
Data Formulator: AI-powered Concept-driven Visualization Authoring

Chenglong Wang , John Thompson , and Bongshin Lee

Abstract—With most modern visualization tools, authors need to transform their data into tidy formats to create visualizations they
want. Because this requires experience with programming or separate data processing tools, data transformation remains a barrier in
visualization authoring. To address this challenge, we present a new visualization paradigm, concept binding, that separates high-level
visualization intents and low-level data transformation steps, leveraging an AI agent. We realize this paradigm in Data Formulator, an
interactive visualization authoring tool. With Data Formulator, authors first define data concepts they plan to visualize using natural
languages or examples, and then bind them to visual channels. Data Formulator then dispatches its AI-agent to automatically transform
the input data to surface these concepts and generate desired visualizations. When presenting the results (transformed table and
output visualizations) from the AI agent, Data Formulator provides feedback to help authors inspect and understand them. A user study
with 10 participants shows that participants could learn and use Data Formulator to create visualizations that involve challenging data
transformations, and presents interesting future research directions.

Index Terms—AI, visualization authoring, data transformation, programming by example, natural language, large language model

1 INTRODUCTION

Most modern visualization authoring tools (e.g., Charticulator [39],
Data Illustrator [27], Lyra [42]) and libraries (e.g., ggplot2 [53], Vega-
Lite [44]) expect tidy data [54], where every variable to be visualized
is a column and each observation is a row. When the input data is in
the tidy format, authors simply need to bind data columns to visual
channels (e.g., Date → x-axis, Temperature → y-axis, City → color in
Fig. 1). Otherwise, they need to prepare the data, even if the original
data is clean and contains all information needed [3]. Authors usually
rely on data transformation libraries (e.g., tidyverse [55], pandas [33])
or separate interactive tools (e.g., Wrangler [17]) to transform data
into the appropriate format. However, authors need either program-
ming experience or tool expertise to transform data, and they have to
withstand the overhead of switching between visualization and data
transformation steps. The challenge of data transformation remains a
barrier in visualization authoring.

To address the data transformation challenge, we explore a funda-
mentally different approach for visualization authoring, leveraging an
AI agent. We separate the high-level visualization intent “what to visual-
ize” from the low-level data transformation steps of “how to format data
to visualize,” and automate the latter to reduce the data transformation
burden. Specifically, we support two key types of data transformations
(and their combinations) needed for visualization authoring:

• Reshaping: A variable to be visualized is spread across multiple
columns or one column includes multiple variables. For example,
if authors want to create a different scatter plot from the table
in Fig. 1 by mapping Seattle and Atlanta temperatures to x,y-
axes (Fig. 2- 1), they need to first “pivot” the table from long to
wide format, because both variables of interest are stored in the
Temperature column and are not readily available.

• Derivation: A variable needs to be extracted or derived from
one or more existing columns. For example, if authors want to
create a bar chart to show daily temperature differences between
two cities (Fig. 2- 2) and a histogram to count the number of
days which city is warmer (Fig. 2- 3), they need to derive the
temperature difference and the name of the warmer city from the
two cities’ temperature columns, and map them to the y-axis and

• Chenglong Wang, John Thompson, and Bongshin Lee are with Microsoft
Research. E-mail: {chenglong.wang, johnthompson,
bongshin}@microsoft.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Fig. 1: A dataset of Seattle and Atlanta daily temperatures in 2020
left) and a scatter plot that visualizes them by mapping Date to x-axis,
emperature to y-axis, and City to color (right).

(
T

x-axis, respectively, and the city name to color channels of the
corresponding charts. The derivation is also needed when the
variable to be visualized requires analytical computation (e.g.,
aggregation, moving average, percentile) across multiple rows
from a column in the table. For example, to plot a line chart
to visualize the 7-day moving averages of Seattle temperatures
(Fig. 2- 4), the authors need to calculate the moving average
using a window function and map it to y-axis with Date on x-axis.

In this paper, we introduce Data Formulator, an interactive visual-
ization authoring tool that embodies a new paradigm, concept binding.
To create a visualization with Data Formulator, authors provide their
visualization intent by binding data concepts to visual channels. Upon
loading of a data table, existing data columns are provided as known
data concepts. When the required data concepts are not available to
author a given chart, the authors can create the concepts: either using
natural language prompts (for derivation) or by providing examples
(for reshaping). Data Formulator handles these two cases differently,
with different styles of input and feedback, and we provide a detailed
description of how they are handled in Sec. 2. Once the necessary data
concepts are available, the authors can select a chart type (e.g., scatter
plot, histogram) and map data concepts to desired visual channels. If
needed, Data Formulator dispatches the backend AI agent to infer nec-
essary data transformations to instantiate these new concepts based on
the input data and creates candidate visualizations. Because the authors’
high-level specifications can be ambiguous and Data Formulator may
generate multiple candidates, Data Formulator provides feedback to
explain and compare the results. With this feedback, the authors can
inspect, disambiguate, and refine the suggested visualizations. After
that, they can reuse or create additional data concepts to continue their
visualization authoring process.

We also report a chart reproduction study conducted with 10 partic-
ipants to gather feedback on the new concept binding approach that

https://orcid.org/0000-0002-5933-6620
https://orcid.org/0000-0002-3102-4035
https://orcid.org/0000-0002-4217-627X
mailto:reprints@ieee.org
mailto:bongshin}@microsoft.com

Fig. 2: Visualizations created from df in Fig. 1 that require data transformation: (1) a scatter plot with Seattle and Atlanta temperatures on x,y-axes,
(2) a bar chart to visualize the temperature difference between the two cities, (3) a histogram to count the number of days each city being warmer,
and (4) a smoothed line chart that shows the 7-day moving averages of Seattle temperature.

employs an AI agent, and to evaluate the usability of Data Formulator.
After an hour-long tutorial and practice session, most participants could
create desired charts by creating data concepts—both with derivation
and reshaping transformations. We conclude with a discussion on the
lessons learned from the design and evaluation of Data Formulator, as
well as important future research directions.

2 ILLUSTRATIVE SCENARIOS

In this section, we illustrate users’ experiences to create visualizations
in Figs. 1 and 2 using programs and Data Formulator from the initial
input data in Fig. 1. We refer to this dataset as df in this section.

