developed to identify vortex corelines and regions.
For coreline extraction, line-based methods [4, 37, 45, 50] such as the
Parallel Vector operator [37] and the reduced velocity criterion [51] are
widely used. However, these methods often result in numerically unsta-
ble and fragmented corelines, posing challenges for accurate extraction.
Region-based methods, on the other hand, rely on scalar quantities like
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Fig. 1: (a) Illustration of a hairpin vortex, and (b) isosurfaces of λ2 of a
stress-driven turbulent Couette flow [28]. Arrows point to places where
hairpin vortices may arise.

pressure [23], vorticity, and various criteria (such as Q [22], ∆ [10] and
λ2 [24] criterion) to characterize rotation behavior locally. These meth-
ods typically require threshold values, which can impact the size and
extent of the extracted vortices. To address this issue, topological seg-
mentation approaches [7, 44] have been introduced to identify vortices
in turbulent flows without the need for a global threshold. In addition
to local methods, global approaches have been developed to construct
the skeleton of the vortex tube. Geometric-based methods, including
curvature center method [2] and winding angle method [2], leverage
streamline shapes to identify vortices. However, certain classes of vor-
tices, such as those moving along non-linear paths, may not be extracted
effectively using these approaches. Integration-based methods, such
as particle density estimation [53] and Jacobian analysis [51], offer
alternative solutions by observing the attraction behavior of injected
particles over time. Vortex behavior can also be studied through phys-
ical attribute characteristics [33] and pairwise correlations [6] along
individual pathlines. Objective methods [18, 19] have gained attention,
aiming to establish a steady reference frame in which vortex behavior
can be objectively identified [15, 17, 41]. One such objective charac-
terization [19] is the largest nested elliptic LCS, which represents a
material line preserving arc length in incompressible flow. Similarly,
Salzbrunn et al. [42, 43] introduced streamline predicates and pathline
predicates, respectively, to extract vortices and flow structures.

Machine learning (ML) techniques have also been applied to extract
vortices. Deng et al. [11, 49] applied supervised training for vortex
extraction. They derived a vortex ground truth from the velocity field
by applying a user-defined threshold to the instantaneous vorticity
deviation (IVD) [20] in order to produce a binary mask, identifying
vortices and non-vortices. Given the sea surface height, Lguensat et
al. [27] extracted ocean eddies. Franz et al. [14] detected ocean eddies
by training a neural network that receives a vortex measure, e.g., the
Okubo-Weiss criterion as input [36,52]. To track the vortices over time,
they applied a recurrent neural network (RNN) afterward. Bai et al. [3]
sent images of streamlines into a CNN to detect ocean eddies. Kim and
Günther [25] developed a CNN that extracts a reference frame in which
an unsteady flow becomes steady, enabling vortex coreline extraction.
Berenjkoub et al. [5] produced synthetic flows with 2D vortices of
various shapes for the training of different neural networks to aid the
extraction of vortex boundaries.

While the above methods may extract individual vortices to some
extent, their application to the turbulent flow that contains vortices
with multiple different scales remains a challenging task. To partially
address that, Nguyen et al. [31] introduced a visualization framework
to separate the large-scale Taylor vortices from the small-scale vortices
for the study of the Taylor-Couette turbulent flow. Later, they proposed
to use the dynamic mode decomposition (DMD) for the separation of
large-scale coherent structures from the smaller ones in the turbulent
shear flow [32]. Nevertheless, their techniques focus mostly on the
extraction of the largest structures in the flow. Moreover, there have
been studies to detect other flow structures in near-wall turbulence. For
example, Nsonga et al. in [34] introduced methods for the detection
and visualization of splat and anti-splat events in turbulent flows, con-
tributing to the understanding of these phenomena. Also Nsonga et
al. in [35] focused specifically on the analysis of near-wall flow in a
turbine cascade using splat visualization techniques, offering valuable
insights into the flow characteristics in this particular scenario.

In summary, there does not exist a comprehensive framework specif-
ically for the extraction of hairpin vortices in turbulent flows.

3 OVERVIEW OF OUR METHOD

We propose a new framework to address the challenges of extracting and
separating vortices, especially hairpin vortices, of different scales for
their analysis. Our framework consists of the following steps (Fig. 2).

First, we identify the vortical regions using a region-growing process
based on a selected vortical measure (e.g., λ2). The goal of this region-
growing is to identify regions that may contain vortices. Our region-
growing strategy extends the seminal work by Banks and Singer [4].
The resulting regions are large and contain multi-vortices. Next, we
perform a top-down region-splitting process to procedurally shrink
the initial regions into disjoint sub-regions that contain single vortices.
This results in a hierarchical spatial relation among vortices that can
be represented as a tree. This hierarchical tree is similar to the well-
known contour tree or split tree [7, 48]. However, the nodes in our tree
do not need to correspond to the topological features (e.g., extrema
and saddles) of the contour tree. We will explain why we choose our
strategy over contour tree construction later.

Second, after obtaining the individual vortices, we construct their
respective profiles. Each vortex profile consists of the physical attribute
information (e.g., Q, acceleration, vorticity, etc.) and the geometric
characteristics (e.g., shape, orientation, and size) of the corresponding
vortex. The vortex profiles will be used for the subsequent classification
of the types of vortices and their statistical study. We include the most
well-known attributes and properties used for vortex identification and
characterization in the literature to provide a more complete depiction
of the vortical behaviors.