2.1 Experience with Programming

We first illustrate how an experienced data scientist, Eunice, uses pro-
gramming to create the desired visualizations with pandas and Altair
libraries in Python.
Daily Temperature Trends. Eunice starts with the scatter plot in
Fig. 1. Because df is in the tidy format with Date, City, and Temperature
available, Eunice needs no data transformation and writes a simple
Altair program to create the plot:

alt.Chart(df).mark_circle().encode(x='Date', y='Temperature', color='City')

This program calls the Altair library (alt), selects the input dataset df
and the scatter plot function mark_circle, and maps columns to x,y and
color channels. It renders the desired scatter plot in Fig. 1.
Seattle vs. Atlanta Temperatures. To make a more direct comparison
of two cities’ temperatures, Eunice wants to create a different scatter
plot (Fig. 2- 1) by mapping Seattle and Atlanta temperatures to x,y-
axes. However, Seattle and Atlanta temperatures are not available as
columns in df. She therefore needs to transform df to surface them.
Because df is in the “long” format, where temperatures of both cities
are stored in one column Temperature, she needs to pivot the table to
the “wide” format. Eunice switches to the data transformation step and
uses the pivot function from the pandas library to reshape df (Fig. 3).
This program populates Seattle and Atlanta as new column names from
the City column, and their corresponding Temperature values are moved
to these new columns by Date. With df2, Eunice creates the desired
visualization, which maps Seattle and Atlanta to x,y-axes of the scatter
plot with the following program:

alt.Chart(df2).mark_circle().encode(x='Seattle', y='Atlanta')

Temperature Differences. Eunice wants to create two visualizations
to show how much warmer is Atlanta compared to Seattle: a bar chart
to visualize daily temperate differences (Fig. 2- 2) and a histogram
to show the number of days each city is warmer (Fig. 2- 3). Again,
because necessary fields Difference and Warmer are not in df2, Eunice
needs to transform the data. This time, she writes a program to perform
column-wise computation, which extends df2 with two new columns

Fig. 3: Prepare the new data df2 with the pivot function to populate
Seattle and Atlanta temperatures from City and Temperature columns.

Fig. 4: Extend df2 in Fig. 3 to derive Warmer, Difference, and Seattle
7-day Moving Avg columns that are necessary for visualizations in Fig. 2.

Warmer and Difference (Fig. 4). Eunice then creates the daily temper-
ature differences chart by mapping Date and Difference to x,y-axes
and the histogram by mapping Warmer to x-axis and the aggregation
function, count(), to y-axis to calculate the number of entries.

extend df2 with new columns 'Difference' and 'Warmer'
df2['Difference'] = df2['Seattle'] - df2['Atlanta']
df2['Warmer'] = df2['Difference'].apply(

lambda x: 'Seattle' if x > 0 else ('Atlanta' if x < 0 else 'Same'))

create the bar chart
alt.Chart(df2).mark_bar().encode(x='Date', y='Difference',

color='Warmer') →

create the histogram
alt.Chart(df2).mark_bar().encode(x='Warmer', y='count()',

color='Warmer') →

7-day Moving Average of Seattle’s Temperature. Finally, Eunice
wants to include a line chart for Seattle temperature trends in the report.
Because daily temperatures fluctuate, she decides to create a smooth
line chart based on 7-day moving average temperatures. Eunice needs
an analytical function to calculate the moving average. Because the
input data is sorted by Date, Eunice chooses the rolling function from
pandas: she sets window=7 and center=True so that the moving average
is calculated with a sliding window from day d −3 to day d +3 for each
date d. This transformation adds the new column Seattle 7-day Moving

Avg to df2 (Fig. 4; the first 3 days are null because of insufficient data),

Fig. 5: Data Formulator UI. After loading the input data, the authors interact with Data Formulator in four steps: (1) in the Concept Shelf, create (e.g.,
Seattle and Atlanta) or derive (e.g., Difference, Warmer) new data concepts they plan to visualize, (2) encode data concepts to visual channels of a
chart using Chart Builder and formulate the chart, (3) inspect the derived data automatically generated by Data Formulator, and (4) examine and save
generated visualizations. Throughout the process, Data Formulator provides feedback to help authors understand generated data and visualizations.

and Eunice maps Date and the new column to a line chart to create the
desired visualization (Fig. 2- 4).

df2['Seattle 7-day Moving Avg'] = df2['Seattle'].rolling(window=7, center=True)
alt.Chart(df2).mark_line().encode(x='Date', y='Seattle 7-day Moving Avg')

Remark. In all cases, Eunice can specify visualizations using simple
Altair programs by mapping data columns to visual channels. However,
data transformation steps make the visualization process challenging.
Eunice needs to choose the right type of transformation based on the
input data and desired visualization (e.g., creating the scatter plot in
Fig. 1 from df2 would require unpivot instead). Furthermore, Eunice
needs knowledge about pandas to choose the right function and pa-
rameters per task (e.g., rolling will not fit if Eunice wants to calculate
moving average for each city in df). Eunice’s programming experience
and data analysis expertise allowed her to successfully complete all
tasks. But a less experienced data scientist, Megan, finds this process
challenging. Megan decides to use Data Formulator to reduce the data
transformation overhead.

2.2 Experience with Data Formulator

Data Formulator (Fig. 5) has a similar interface as “shelf-configuration”-
style visualization tools like Tableau or Power BI. But unlike these
tools that support only mappings from input data columns to visual
channels, Data Formulator enables authors to create and derive new
data concepts and map them to visual channels to create visualizations
without requiring manual data transformation.
Daily Temperature Trends. Once Megan loads the input data (Fig. 1),
Data Formulator populates existing data columns (Date, City, and Tem-
perature) as known data concepts in the Concept Shelf. Because all
three data concepts are already available, no data transformation is
needed. Megan selects the visualization type “Scatter Plot” and maps
these data concepts to x,y and color channels in Chart Builder through
drag-and-drop interaction. Data Formulator then generates the desired
scatter plot.

Seattle vs. Atlanta Temperatures. To create the second scatter plot
(Fig. 4- 1), Megan needs to map Seattle and Atlanta temperatures to
x,y-axes of a scatter plot. Because Seattle and Atlanta temperatures are
not available as concepts yet, Megan starts out by creating a new data
concept Atlanta Temp (Fig. 6- 1): she clicks the new + button in the
Concept Shelf, which opens a concept card that asks her to name the
new concept and provide some examples values; Megan provides four
Atlanta temperatures (45, 47, 56, 41) from the input data as examples
and saves it. Similarly, Megan creates another new concept Seattle
Temp. Because Data Formulator’s current knowledge to them is limited
to their names and example values, both concepts are listed as an
unknown concept for now. (They will be resolved later when more
information is provided.)