Third, to identify hairpin vortices, specifically, we set criteria based
on discussion with the experts. The criteria allow us to select candidate
vortices from the above initial set of vortices through a filtering process.
The goal is to include all hairpin vortices. Other criteria can be defined
to identify other types of vortices.

Finally, we identify the “true” hairpin vortices from the above candi-
dates. We use two strategies here. On the one hand, we use a simple
clustering technique to separate the “true” hairpin vortices from the rest.
On the other hand, we present an interactive visualization system to aid
a manual selection of those hairpin vortices from the candidates. This
system is also equipped with functionality to aid the statistical study of
sets of hairpin vortices (and other general vortices).

In the following sections, we provide more details of the above steps.

4 VORTEX EXTRACTION AND SEPARATION

In this section, we will describe our region-growing strategy for the
extraction of vortical regions followed by a top-down region-splitting
process for the separation of vortices.

4.1 Vortical Region Extraction
According to the λ2 criterion [24], the vortices are the regions where
λ2 < 0. However, λ2 < 0 is less restricting and an appropriate threshold
is needed to extract valid vortices [9]. As the range of λ2 is dataset
dependent, a common threshold is not feasible to extract vortices in
different datasets. In order to get the dataset appropriate λ2 value for
vortex extraction (which we call λ2i), we use a histogram refinement
approach which consists of the following steps.

i. Compute a histogram of n bins using the range [min(λ2),
max(λ2)], where min(λ2) and max(λ2) are the minimum and maxi-
mum λ2 values, respectively, considering only λ2 < 0. In practice,
we set n = 100 based on our experiments.

ii. Ignore all the bins that contain less than 0.1% of the total
voxels and compute a new histogram of n bins with the new
range [min(hist(λ2)), max(hist(λ2))] where min(hist(λ2)) and
max(hist(λ2)) are minimum and maximum λ2 values in the fil-
tered histogram.

iii. Repeat steps i and ii until (a) the last bin contains less than 30%
of voxels, (b) the difference between the percentages of the last
and second last bin is less than 20, (c) if the last bin count in the
new and the previous histogram is the same.

Step (ii) filters out less important values, and the stop conditions
(a) and (b) make sure that the histogram is not refined too much. The



Fig. 2: The pipeline of our framework for the extraction and analysis of hairpin vortices.

thresholds are chosen after careful analysis of multiple datasets men-
tioned in Tab. 2. λ2i is assigned the lower value of the 90th bin of the
final histogram. The choice of parameters in the steps above affects the
extent of the extracted vortices. Increasing the number of bins in step
(i) and the thresholds for stop conditions (a), (b) in step (iii) push the
smaller λ2 values towards the bins with the higher counts, then the λ2i
value at the 90th bin will correspond to a smaller λ2 value which will
reduce the extent of the extracted vortices. Conversely, increasing the
cut-off threshold of 0.1% in step (ii) ignores more bins from the lower
side of the histogram resulting in larger λ2 values pushed towards the
lower bins and consequently larger λ2i.

Given λ2i, we find cells with local minimum λ2 in the dataset. We
convolve a window of size 3×3×3 and find the cells with minimum λ2
value locally. The local cell which doesn’t have any point with λ2 < λ2i
is not considered for local minimum calculation. After this process, we
end up with a list of local minimum cells. The local minimum cells are
used as seeds for region growing.

In our region-growing strategy, we extract the regions using geomet-
ric connectivity and scalar criterion. For each seed cell, a neighboring
cell is considered connected to the seed cell if one of its points fulfills
the criterion that λ2 < λ2i. We then iteratively add new cells by check-
ing the neighboring cells for the λ2 < λ2i criterion. The region-growing
stops when no further cells fulfill the criterion. The seed cells that
overlap the already-grown regions are ignored. The regions which are
smaller than a particular number of cells are considered noise and are
ignored. In our implementation, we set this threshold as 0.01% of the
total number of voxels for each data set. This results in the extraction
of vortical regions in the input flow. One such example of the extracted
region is shown in Fig. 4a. Note that, criteria other than λ2 (e.g., Q-
criterion, vorticity magnitude or pressure [4,7]) can be applied to guide
the above region growing process.

4.2 Vortex Separation
We make use of the contour tree [8] to separate common regions of
multiple vortices into their respective sub-regions. Given a point set
{x ∈ Rn} and a scalar field { f (x) ∈ R}, in the context of contour tree,
a level set is the set of points p where f (p) = c. When n = 3, the level
set is an isosurface and c is called an isovalue or contour value. As
we change the contour value, the isosurface evolves (splits or merges).
The contour tree represents the hierarchical relation between merging
or splitting of the isosurfaces at different contour values. Traditional

contour tree [8] uses topological critical points to change the level set.
In 3D, it means a new isosurface is extracted using the scalar value at
the critical point in the grid. At this stage, the isosurface may get split
and the process continues iteratively on each isosurface component until
no isosurface remains. This results in a dense graph/tree representing
the evolution of isosurfaces in accordance with isovalues. We use λ2 as
the scalar field to extract the contour tree with some differences. The
traditional contour tree is very dense and may suffer from degenerate
splits because of the possible existence of a large number of critical
points [30]. In order to keep the tree as sparse as possible and to limit
the degenerate splits, we use the histogram expansion strategy to pick
λ2 isovalues for the contour tree construction. The histogram expansion
strategy works as follows.

i Set n = 100. Compute a histogram with n bins in the range
[min(λ2), λ2i], where min(λ2) is the minimum λ2 value in the
dataset and λ2i is the initial λ2i value computed in Sec. 4.1.

ii Stop, if the percentage of voxels in the final bin is less than 10%,
otherwise n = 2n and repeat step (i).

iii Sort the bins of the final histogram in descending order of λ2.
iv Compute a Fibonacci series between [0,n] and pick all the bins

at the indices in the series from the sorted histogram. A list is
computed consisting of the λ2 values at lower values of the bins1.
We call this list the λ2_steps.

We use Fibonacci series because the percentage of voxels with larger
values of λ2 is greater than the lower values as shown in Fig. 3. There-
fore more λ2 values should be picked from the bins having higher
probabilities as compared to the bins with lower probabilities. Any
other mathematical function that exhibits this incremental property
would work equally fine. The number of indices in λ2_steps is equal
to the depth of the tree. One could argue that extracting the complete
contour tree with all the critical points and pruning its nodes afterwards
can result in equally valid vortices as was done in [7]. This is valid.
However, as mentioned earlier, the complete contour tree is very dense,
and the computational overhead of pruning the dense graph is higher
as compared to the sparse one. Picking the λ2_steps using our his-
togram expansion approach results in a sparse tree and any pruning (if
needed) is less computationally expensive simply due to the fact that
the resulting tree has fewer nodes.

1Here bin is a tuple representing a range of λ2 values



(a) (b)
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Fig. 3: This figure shows the finalized histograms using the histogram
expansion approach for (a) Bénard (b) Crayfish (c) Plume and (d) Couette
flow in a log scale. It can be seen that the concentration of values is
towards the larger λ2. Red dots show the indices of the bins being picked
using the Fibonacci series.

Given λ2_steps described above and the vortical regions {R} ex-
tracted using the region growing strategy mentioned in Sec. 4.1, we use
a top-down region-splitting strategy to split the regions. For each λ2
value in λ2_steps, we extract an isosurface and check if the iso-surface
has one or multiple parts/components. If the isosurface has only one
component, we do nothing and pick the next value from λ2_steps and
extract a new isosurface. If the isosurface has multiple components
then we split a region R as follows. We first assign a unique ’color id’
to each component of the isosurface. Then for each individual cell in R,
we assign it the ’id’ same as ’color id’ of the isosurface component to
which it is closest depending on the Euclidean distance. This process is
shown in Fig. 4. Generally, if there are m isosurface components, the
region will get split into m smaller regions. We repeat this process for
each value in λ2_steps. In region splitting, we ignore the isosurface
components which are smaller than a certain number of cells. In our
implementation, we set this to 0.01% of the total number of voxels in
the dataset.

Since each region R ∈ {R} is an independent unstructured grid,
the splitting can be performed in parallel. This process results in
a hierarchical tree of vortical regions. The tree’s level represents a
particular λ2 isovalue that caused the region to split at that level and
nodes represent the vortical regions. The hierarchical relation between
the nodes represents the parent regions and the child regions that it got
split into. The leaf nodes show the final vortical regions that cannot be
split anymore.
Controlling the Tree’s Density: There are two ways to control the
density (or the number of nodes) of the tree. Firstly, by the choice
of parameters in steps (i) and (ii) of the histogram expansion strategy
above, increasing the number of bins in step (i) pushes the smaller λ2
values toward the higher bins. This decreases the λ2 value correspond-
ing to each index in λ2_steps, therefore, resulting in bigger step sizes.
Due to the bigger step sizes, the vortices will split less and the tree will
be sparser. Conversely, increasing the stop threshold and the factor to
increase the number of bins, in step (ii), increases the corresponding
λ2 values in λ2_steps. This results in smaller step sizes and conse-
quently a denser tree. Secondly, in order to avoid degenerate splits
which consequently control the tree’s density, we define two ratios. The
ratio between the length of the isosurface component and the length
of the region R is called the local length ratio denoted as Lr. Here
“length” means the length of the diagonal of the bounding box of the
object. The ratio between the length of the region and the length of the
dataset is called the global length ratio denoted as Gr. We ignore the
isosurface components which have Lr <

V SF
Gr

, here V SF is prolonged
as the Vortex Size Factor. Flow datasets can have small vortices in

(a)

(b)

Fig. 4: This figure shows the region-splitting process based on the
underlying λ2 iso-surfaces. The left side shows the extracted isosurfaces
and the right side shows the extracted unstructured grid using the region-
growing strategy. In (a) there is only one iso-surface component so the
region is not split (same color). In (b) there are 3 iso-surface components
(different colors) so the region gets split into 3 children.