With these new concepts and the Scatter Plot selected, Megan maps
new data concepts Seattle Temp and Atlanta Temp to x,y-axes (Fig. 6-
2), and then clicks the FORMULATE button to let Data Formulator
formulate the data and instantiate the chart. Based on the visualization
spec, Data Formulator realizes that the two unknown concepts are
related to each other but not yet certain how they relate to the input
data. Thus, Data Formulator prompts Megan with an example table
to complete: each row in the example table will be a data point in
the desired scatter plot. Megan needs to provide at least two data
points from the input data to guide Data Formulator on how to generate
this transform (Fig. 6- 3). Here, Megan provides the temperatures
of Atlanta and Seattle on 01/01/2020 and 01/02/2020 from the table
Fig. 1. When Megan submits the example, Data Formulator infers
a program that can transform the input data to generate a new table
with fields Atlanta Temp and Seattle Temp that subsumes the example
table provided by Megan. Data Formulator generates the new table and
renders the desired scatter plot (Fig. 6- 4). Megan inspects the derived
table and visualization and accepts them as correct.

Temperature Differences. To create a bar chart and a histogram
to visualize temperature differences between the two cities, Megan
needs two new concepts, Difference and Warmer. This time, Megan
notices that both concepts can be derived from existing fields based

Fig. 6: Megan (1) creates new data concepts, Seattle Temp and Atlanta Temp, by providing examples and (2) maps them to x,y-axes of a scatter plot
to specify the visualization intent. (3) Data Formulator asks Megan to provide a small example to illustrate how these two concepts are related, and
Megan confirms the example. (4) Based on the example, Data Formulator generates the data transformation and creates the desired visualization.

Fig. 7: (1) Megan derives the new concept Difference from Atlanta Temp and Seattle Temp using natural language. Data Formulator generates two
candidates and displays the first one in the concept card. (2) Megan opens the dialog to inspect both, confirms the first one, and saves the concept.

Fig. 8: Megan creates the bar chart using derived concepts, Difference
and Warmer, as well as an original concept Date.

on column-wise mappings, and thus she uses the “derive” function of
Data Formulator (Fig. 7). Megan first clicks the “derive new concept”
option on the existing concept Seattle Temp, which opens up a concept
card that lets her describe the transformation she wants using natural
language. Megan selects Seattle Temp and Atlanta Temp as the “de-
rived from” concepts, provides a name Difference for the new concept,
and describes the transform using natural language, “Calculate seattle
atlanta temp diff.” Megan then clicks the generate button and Data
Formulator dispatches its backend AI agent to generate code. Data
Formulator returns two code candidates and presents the first one in the
concept card. Megan opens up the dialog to inspect both candidates

and learns that because her description did not clearly specify whether
she wants the difference or its absolute value, Data Formulator returns
both options as candidates. After inspecting the example table and the
transformation code provided by Data Formulator, Megan confirms
the first candidate and saves the concept Difference. Similarly, Megan
creates a concept, Warmer, from Seattle Temp and Atlanta Temp with
the description “check which city is warmer, Atlanta, Seattle, or same.”
Data Formulator applies the data transformation on top of the derived
table from the last task and displays the extended table in Data View
(Fig. 5). Because both concepts are now ready to use, Megan maps
them to Chart Builder to create the desired visualizations (Fig. 8).

7-day Moving Average of Seattle’s Temperature. Last, Megan needs
to create a line chart with 7-day moving average temperatures. Because
the moving average can be derived from the Seattle Temp column,
Megan again chooses to use the derive function. Megan starts with a
brief description “calculate 7-day moving avg” and calls Data Formu-
lator to generate the desired transformation. Upon inspection, Megan
notices that the generated transformation is close but does not quite
match her intent: the 7-day moving average starts from d − 6 to d for
each day d as opposed to d − 3 to d + 3 (Fig. 9). Based on this obser-
vation, Megan changes the description into “calculate 7-day moving
avg, starts with 3 days before, and ends with 3 days after” and re-runs
Data Formulator. This time, Data Formulator generates the correct
transformation and presents the extended data table in Fig. 5. Megan
then maps Date and Seattle 7-day Moving Avg to x,y-axes of a line chart.

Fig. 9: Megan derives the 7-day moving averages from Seattle Temp.
After inspecting the results, she edits the description to be more precise.

Remark. With the help of Data Formulator, Megan creates visualiza-
tions without manually transforming data. Instead, Megan specifies the
data concepts she wants to visualize by:

• building new concepts using examples (when the new concept is
spread among multiple columns or multiple concepts are stored
in the same column, e.g., Seattle Temp and Atlanta Temp are both
stored in the Temperature column); and

• deriving new concepts using natural language (when the new
concept can be computed from existing ones using column-wise
operators, e.g., Difference from Seattle Temp and Atlanta Temp).

Megan then drags-and-drops data concepts to visual channels of a
chart. In this process, for derived concepts, Data Formulator displays
generated candidate code and example table to help Megan inspect and
select the transformation; for concepts created by example, Data For-
mulator prompts Megan to elaborate their relations by completing an
example table. Data Formulator then transforms the data and generates
the desired visualizations. Data Formulator reduces Megan’s visual-
ization overhead by shifting the task of specifying data transformation
into the task of inspecting generated data. Because Data Formulator’s
interaction model centers around data concepts, Megan does not need
to directly work with table-level operators, such as pivot, map/reduce
and partitioning, which are challenging to master.

3 THE DATA FORMULATOR DESIGN

In this section, we describe our design principles, explain Data For-
mulator’s interaction model, and how Data Formulator derives data
concepts and formulates visualizations from the author’s inputs.

3.1 Design Principles

Data Formulator introduces data concepts, an abstraction of the
columns needed for an author to specify their target visualization. To
eliminate the author’s burden to manually transform the data table
before plotting, we designed Data Formulator based on the following
guiding design principles.
Treat design concepts as first-class objects. The notion of data con-
cepts is a generalization of table columns: it is a reference to columns
both from a current table and from a future transformed table. They
offer two benefits. First, concept-level transformations are easier to
describe and understand than table-level operators. Table-level trans-
formations require either advanced operators like pivot and unpivot, or