comparison with the length of the dataset and vice versa. V SF allows
the user to control the size of the extracted vortices in the dataset, e.g.,
in the Plume and Crayfish flows, the vortices are smaller in size when
compared with the length of the dataset, thus V SF should be set to a
smaller value; and in Cylinder and Bénard flows, the vortices are larger
in size, therefore V SF should be set to a larger value. Moreover, Lr is
inversely proportional to Gr. At the start of the region splitting process,
Gr is relatively large, therefore it allows the isosurface components
with smaller Lr to split. When regions get split into smaller regions, Gr
decreases and it only allows relatively larger isosurface components to
split. This is because, at smaller scales, we want more accurate splits.
It is recommended to use V SF to control the density of the tree. The
default value of 3.5 is used in our experiments for all the datasets men-
tioned in Tab. 2. For a general turbulent flow, we recommend starting
with the default V SF value and subsequently increasing/decreasing the
value to increase/decrease the amount of split if necessary.
Region Simplification: The region growing and splitting approach may
result in vortical regions of irregular shapes. This is more prominent in
small-scale and coarse-grained datasets, e.g. Bénard flow. We use geo-
metric and physical criteria to simplify such ill-structured regions into
accurate shapes. We remove all the cells having less than 6 neighbors.
For all the remaining cells, we remove the ones having λ2 value less
than the average λ2 value of the region and the number of cell neigh-
bors less than 8. The values of 6 and 8 above are user-controlled. The
default values provide a minimal necessary amount of simplification
based on our experiments on datasets in Tab. 1. One simple example of
region simplification is shown in Fig. 5.

Fig. 5: This figure shows an extracted vortical region. The red lines
are vortex lines. The cells highlighted in black are ill-connected and
have very low vorticity. After the region simplification, we are only left
with the green region. It can be seen that the simplified region is more
homogeneous and have strong vorticity which is depicted by the multiple
vortex lines (red).

5 VORTEX PROFILE CONSTRUCTION

We construct a profile for each separated vortex. The profile includes its
geometric features, such as size, length, orientation, curvature, etc. The
vortex profile also contains important physical properties of the vortex
such as the average vorticity, enstrophy, and others (such as Q, λ2, etc.).
The list of all the features included in the vortex profile is shown in
Tab. 1. This profile forms a feature vector that statistically represents
this vortex. With this representation, (1) we can calculate the statistics
of the profiles of all the vortices. For example, we can find the vortex
having the average, minimum (and/or maximum) values of certain fea-
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Fig. 6: This figure shows the skeletonization process of an extracted
vortical region. (a) shows the grid of the vortical region, (b) shows the
smooth surface of the grid, and (c) shows the extracted skeleton (black).
Streamlines (red) verify that the grid is a vortical region.

tures. (2) We can sort and visualize the subset of vortices by specifying
the range of a certain feature in the vortex profile. Furthermore, (3)
we can project each vortex to a low-dimensional space based on their
respective signature vectors using a certain dimensionality reduction
technique. We then can perform clustering to classify vortices into
different clusters depending on their features.

These functionalities are further demonstrated in Sec. 7. Since the
extracted vortices are unstructured grids, approximating geometric fea-
tures (such as shape, orientation etc.) is not straightforward. Therefore,
we resort to skeleton extraction to approximate such geometric fea-
tures. We extract vortex skeletons using the mean curvature skeletons
(MCFSKEL) [46]. We first extract the outer surface of the vortical
region, smooth it and apply MCFSKEL to extract the skeleton. We also
tried using vortex corelines for shape approximation as done in [55],
but vortex corelines might be broken and disconnected. We use the
surface of the unstructured grid instead of λ2 isosurface because the
λ2 isosurface may not cover the entire region due to the isovalue used
to split that region. The λ2 isosurface may also have boundaries. The
surface of the unstructured grid is complete and closed. Since the outer
surface of an unstructured grid can be bumpy depending on the cell
type, therefore we perform surface smoothing. We use 10 iterations
of Laplacian Smoothing [13] to keep the underlying shape intact and
reduce the bumps minimally. With less than 10 iterations, the bumps
are significantly visible, and with more than 20 iterations, the mesh
starts to shrink based on our experiments. The skeletonization process
is shown in Fig. 6.

Last four rows of Tab. 1 represent the shape and orientation informa-
tion of the skeleton. Curvature (C) is calculated as the normalized sum
of angles between the normalized tangents on adjacent pairs of points
on the skeleton. The variable Streamwise Direction (St ) quantifies the
vortex direction towards streamwise. It is calculated as the normalized
sum of dot products between the unit vector in streamwise direction
and the normalized vectors formed by the line segments between two
adjacent points in the skeleton. Similarly, Spanwise Direction (Sp)
is computed with the unit vector in the spanwise direction and Verti-
cal Direction (Sv) with the unit vector of the 3rd direction which is

Table 1: This table shows the features used for constructing vortex
profiles. The geometric features (last 4 rows) are normalized with the
number of points in the skeleton. The physical features (first 6 rows) are
the volume averages of the vortical (unstructured) grids. For vector and
tensor quantities such as velocity and Jacobian, we take the average of
the magnitude and norm respectively. This results in a 19-dimensional
feature vector for each vortex1.

Vortex Profile Features List
Name Symbol Name Symbol
Lambda2 λ2 Lambdaci λci
Q Q Delta ∆

Divergence Div Spanwise Vorticity
Fluctuations (Oyf)

ω ′
y

Size (# of Voxels) Size Vorticity ω

Enstrophy ξ Velocity V
Acceleration a Jacobian J
Curvature C Hairpin Curvature

(eq.3)
C̃h

Streamwise Direction St Spanwise Direction Sp
Vertical Direction Sv Length (eq.3) L
Bbox Ratio (eq.3) ρ - -

(a) (b)

(c) (d)

Fig. 7: This figure shows the effect of applying Steps 1, 2, and 3 to
identify candidate hairpin vortices in the Couette flow. (a) shows all
the vortices, (b) shows the effect of applying Steps 1 and 2, and (c)
shows the candidate hairpin vortices. Blurring in (b) and (c) shows that
those vortices have been filtered out. Random colors are assigned to
differentiate between vortices. (d) shows the results of the work [55] for
comparison purposes. (Best viewed in zoom).

perpendicular to both streamwise and spanwise directions.
After constructing the profiles for individual vortices, all or subsets

of the attributes in the profiles can be used to characterize the different
types of vortices. Next, we concentrate on hairpin vortices and their
characterization.

6 HAIRPIN VORTEX IDENTIFICATION

In order to accurately identify hairpin vortices, several factors need to
be accounted for. Generally, at low Reynolds numbers, hairpin vortices
have relatively well-defined shapes and separate from each other. At
medium and high Reynolds numbers, hairpin vortices start to take
different forms due to the viscous stress imposed by other close-by
coherent structures [1]. In the literature, hairpin vortices are sometimes
also called "Arches", "Horseshoes" or "Omega-shaped" vortices due
to the fact that the hairpin may not have legs and/or have a single
leg [1]. Moreover, the organization of the hairpin is not a single-step
phenomenon. During the whole lifespan of a hairpin vortex, it goes
through different shapes and forms. Three major stages in the hairpin
vortex lifespan are: (a) Formation, (b) Roll Up and (c) Breakdown,
details in [26]1. During stages (a) and (b), the spanwise vorticity
fluctuations ω ′

y have a strong positive value in the head of the hairpin
vortex [1]. Therefore, we make ω ′

y as the primary physical feature to
detect hairpin vortices. In stage (a), the hairpin vortex has an "arch"
and at stage (b), the shape is like a "Hairpin" if both legs are present or
an "Omega" like shape if the legs are partial or not present entirely. If
there is only one leg, the head still has an "arch". To quantify "arch",
we calculate the curvature C of the skeleton of the vortex in Tab. 1 and
use it as the primary geometric feature. We also use St , Sp and Sv in
Tab. 1 as the secondary geometric features for the task.

In the Couette flow dataset, the wall with the no-slip condition1 is
better suited for the generation of hairpin vortices [28]. Therefore, in
order to identify hairpin vortices, we first put more emphasis on the
vortices close to the no-slip bottom boundary in the Couette flow [28].
The steps to identify hairpin vortices are given below.

Step 1: We discard all the vortices with St > T1, Sp > T1, and Sv > T1,
meaning filter out all the vortices which are entirely in the streamwise,
spanwise or vertical direction. Again by vertical, we mean the direction
perpendicular to the streamwise and spanwise. Where T1 is a user-
specified parameter which we set to 0.99 in our implementation.

Step 2: We remove vortices based on their spanwise vorticity fluctua-
tions (ω ′

y). Since we focus on the vortices near the bottom boundary,
to suppress the vortices that have high ω ′

y and are far away from the
bottom, we first multiply the original ω ′

y by t = 1− z−Zmin
Zmax−Zmin

(Zmin and
Zmax are the z coordinates for the bottom and top boundaries of the
domain, respectively).

1Readers can refer to the supplemental document for additional details.



(a) (b)

(c) (d)

Fig. 8: This figure shows an example interaction between (a) Cluster View, (b) 3D View, (c) Tree View, and (d) PCP View. The vortices highlighted in
3D View (b), the lines in PCP view (d), and the leaf nodes in the Tree View (c) correspond to cluster 1 highlighted in (a). The node highlighted in red
is selected by the user in the tree view (c), and the corresponding vortex and profile is highlighted in the 3D view (red) and the PCP view (red line).
The tree (c) shows the hierarchy of the vortices in the selected cluster. We highlight some clusters with their respective id for reference purposes.

Note that ω ′
y is calculated at the individual points and can be both

positive and negative ω ′
y. If we directly calculate the average based

on all points within a vortex, the negative values decrease the overall
average. To avoid this problem, we calculate the root mean square
(RMS) of ω ′

y along the vortex skeleton. There are a few considerations
while calculating the RMS. (a) If all the points of the vortex skeleton
have a negative ω ′

y, the RMS will still be high. (b) One can calculate
the average of the points with positive ω ′

y only; but if only a small
percentage of the points have positive ω ′

y, their average will be high
and we completely ignore the effect of the points with negative ω ′

y. (c)
On the other hand, if we consider only the positive ω ′

y values and divide
them by the total number of points, the RMS will get smaller even for
the vortices having strong sections of high ω ′

y. To address these issues,
we calculate the RMS using equation Eq. (1).

RMS(ω ′
y) =

√
1
n ∑(ω ′′

y )
2, ω

′′
y =

{
ω ′

y, if ω ′
y ≥ 0

0.1×ω ′
y, if ω ′

y < 0 (1)

where n is the number of points in the skeleton. This will reduce the
effect of negative ω ′

y values while retaining the importance of positive
ω ′

y values. We filter out the vortices with RMS(ω ′
y)≤ 0.

Step 3: We remove vortices having low curvature (i.e., those flat vor-
tices). To achieve that, we follow the properties of the hairpin vortices
from [26] and [1]. At stage (a), the direction of the hairpin vortices ex-
hibits a high spanwise component Sp. During the roll-up stage, hairpin
vortices thrust in a direction perpendicular to the wall. Therefore, they
also exhibit a high vertical direction component Sv. Hairpin vortices
are less likely to have the major part of their direction purely stream-
wise since their heads mostly point in the spanwise direction which
reduces the overall streamwise component St . If a vortex has a very
high percentage of streamwise direction component St , it is more likely
to be a quasi-streamwise vortex. Therefore, we penalize the vortex
curvature having a high St . We incorporate these direction components
to calculate the hairpin curvature Ch using Eq. (2).