high-order functions like map and window, while concept-level opera-
tors are first-order functions over primitive elements (e.g., arithmetic)
or lists (e.g., percentile). This makes it easier for the author to com-
municate with the AI agent and verify the results. Second, we can
build the interaction experience on top of existing designs people are
already familiar with: data concepts resemble data columns existing
shelf-configuration tools commonly use.
Leverage benefits from multiple interaction approaches. Data For-
mulator employs both natural language interaction (for deriving con-
cepts) and programming-by-example approach (for building custom
concepts). Natural language descriptions have a superior ability to trans-
late high-level intent into executable code and large language models
(LLMs) can reason about natural concepts (e.g., academic grades are A,
B, C, D, and F; months are from January to December). However, it can
be difficult for the author to provide proper descriptions if they do not
understand notions like pivoting, and natural language descriptions can
be imprecise and ambiguous. In contrast, while program synthesizers
cannot reason about natural concepts, they are less ambiguous, and it is
easier for the author to convey reshaping operations by demonstrating
the output relation. By incorporating multiple approaches and feed-
back for different transformation types (derivation vs. reshaping), Data
Formulator takes advantage of both, reducing the specification barrier
and improving the likelihood for the AI agent to generate correct and
interpretable codes.
Ensure correct data transformation and promote trust. While LLM
and program synthesizers can automatically generate code to eliminate
the author’s manual data transformation burden, they can incorrectly
generalize the author’s specification. Therefore, it is crucial for the
author to view and verify the results. Our design employs mechanisms
to ensure such inspection by the author: (1) display multiple candidates
for the author to review, if available, (2) display both the code (process)
and the sample output values (results) to help the author understand the
transformation, and (3) allow the author to edit the generated transfor-
mation code to correct or refine it.
Improve the system expressiveness. Data Formulator’s expressive-
ness is defined by the combination of transformation function and
visualization language. Data Formulator’s visualization spec builds
on top of Vega-Lite specifications. While Data Formulator’s UI does
not provide options to layer marks, the author can import their custom
Vega-Lite specs of layered visualizations to achieve the same design.
For data transformation, Data Formulator supports reshaping options
from tidyverse as described in Sec. 2, and it supports both column-wise
derivation and analytical computation that can be generated by the
LLM. Note that while our transformation language does not include
aggregation, the author can achieve the same visualization by setting
aggregation options on the desired axes (e.g., map Month to x-axis and
avg(Seattle Temp) to y-axis to create a bar chart with average temper-
ature). However, with the current design, the author cannot derive or
reshape data that first require aggregation without re-importing the
aggregated data.

3.2 Interaction Model

Figure 10 shows Data Formulator’s high-level interaction model. Data
Formulator first loads data columns from the input table as original
(and known) concepts (e.g., Date, City, and Temperature concepts in
Fig. 5). The author uses the Concept Shelf to create new data concepts,
if needed, in two ways (Sec. 3.3): (1) derive a concept from existing
ones by interacting with an AI agent using natural language or (2) build
a custom concept by providing example values. If the new concept is
derived from known concepts, Data Formulator immediately extends
the current data table and registers it as a known concept.

With necessary data concepts known, the author uses the Chart
Builder to map data concepts to visual channels of a chart. If unknown
custom concepts are used to specify a visualization, Data Formulator
asks the author to provide an example relation among the encoded
concepts to transform the input table by using a programming-by-
example approach. With the necessary data formulations applied, Data
Formulator generates a Vega-Lite spec and renders the visualization.

Fig. 10: Data Formulator’s interaction model.

3.3 Creating New Data Concepts

The author can derive a concept from one or more data concepts by
interacting with Data Formulator’s AI agent (Fig. 10- 1). In addition to
a concept name, the author provides both a list of source concepts from
which the new concept is derived and a natural language description
of the transformation (Fig. 7- 1). Data Formulator then generates a
contextualized prompt that grounds the description in the context of
source concepts. This prompt combines the author’s description and the
descriptions of input parameters for all source concepts (with example
values sampled from their domains) as comments, and joins it with
the function prefix to instruct the AI agent to complete a Typescript
function (as opposed to generate non-code text or uncontrolled code
snippets). Data Formulator prepares two types of prompts for each
query to cover simple derivation (Example 1) and analytical computa-
tion (Example 2) because it does not know if analytical computation is
needed beforehand.
Example 1: The prompt for “Calculate seattle atlanta temp diff” with
source concepts Seattle Temp and Atlanta Temp (Fig. 7).

// Calculate seattle atlanta temp diff
// @param seattleTemp examples: 51, 45, 48
// @param atlantaTemp examples: 45, 47, 56
(seattleTemp: number, atlantaTemp: number) => {

Example 2: The prompt for “calculate 7-day moving avg” with source
concept Seattle Temp (Fig. 9). It provides index and seattleTempList so
that the function can access to other values of the seattleTemp when
analytical computation is needed (e.g., calculate the moving average for
current index, derive percentile of the seatteTemp among all values).

// calculate 7-day moving avg
// @param seattleTemp examples: 51, 45, 48
// @param seattleTempList: the list of all seattleTemp
(seattleTemp: number, index: number, seattleTempList: number[]) => {

Data Formulator sends both prompts to LLM (we use Codex Davinci
2 [7]) to generate the transformation code (Fig. 10- 2), asking for five
candidate completions. When candidate programs are returned from
LLM, Data Formulator filters out programs that are not executable or
contain error outputs by executing them on sample values from source
domains. Data Formulator then presents the programs along with their
example execution results for the author to inspect (Fig. 7). Once
confirmed, a new derived concept is created and shown in the Concept
Shelf. If all source fields are known concepts, Data Formulator derives
a new column by applying the transformation function to every tuple
from the source columns and appends the column in the current table
for the author to review (e.g., Fig. 5).

The author can also build a custom concept by providing its name
and a set of example values that belong to its domain (Fig. 10- 3).
Custom concepts are designed to support data reshaping: the author
creates custom concepts when (1) the concept is spread across multiple
columns; the author wants to combine multiple columns in a wide table
to create one new concept in a long table, (2) multiple concepts are

stored in one column; they want to surface fields from a long table,
and (3) multiple values for a concept are collapsed in a column as a
list (e.g., the value for an “actors” column is a list of actors for each
movie); the author wants to split the list into multiple rows (i.e., one
actor per row). These custom concepts are not known yet upon creation
because Data Formulator needs additional information from the author
to resolve their relation with the input data. As we will describe in
the next section, the resolution is achieved by inferring the reshaping
program based on the example relations provided by the user.

With data concepts (including newly crated ones) ready, the author
is ready to interact with the Chart Builder to create visualizations.

3.4 Specifying and Formulating the Visualization

Chart Builder employs a shelf-configuration interface: authors drag-
and-drop data concepts to visual channels of the selected visualization
to specify visual encoding. Based on the encoding, Data Formulator
generates a Vega-Lite specification (e.g., Fig. 11) to render the visual-
ization. Data Formulator adopts a chart-based specification: each chart
type corresponds to a Vega-Lite template with placeholder encodings
to be filled from the author specification. Data Formulator currently
supports scatter plots (circle-based, bubble chart, ranged dot plots),
bar charts (single-column, stacked, layered, grouped, histogram), line
charts (with and without dots), heatmap, and custom charts (with all
compatible visual channels).