Ch =C× (1−St)×Sp ×Sv (2)
where C is the curvature calculated in Tab. 1. Next, we calculate
the oriented bounding box surrounding the vortex skeleton, denoted as
bbox, and the length of the skeleton, L, which is calculated as the sum of
the Euclidean distances between the adjacent points. We then calculate
ρ = L

||bbox|| (||bbox|| is the length of the diagonal of the bbox). ρ is close

to 1 for straight skeletons, while larger than 1 for the skeleton having a
larger curvature. This is another way to quantify high curvature. We
reward a vortex for having a large ρ . Moreover, we also incentivize a
vortex for having a longer skeleton as given in Eq. (3).

C̃h =Ch ×ρ × L
4
√

n
(3)

where n in the number of points in the skeleton. C̃h is a user-specified
parameter. To retain as many candidate hairpin vortices as possible,
we set C̃h = 1 in our implementation, which is considerably low as
compared to the complete hairpin vortices which we show in Sec. 8.
In addition, we ignore skeletons having length L less than 1% of the
dimension of the flow domain. Fig. 7 demonstrate the effect of steps 1,
2 and 3 above.

7 AN INTERACTIVE VISUALIZATION SYSTEM

We develop an interactive visualization system for the domain experts
to perform analysis of vortices in fluid flows. The visualization system
is decoupled from the vortex extraction, separation, and profiling of
the pipeline, therefore it can be used for the analysis of the hairpin as
well as general vortices. The system provides multiple linked-views,
each representing a different perspective of the separated vortices. Each
view along with their reason for inclusion is explained below.

1. 3D View: This view allows the user to select and visualize the
vortices directly from the 3D space. This view provides a tradi-
tional way of interacting with objects in 3D space (Fig. 8a), which
is necessary for the majority of visualization systems.

2. Parallel Coordinate Plot (PCP) View: The PCP view is in-
cluded to both visualize high dimensional vortex profiles (Fig. 8d)
and compare multiple vortices at the same time. It also helps
shortlist the attributes for clustering (Sec. 8). The PCP view is
linked with the 3D volume view. If the user clicks on a particular
line/profile in the PCP view, the vortex corresponding to that line
gets highlighted in the volume view.

3. Tree View: Tree view is the most important component for user-
interaction (Fig. 8c). This view is included to enable exploration
of the hierarchy of vortices formed during the separation process
as mentioned in Sec. 4. Since the number of nodes can be very
large depending on the number of extracted vortices, visualizing
the whole tree in a limited screen space can result in cluttering.



Therefore we resort to extracting and showing the sub-tree instead.
The number of nodes for the sub-tree, the criterion to use for
sorting the nodes, and the minimum size (i.e., # of voxels) of
the vortex are user-specified. On the sub-tree extraction, the
PCP view also gets updated showing the statistics of all vortices
corresponding to the current tree nodes. The tree view is linked
with the 3D view as well. Whenever the user selects a particular
node in the tree, the vortex corresponding to that particular node
gets highlighted in the volume.

4. Scatter Plot View: Since clustering is the final step to identify
hairpin vortices, this view is included to visualize the clustering
results using a 2D scatter plot (Fig. 8a). Our system allows
the user to select a subset of attributes from the vortex profile
to use for clustering. We adopt the widely used combination
of t-SNE [47] and DBSCAN [12] for dimensionality reduction
and clustering of the vortices respectively. Upon selection of
a particular cluster from the scatter plot, the PCP plot and the
corresponding vortices will get highlighted in the 3D view.

Figure 8 demonstrates an example interaction between different
views for the analysis of vortices.

8 RESULTS AND APPLICATIONS

We have applied our vortex extraction and classification and the devel-
oped interactive visualization system to a number of flow datasets to
assess its effectiveness. Table 2 provides the statistics of these data sets
and their resulting vortices. The parameters used for each data set are
also provided.

8.1 Application to Turbulent Couette Flow

We apply our system to the vector field dataset of the numerical sim-
ulation of stress-driven turbulent Couette flow by Yang et. al. [28].
The dataset is the result of turbulent flows over progressive surface
waves. It has a dimension of 384× 384× 193. We first apply our
region growing and splitting strategy to extract vortices from the input
flow, which results in 430 separable vortices. We then constructed the
profiles using all the attributes mentioned in Tab. 1. We then shortlist
the candidate hairpin vortices close to the bottom no-slip boundary
using the steps mentioned in Sec. 6 as demonstrated in Fig. 7. We
compare the identified candidates Fig. 7c with those (Fig. 7d) by a
recent hairpin vortex extraction technique based on a shape matching
of vortex corelines given a hairpin template [55]. We see that our
method identifies candidates that include most hairpins with fewer false
positives.

In order to further narrow down our search for the hairpin vortices,
we use our interactive visualization system to perform clustering using
t-SNE and DBSCAN. The clustering result is shown in Fig. 8a. To
represent a good combination of both physical and geometric attributes,
we use λ2, ω ′

y, C̃h, St , Sp, Sv and L for clustering. Below we showcase
several interesting findings corresponding to the highlighted clusters in
Fig. 8a.