{ "mark": "circle", "encoding" : { "x": {"field": "Date", "type": "temporal"}, "y":
{"field": "Temperature", "type": "quantitative"}, "color": {"field": "City"} } } →

{ "mark": "circle", "encoding" : { "x": {"field": "Seattle Temp", "type":
"quantitative"}, "y": {"field": "Atlanta Temp", "type": "quantitative"} } } →

Fig. 11: Vega-Lite specs for the scatter plots in Fig. 2-1 and Fig. 6.

When all fields used in the visual encoding are available, Data For-
mulator combines the Vega-Lite spec with the input data to render the
visualization (e.g., Fig. 1). Otherwise, when some concepts are un-
known (unresolved custom concepts or concepts derived from unknown
ones), Data Formulator first interacts with the author and then calls the
program synthesis engine to create the transformed table.

Once the author specifies the visual encoding, Data Formulator first
checks if any unknown concepts are used. If so, it asks the author
to illustrate the relation of unknown concepts with other concepts
used in the visual encoding by filling out an example relation in a
sample table (e.g., Fig. 10- 5). Data Formulator needs such example
relation to disambiguate the visualization intent because unknown
concepts contain example values only from their own domains, missing
information on how they will be related row-wise in the transformed
table. For example, Data Formulator generates the example relation
with Seattle Temp and Atlanta Temp fields as shown in Fig. 6- 3 for the
author to complete. To reduce the author’s efforts, Data Formulator pre-
fills two example values of Atlanta Temp based on its sample domain
and asks the author to complete their corresponding Seattle Temp values
(e.g., what’s Seattle Temp when Atlanta Temp is 45). Each row in the
example relation will be a row in the transformed data, which will then
be mapped to a point in the scatter plot.

Once the author submits the example relation, Data Formulator calls
the program synthesizer to solve the data reshaping problem (Fig. 10-
6). Given an example relation E, with input data T , the program
synthesizer solves the programming-by-example problem to find a
reshaping program p such that E ⊆ p(T) (i.e., the transformed data
should generalize the example E). The reshaping program p is defined
by the grammar in Figure 12, where p is recursively defined over four
core reshaping operators from the R tidyverse library. We include only
reshaping operators because other operators like unite and summarise
are already supported by Data Formulator’s ability to derive concepts
from natural language. With this grammar, the program synthesizer
performs an enumerative search in the program space for candidate
programs. To speed up this combinatorial search process, we leverage
abstract interpretation to prune the search space: the program synthesis

p ← T
| pivot_longer(p, c̄) (pivot from wide to long)
| pivot_wider(p,cname,cvals) (pivot from long to wide)
| separate(p,c) (split a column into two)
| separate_rows(p,c) (separate a collapsed column into rows)

Fig. 12: Reshaping operators supported by Data Formulator. T refers to
input data, and c refers to column names.

engine returns candidate programs that satisfy the example relation to
Chart Builder. Note that multiple candidates could be generated since
the example relation is small and potentially ambiguous. In practice,
unlike other programming-by-example tools, the small example relation
is precise enough to constrain the program space that only the correct
candidate is returned, because the program synthesizer only needs to
solve the reshaping problem.

With generated reshaping programs, Chart Builder prepares the input
data: it first generates a reshaped table from each reshaping program
and then for every derived concept used in the encoding, it extends the
reshaped table with a new column by applying the transformation func-
tion on every tuple in the table. This way, Data Formulator generates a
new table with all necessary fields to instantiate the visualization.

Data Formulator presents the prepared table and candidate visualiza-
tions for the author to inspect (Fig. 5- 3 4). When the author confirms
and saves a desired visualization, the transformed data is used to re-
solve unknown concepts: these concepts are now available as known
concepts to be used to create visualizations.

3.5 Implementation

Data Formulator is built as a React web application in Typescript; its
backend is a Python server that runs on a Dv2-series CPU with 3.5 GiB
RAM on Azure. Data Formulator’s backend queries the OpenAI Codex
API for concept derivation and runs the synthesis algorithm locally.
Data Formulator’s scalability to larger data relates to (1) the frontend’s
visualization rendering capability and (2) the backend’s efficiency to
execute data transformation scripts. To scale up Data Formulator for
large datasets, we envision a sampling-based approach [29], where
Data Formulator presents results on a representative subset of data to
enhance interactivity and returns full results asynchronously.

4 EVALUATION: CHART REPRODUCTION STUDY

We conducted a chart reproduction study [40] to gather feedback on
the new concept binding approach that employs an AI agent, and to
evaluate the usability of Data Formulator.

4.1 Study Design

Participants. We recruited 10 participants (3 female, 7 male) from a
large technology company. All participants had experience creating
(simple) charts and identified themselves as a person with normal or
corrected-to-normal vision, without color vision deficiency. Six partici-
pants are data scientists, two are applied scientists, and the remaining
two are data & applied scientists, and they are all located in the United
States. Four participants are in their 30’s, three are in 20’s, and one
participant is in each of the 40’s, 50’s, and 18-19 age group. They had
varying levels of self-identified expertise in terms of chart authoring,
computer programming, and experience with LLMs.
Tasks and Datasets. We prepared six chart reproduction tasks with
two datasets (3 tasks for each dataset): daily COVID-19 cases from
Jan 21, 2020 to Feb 28, 2023 (3 columns; 1,134 rows) for the first
task set (Tasks 1-3) and daily temperatures in 2020 for Seattle and
Atlanta (4 columns; 732 rows; Fig. 1) for the second set (Tasks 4-6).
In both task sets, each subsequent task is built upon the previous one.
One task (Task 4) required building two new concepts for reshaping
and the other five tasks required the use of derived concepts. We also
prepared three tutorial tasks, using students’ exam scores dataset (5
columns; 1,000 rows): in addition to the scores for three subjects (math,
reading, and writing), the data table included a student’s id and major.

The first tutorial task was about creating a chart with known/available
concepts, while the second and third tutorial tasks were for creating
charts using derived concepts and unknown concepts, respectively.
Finally, we produced two practice tasks (one for reshaping and another
for derivation). For these, the exam scores dataset was transformed into
a long format, including math and reading scores under the subject and
score column, resulting in 4 columns and 2,000 rows.

Setup and Procedure. We conducted sessions remotely via the Mi-
crosoft Teams. Each session consisted of four segments: (1) a brief
explanation of the study goals and procedure, (2) training with tutorial
and practice, (3) chart reproduction tasks, and (4) debrief.

The training segment started with a quick introduction of Data For-
mulator’s basic interactions using a simple task that does not require
data transformation. Then, with their screen shared and recorded with
audio, participants went through a tutorial and created three visual-
izations following step-by-step instructions provided in slides. They
next created two visualizations on their own as practice. After an op-
tional break, the participants performed six reproduction tasks using the
two datasets mentioned above. Each task included a description (e.g.,
“Create a Scatter Plot to compare Atlanta Temperature against Seattle
Temperature.”), the labels for axes and color legend (if necessary), and
an image of the target visualization. (Study materials are included in
the supplemental material.) We encouraged the participants to think
aloud, describing their strategies, whether any feature of Data Formula-
tor works or makes sense, if the system behaves as they expect, etc. We
recorded if the participants required a hint (and which hint) and how
long it took for them to complete the task. The recorded completion
time is not intended to indicate performance, as we wanted to gain
insights about our approach using the think aloud method. Instead, we
wanted to see if and how the participants completed, faltered, or recov-
ered for each task, within a reasonable amount of time. The session
ended with a debriefing after the participants filled out a questionnaire
with 5 questions about their experience with Data Formulator. The
entire session took about two hours to complete, while the training
segment took about an hour. We compensated each participant with a
$100 Amazon Gift card.

4.2 Results

After an hour-long tutorial and practice session, most participants could
use Data Formulator to create different types of charts that involve ad-
vanced data transformations. Furthermore, they were generally positive
about their experience with Data Formulator in chart authoring.

Tasks Completion and Usability Issues. Participants completed all
tasks on average within 20 minutes, with a deviation of about four and
a half minutes. Table 1 shows the average and standard deviation of
task completion time in minutes, along with the total number of hints
provided for each chart reproduction task (for all 10 participants). The
participants spent most of their time (on average less than five minutes)
on Task 6 because it was not trivial to inspect the code to generate
7-day moving average. For Tasks 5 and 6, we had to give one hint
(to two different participants) to guide them to use a different type of
concept (they needed to derive a concept but initially tried to build a
concept). There were a few cases that we had to provide a hint to a
single participant: how to select multiple sources for derivation (Task
4), what are the correct source concepts for derivation (Tasks 2 & 5),
and the example values should be from the original table (Task 4). We
had to provide the highest number of hints for Task 1. This was because
when participants derived the year from the date value, its data type
was set to number and the participants did not know or remember how
to change its data type to string. (As detailed below, some participants
tried to fix it by providing a different natural language prompt).

For derived concepts, once the participants identified the correct
interaction approach and input fields, they are able to describe and
refine the transformation in natural language to solve the tasks. We
recorded all participants’ prompts (see supplementary material). On
average, participants made 1.62 prompt attempts per derived concept,
and the length of those prompts averaged 7.28 words. The system
generated an average of 1.94 candidates per prompt attempt.

Table 1: The average and standard deviation of task time (in minutes)
and the total number of hints provided for chart reproduction tasks.

Task Average Time Standard Deviation Total Number of Hints

Task 1 2:21 0:45 7
Task 2 3:19 2:09 2
Task 3 3:45 1:33 2

Task 4 2:43 1:33 2
Task 5 2:22 1:55 3
Task 6 4:29 1:39 2

Participants rated Data Formulator on five criteria using a 5-point
Likert scale (5 being the most positive) as follows: easy to learn (M =
3.90, SD = 0.88), easier than other tools to transform data (M = 3.80,
SD = 1.23), AI-agent’s usefulness (M = 4.4, SD = 0.70), helpful to
verify generated data (M = 4.1, SD = 0.74), and the trustworthiness of
generated data (M = 4.7, SD = 0.48).

Participants provide feedback to improve the user interface. Four
participants expected a way to multi-select on concept cards and click
“derive” for deriving a concept from multiple existing ones. The current
method of clicking “derive” on one concept and then multi-selecting
is not intuitive. Two other participants expected the AI to select or
identify which concepts to derive from based on their prompts. A few
participants expected to change data type using the prompt (e.g., “year
as a string” when the year is extracted from date). Five participants
wanted the derived examples table to show more values, or unique
derived values. Reshaping data was at times a point of confusion: two
participants found it difficult to understand how the AI formulated
candidate datasets, while two others did not intuit or remember the
task sequence to formulate data for unknown concepts. When required
to reshape data, three participants entered plausible, but not exact
values in the example table during the training: they misunderstood the
rigid connection to the original dataset. To strengthen that connection
participants recommended including additional columns (especially a
column that is unique for a pivot transform) or to filter or highlight
rows of the data table view that correspond to the values used in the
example table. We also observed users’ attempts to re-use a derived
concept as a commutative function on other concepts: two participants
tried to drag a derived concept and drop it on other concepts.

Overall Reaction and Experience. To understand participants’ re-
action to the new concept-drive approach employing an AI agent, we
analyzed the debrief interview, during which participants stated some-
thing or confirmed an observation made by the experimenter. Using the
transcription from the recorded sessions, one researcher applied an open
coding method to surface all unique feedback, issues and ideas from
the participants. He expanded the codes to generalize for semantically
similar participant statements. While quantities of qualitative data does
not provide a metric for importance, we counted how many participants
mentioned each code, providing how frequently our participants had
shared experiences or ideas with Data Formulator.

Overall, participants were positive about their experience with Data
Formulator. All 10 participants said that natural language prompts
work well for generating data transforms and eight mentioned that
AI is a helpful tool for the study tasks. Participants more frequently
praised the derived concept than the unknown concept method for
transforming data. Specifically, when it comes to verifying candidate
derived concepts: all except one participant commented that displaying
code was helpful and seven found the example derived values table to
be useful. While only half of the participants commented that pivoting
with unknown concepts is easier than with other tools, only three
affirmed the example data table being helpful.

Five participants mentioned that they were impressed by the power of
the AI agent to generate data transforms. Five participants found having
candidates (for both derived and formulated data) to be helpful because
the candidates provided an opportunity to choose a correct answer, or
at the least to select a promising direction to refine. Participants also
explained that generating candidates increases trust in a collaborative
experience. On the other hand, three participants mentioned they are
reluctant to give much trust to the AI generative features of the tool.

5 RELATED WORK

Data Formulator builds on top of prior research in visualization author-
ing tools, data transformation tools, and code generation techniques.