Figure 9 shows vortices belonging to cluster 6 from the clustering
results of Fig. 8a. This cluster reveals two “Omega” shaped structures
that best depict the geometry of a hairpin. These “Omega” shaped
hairpins usually are in their later stage (i.e., disconnected from their
legs) and will be lifted to the middle part of the flow. The streamlines
show strong vorticity and the presence of strong positive ω ′

y in the
curved sections of the vortices resembling the physical and geometric
characteristics of the head of a hairpin vortex as discussed in Sec. 6.
The vortex shown in Fig. 9c doesn’t have a perfect "omega" like shape
but does have a strong positive ω ′

y and enstrophy as shown in the
highlighted line (red) in the PCP. It could consist of a part of a hairpin
(left branch) and another non-hairpin vortex (right branch).

Figure 10 shows vortices belonging to cluster 5. This cluster reveals
“arches” with strong positive ω ′

y in the spanwise direction depicted by
the high Sp component highlighted (black box) in the PCP view. This
"arch" like shape in the spanwise direction is more aligned with stage
(a) of the life span. The value of ω ′

y in the vortex in Fig. 10b shows
a decreasing trend from left to right which is visible by the color of

(a)

(b) (c) (d)

(e)

Fig. 9: Vortices of cluster 6 in Fig. 8a. (a) highlights the vortices in the
flow domain. Zoomed-in views of the three vortices from left to right are
shown in (b), (c), and (d) along with their skeleton (black) and streamlines
(colored by ω ′

y) (e) shows the PCP of the vortices.

(a)

(b) (c) (d)

(e)

Fig. 10: This figure shows vortices belonging to the cluster 5 in Fig. 8a.
3D View (a) highlights the vortices in the flow domain. Zoomed-in ver-
sions of the bottom left, bottom right, and top vortex are shown in (b),
(c), and (d) respectively, along with their skeleton (black) and streamlines
(colored by ω ′

y) (e) shows the PCP of the vortices.

streamlines. This pattern of ω ′
y is similar to the pattern of one-legged



Table 2: This table shows the parameters and performance statistics of the flow datasets used in our experiments. Time shows the performance of
the region growing and splitting. PP Time is the performance measure of the post-processing (PP) steps including the region simplification, surface
extraction, skeletonization, and vortex profiling combined (with a serial implementation). The performance is measured on a PC with an Intel Xeon(R)
CPU E5-2630 and 32G RAM. Readers can refer to the supplemental document for the details of the datasets.

Parameters Used for each Data Set and Respective Results
Data Set Size Initial λ2 value(λ2i) # of Nodes # of Leaf Nodes Tree Depth Time (s) PP Time (s)

Bénard 248031 -6.3574 66 47 7 16 22
Cylinder 565551 -0.0036 120 83 16 23 60
Crayfish 6098358 -0.0012 927 626 9 326 369
Plume 7984375 -4.9261 363 290 24 1141 470
Couette 28164288 -0.0168 532 430 7 430 651

(a)

(b)

(c)

Fig. 11: Vortices of cluster 3 in Fig. 8a. (a) highlights the vortices in
the flow domain. (b) shows the tree view and hierarchy of two vortices
highlighted in a circle in (a). The vorticity lines in the leftmost vortex in
(b) are color-coded with ω ′

y. (e) shows the PCP of the vortices.

hairpin as discussed in Sec. 6.

Figure 11 shows vortices belonging to cluster 3. This cluster re-
veals vortices having a high roll-up/elevation which is depicted by the
grouping of PCP lines at the Sv component of the PCP (highlighted in
black). However, most of them are not hairpin vortices at their current
stage, except for the ones highlighted. The close-up view (Fig. 11b) of
these two vortices show they assemble the two legs of a hairpin vortex
with a high elevation toward the streamwise direction. Figure 11b also
shows an example of the usability of the tree view. The leaf nodes high-
lighted in black correspond to two vortices highlighted in red in their
respective figures. Upon selection of the parent node of these vortices,
it is revealed that the two vortices actually belong to the same vortex
which has a shape like a hairpin and has a strong positive value of ω ′

y
close to the head. The contiguous skeleton (black) and the continuous

(a)

(b) (c) (d)

(e)

Fig. 12: Vortices of cluster 0 in Fig. 8a. 3D View (a) highlights the vortices
in the flow domain. Zoomed-in versions of the top three nodes of the
tree view are shown in (b), (c), and (d), respectively, along with their
skeleton (black) and streamlines (colored by ω ′

y). (e) shows the PCP of
the vortices. (b) and (c) show the top-down view and (d) shows the side
angle view.

vorticity lines verify the fact that it is the same vortex that suffered from
a degenerate split.