Visualization Grammars and Tools. The grammar of graphics [56]
first introduces the representation of visualizations based on chart types
and encodings of data columns to their visual channels. Many high-
level grammars are designed to realize this idea. For example, gg-
plot2 [53] is a charting library in R based on visual encodings. Vega-
Lite [44] and its Python-wrapper Altair [49] extend the traditional gram-
mar of graphics design with rules for layered and multi-view displays,
as well as interactions, and Animated Vega-Lite [63] further extends it
to support animations. These grammars hide low-level implementation
details and are concise. Therefore, they are generally preferred for the
rapid creation of visualization in exploratory settings over toolkits and
libraries like Protovis [4], Atlas [26], and D3 [5] that are designed for
more expressive and novel visualization authoring. High-level gram-
mars inspire interactive visualization tools like Tableau [47], Power
BI, Lyra [42], Charticulator [39], and Data Illustrator [27]. These tools
adopt a shelf-configuration design: authors map data columns to vi-
sual encoding “shelves” often using the drag-and-drop interaction, and
enerate specifications in high-level grammars to render visualizations.
These grammars and tools require that the input data is in a tidy format,
where all variables to be visualized are columns of input data. Because
this means authors often need to transform the data first to create any
visualizations, Satyanarayan et al. recognized the automatic inferring
or suggestions of appropriate transformations when necessary, as an
important research problem [43].

To reduce authors’ efforts, visualization by demonstration [41,45,62]
and by example [52] tools are introduced. Lyra 2 [62] generates inter-
action rules after authors perform an interaction on the visualization.
VbD [41] lets users demonstrate transformations between different
types of visualizations to produce new specifications. Although these
approaches reduce the chart specification efforts, they require tidy input
data. Falx [52], on the other hand, addresses the data transformation
challenge with a visualization-by-example design. Falx lets authors
specify visualizations via low-level example mappings from data points
to primitive chart elements. However, Falx does not support derivation
types of transformation because of its underlying programming-by-
example algorithm limitations; its requirement to focus on low-level
elements also introduces a challenging paradigm shift for users who are
more familiar with tools that focus on high-level specifications [44, 47].

Natural language interfaces [8, 11, 19, 25, 28, 35] enhance users’
ability to author and reason about visualizations. NCNet [28] uses a
Seq-to-Seq model to translate chart description texts into Vega-Lite
specs. VisQA [19] is a pipeline that leverages semantic parsing tech-
niques [34] to provide atomic data-related answers based on its visual-
izations. NL4DV [31] and Advisor [25] generate visualizations based
on user questions. To manage ambiguity in natural language inputs [46],
DataTone [11] ranks solutions based on user preference history, and
Pumice [23] introduces a multi-modal approach that leverages examples
to refine the initial ambiguous specification. Data Formulator’s concept
derivation interface is based on natural language. Data Formulator
benefits from large language models’ expressiveness [7], and manages
ambiguity by restricting the target function type to columns-to-column
mapping functions (as opposed to arbitrary data transformation scripts).
In the future, more powerful language models can be plugged into Data
Formulator to improve code generation quality.

Data Formulator adopts the shelf-configuration approach like
Tableau and Power BI, but it supports encoding from data concepts
to visual channels to address the data transformation burden. Because
Data Formulator can automatically transform the input data based on
the concepts used in the visualization specification, authors do not need
to manually transform data. Furthermore, because Data Formulator’s
Chart Builder resembles tools like Power BI and Tableau, it lets the
authors focus on high-level designs. Data Formulator’s multi-modal
interaction approach supports both derivation and reshaping tables.
While Data Formulator currently focuses on standard visualization sup-
ported by Vega-Lite, its AI-powered concept-driven approach can also

work with expressive and creative visualization design tools like Struct-
Graph [48] and Data Illustrator [27] to automate data transformations.
Data Transformation Tools. Libraries and tools like tidyverse [55],
pandas [33], Potter’s Wheel [38], Wrangler [17], Tableau Prep, and
Power Query are developed to support data transformation. They
introduce operators to reshape, compute, and manipulate tabular data
needed in data analysis. Automated data transformation tools, including
programming-by-example tools [16, 36, 50] and initiative tools [13, 17,
18, 60], are developed to reduce authors’ specification effort. Data
Formulator tailors key transformation operators from the tidyverse
library (reshaping and derivation) for visualization authoring. Because
the desired data shape changes with visualization goals, even with these
tools, authors still need the knowledge and effort to first identify the
desired data shape, and then switch tools to transform the data. Data
Formulator bridges visual encoding and data transformation with data
concepts to reduce this overhead.
Code Generation. Code generation models [7, 9, 10] and program syn-
thesis techniques [6, 12, 50, 61] enable users to complete tasks without
programming by using easier specifications, including natural language,
examples, and demonstrations. Code generation models like Codex [7],
PaLM [9], and InCoder [10] are transformer-based causal language
models (commonly referred to as LLMs) that complete texts from natu-
ral language prompts. These LLMs can generate expressive programs
to solve competitive programming [14, 24], data science [20], and soft-
ware engineering tasks [1] from high-level descriptions. Programming-
by-example [52] and programming-by-demonstration [2, 37] tools can
synthesize programs based on users’ output examples or demonstrations
that illustrate the computation process. Natural language approaches
are highly expressive, but some tasks can be challenging to phrase. On
the other hand, while programming-by-example techniques are precise,
they are less expressive and do not scale to large programs as they re-
quire well-defined program spaces. Therefore, Data Formulator adopts
a mixed-modality approach to solve the data transformation task. It
leverages the Codex model [7] for concept derivations and the example-
based synthesis algorithm [51] for reshaping, which takes advantage of
both approaches to reduce authors’ specification overhead.

Because code generation techniques generalize programs from in-
complete user specifications, generated programs are inherently am-
biguous, and thus require disambiguation to identify a correct solution
among candidates. Prior work proposes techniques to visualize the
search process [61], visualize code candidates [52, 59], and present
distinguishing examples for authors to inspect [15]. Data Formulator
provides feedback to the authors by presenting the generated code
together with its execution results for them to inspect, select, and edit.

6 DISCUSSION AND FUTURE WORK

Unified Interaction with Multiple Modalities Data Formulator em-
ploys two different modalities for authors to specify different types
of data transformation: natural language for concept derivation and
examples for table reshaping (Sec. 3). This design combines strengths
of both modalities so that the authors can better communicate their
intent with the AI agent, and the AI agent can provide precise solutions
from a more expressive program space. However, choosing the right
input modality when creating a new concept can be challenging for
inexperienced authors. To address this challenge, we envision a strati-
fied approach where the authors just initiate the interaction in natural
language, and the AI agent will decide whether to ask the authors, for
example relations for clarification or to directly generate derivation
codes. This design will shift the effort of deciding which approach to
start with from the authors to the AI agent, and “by-example” specifica-
tion will become a followup interaction step to help the authors clarify
their intent. We envision this mixed-initiative unified interaction will
further reduce the authors’ efforts in visualization authoring.
Conversational Visualization Authoring with AI Agents. Conver-
sational AI agents [32] have the strength of leveraging the interaction
contexts to better interpret user intent. They also provide opportunities
for users to refine the intent when the task is complex or ambiguous.
However, conversation with only natural language is often insuffi-