Figure 12 shows the vortices belonging to cluster 0. The vortices
in this cluster are mostly in the streamwise direction as depicted by
the grouping of lines at St axis (highlighted in the black box) in the
PCP view (Fig. 12e) and the direction of the vortices in Fig. 12b and
Fig. 12c. Most of them are not hairpin vortices. However, the expert
points out that the vortex in Fig. 12b could be an incomplete hairpin
vortex due to its uplifting orientation and strong spanwise vorticity at
the right end, which is also depicted by the well-organized swirling
pattern of streamlines. The vortex in Fig. 12d, has a different symmetry
than other vortices in the cluster which is depicted by the curvature axis
(highlighted in the grey box) of the highlighted (red) line of the PCP
plot. It has a much high curvature but low St , compared to the rest in
cluster 0. It could be a part of a hairpin, but probably less organized
based on the pattern shown by the streamlines.
Expert Evaluation. The system and results have been evaluated by the
expert. The expert made a general comment, saying that the proposed
method allows them “to observe a significant variation of the detailed
characteristics (e.g., geometry, size, elevation, orientation, etc.) of



(a) (b)

(c) (d)

Fig. 13: Clustering results for the Bénard flow. (a) shows the PCP view
and (b) shows the scatter plot of the clustering results. (c) and (d) show
the vortices corresponding to clusters 3 and 1, respectively.

each identified structure, including hairpin vortices. Based on these
individual samples, we can obtain the true statistics of a certain type of
structure.” Among the identified candidate hairpin vortices, “clearly,
some of them are hairpin vortices, but some of them are not. This is
actually great.”. Some of these vortices, while do not look like a hairpin,

“may still be related to hairpin vortices”. This is because “...all the flow
structures are evolving continuously in a turbulent flow field due to
disturbances from other neighboring flow structures. A hairpin vortex
may be generated by some instability mechanism or by flow induction
of an existing vortex structure. It may start with the head first or the
two legs first; evolve into a full hairpin; with one leg destroyed by other
neighboring flow structures; eventually evolve back to a one-legged
quasi-streamwise/spanwise vortex or a pure spanwise vortex with the
head only”. The expert also pointed out that to further investigate
whether some possible candidates (e.g., the vortex shown in Fig. 12b)
are hairpins or not, ”we will need to look at a series of instantaneous
snapshots in a short time period to identify and track individual vortex
structures” in the future. Nonetheless, the expert believes the developed
technique and system provide a valuable and unified tool for the study
of hairpins and other vortices in turbulent flows.

8.2 Application to Other Flows

We next apply our method to other flows, including the Bénard flow,
the flow behind a square cylinder, Plume, and Crayfish. Due to limited
space, we only present the results for Bénard and Cylinder flows.

Figure 13 shows the clustering results for the Bénard flow. First,
we analyze the PCP (Fig. 13a) for all vortices to shortlist the fea-
tures/attributes to use for clustering. The features belonging to the
axis of the PCP having a high variance/spread are better suited to use
for clustering (as highlighted in black). Depending on the analysis
of the PCP view, we use λ2, size, St , and Sv for clustering. Results
reveal the vortices of different scales and orientations in Fig. 13c and
Fig. 13d. Especially, the vortices in Fig. 13c correspond to two primary
convection vortices, while the smaller vortices in Fig. 13d are the sec-
ondary vortices with orientation perpendicular to the primary vortices.
The clustering captures the symmetry properties of these vortices and
separates them based on their scales and orientations.

We use the same approach to shortlist features to cluster the vortices
in the Cylinder Flow. The results are shown in Fig. 14. We use the PCP
(Fig. 14a) to select the features with a large spread (highlighted in red)
to use for clustering. All the vortices in the von Kármán vortex street
belong to cluster 1 in Fig. 14b which are highlighted in Fig. 14c. This
shows a powerful demonstration of clustering the vortices based on the
combination of physical and geometric attributes.

9 SUMMARY AND FUTURE WORK

In this work, we introduced a framework for hairpin vortex extraction
and characterization. Our framework extracts the individual vortices
using a region-growing and region-splitting process. A profile is then
built for each vortex using its relevant physical and geometric attributes.
Next, a set of criteria are defined and applied to select candidate hairpin

(a)

(b)

(c)

Fig. 14: Clustering results for the Cylinder flow. (a) shows the PCP view
and (b) shows the scatter plot of the clustering results. (c) shows the
vortices corresponding to cluster 1 in (b).

vortices, from which the true hairpin vortices are separated using cluster-
ing. We develop a visualization system to support the user exploration
and analysis of the extracted vortices using different linked-views. We
demonstrate the effectiveness of our method and system by extracting
hairpin vortices from the stress-driven turbulent Couette flow and by
applying it to the exploration of vortices in other flows.

Limitations: Degenerate vortex splitting is the major limitation in
the current vortex separation approach. It limits the ability to perform
geometric analysis on the separated vortices. In addition, the current
filtering criteria for identifying hairpin vortices are still not sufficiently
refined, leading to candidates with some false positive hairpins. This
is similar to the identification of other types of vortices due to the
lack of knowledge of those vortices. Finally, our method doesn’t
generalize to turbulence without predominant streamwise direction (e.g.
homogeneous isotropic turbulence).

Future Work: We plan to address the limitations mentioned above.
In particular, we will look into [44], they tried to solve the vortex
splitting problem using the largest contour tree segmentation of the
contour tree. In addition, we will extend our framework to handle the
time-dependent turbulent flows for vortex tracking. We will also apply
it to the slip boundary (i.e., the top boundary of the Couette flow) where
the knowledge about hairpin vortices there is little.

SUPPLEMENTAL MATERIALS

The supplemental materials include (1) a document containing details
of the physical attributes mentioned in Tab. 1, the datasets used in
Tab. 2 and a figure explaining stages of the hairpin vortices, (2) a video
explaining the usage of the interactive visualization system (Sec. 7)
and (3) the CODE for vortex extraction and separation (Sec. 4) and the
interactive visualization system (Sec. 7).
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