cient for visualization authoring because (1) it does not provide users
with precise control over the authoring details (e.g., exploring differ-
ent encoding options, changing design styles) and (2) the results can
be challenging to inspect and verify without concrete artifacts (e.g.,
programs, transformed data). It would be useful to research how con-
versational AI can be integrated with Data Formulator’s concept-driven
approach to improve the overall visualization experiences. First, with
a conversational AI agent, the authors can incrementally specify and
refine their intent for tasks that are difficult to solve in one shot. Second,
a conversational agent complements Data Formulator by helping the
authors explore and configure chart options. Because Data Formulator
focuses on data transformation, it does not expose many chart options
(e.g., axis labeling, legend style, visual mark styles) in its interface. A
conversational AI agent can help the authors access and control these
options without overwhelming them with complex menus. For example,
when the authors describe chart styles they would like to change, Data
Formulator can apply the options directly or dynamically generate edit-
ing panels for them to control. We envision the effective combination
of conversational AI experiences, and the Data Formulator approach
will let the authors confidently specify richer designs with less effort.

Concept-driven Visual Data Exploration. Visual data exploration
tools [21, 22, 30, 57, 58] help data scientists understand data and gain
meaningful insights in their analysis process. These tools support a
rich visual visualization space, yet still require datasets to be in the
appropriate shape and schema. While Data Formulator is designed
for visualization authoring, its concept-driven approach can be used
in visual data exploration to expand the design space. Beyond the
current concept-driven features of Data Formulator, the AI agent could
be enhanced to recommend data concepts of interest based on the
data context or author interaction history. Building on this idea, the
tool could recommend charts based on all potentially relevant data
concepts. This expansive leap could overcome one of the limitations of
chart recommendation systems: by enabling the authors to view charts
beyond their input data columns without additional user intervention.

Study Limitations. While our participants had varying levels of ex-
pertise in chart authoring, computer programming, and experience
with LLMs, many of them had considerable knowledge about data
transformation methodology and programming. It would be useful
to investigate if and how people with limited expertise could learn
and use Data Formulator. The main goal of Data Formulator was to
reduce manual data transformation in visualization authoring efforts.
As such, in our study, we focused on derivation and reshaping types
of data transformations with simple datasets. While they are key types
of transformation and our tasks covered multiple styles of derivations,
the transformations we studied are by no means comprehensive. It
would be valuable to evaluate the broader combinations and complexi-
ties of data transformations. Our study adopted a chart reproduction
study [40], which is commonly used for evaluating chart authoring
systems (e.g., [27, 39, 42]). Therefore, our study shares its inherent
limitations: because we prepared datasets and tasks, and provided target
visualizations as a reference, we do not know if and how people would
use Data Formulator to create visualizations with their own data.

7 CONCLUSION

This paper introduces Data Formulator, a concept-driven visualization
authoring tool that leverages an AI agent to address the data transfor-
mation challenge in visualization authoring. With Data Formulator,
authors work with the AI agent to create new data concepts and then
map data concepts to visual channels to specify visualizations. Data
Formulator then automatically transforms the input data and instantiates
the visualizations. Throughout the authoring process, Data Formulator
provides feedback to the authors to inspect and refine the generated
code to promote confidence. As discovered in the chart reproduction
study, participants can learn and use Data Formulator to create visu-
alizations that require advanced data transformations. In the future,
the concept-driven visualization approach can potentially benefit the
design of new visual data exploration tools and expressive visualization
authoring tools to overcome the data transformation barrier.

A SUPPLEMENTAL MATERIAL

We include three zip files in the supplemental material: (1) a 6-minute
video that walks through user experiences of creating visualizations
about Seattle and Atlanta temperatures, described in Sec. 2 with Data
Formulator, (2) a set of short videos that demonstrate additional Data
Formulator scenarios, and (3) our user study materials including: study
script, tutorials, study tasks, and prompts created by participants.

REFERENCES

[1] S. Barke, M. B. James, and N. Polikarpova. Grounded copilot: How
programmers interact with code-generating models. Proc. ACM Program.
Lang., 7(OOPSLA1):85–111, 2023. doi: 10.1145/3586030 9

[2] S. Barman, S. E. Chasins, R. Bodík, and S. Gulwani. Ringer: web
automation by demonstration. In E. Visser and Y. Smaragdakis, eds.,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,
October 30 - November 4, 2016, pp. 748–764. ACM, 2016. doi: 10.1145/
2983990.2984020 9

[3] L. Bartram, M. Correll, and M. Tory. Untidy data: The unreasonable
effectiveness of tables. IEEE Trans. Vis. Comput. Graph., 28(1):686–696,
2022. doi: 10.1109/TVCG.2021.3114830 1

[4] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE Trans. Vis. Comput. Graph., 15(6):1121–1128, 2009. doi: 10.1109/
TVCG.2009.174 8

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Trans. Vis. Comput. Graph., 17(12):2301–2309, 2011. doi: 10.1109/TVCG
.2011.185 8

[6] S. Chaudhuri, K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, and Y. Yue.
Neurosymbolic programming. Found. Trends Program. Lang., 7(3):158–
243, 2021. doi: 10.1561/2500000049 9

[7] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al. Evaluating large
language models trained on code. CoRR, abs/2107.03374, 2021. 6, 8, 9

[8] Q. Chen, S. Pailoor, C. Barnaby, A. Criswell, C. Wang, G. Durrett, and
I. Dillig. Type-directed synthesis of visualizations from natural language
queries. Proc. ACM Program. Lang., 6(OOPSLA2):532–559, 2022. doi:
10.1145/3563307 8

[9] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, and more. Palm: Scaling language modeling
with pathways. CoRR, abs/2204.02311, 2022. doi: 10.48550/arXiv.2204.
02311 9

[10] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W. Yih, L. Zettlemoyer, and M. Lewis. Incoder: A generative model
for code infilling and synthesis. CoRR, abs/2204.05999, 2022. doi: 10.
48550/arXiv.2204.05999 9

[11] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. Datatone:
Managing ambiguity in natural language interfaces for data visualization.
In C. Latulipe, B. Hartmann, and T. Grossman, eds., Proceedings of the
28th Annual ACM Symposium on User Interface Software & Technology,
UIST 2015, Charlotte, NC, USA, November 8-11, 2015, pp. 489–500.
ACM, 2015. doi: 10.1145/2807442.2807478 8

[12] S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Found. Trends
Program. Lang., 4(1-2):1–119, 2017. doi: 10.1561/2500000010 9

[13] Y. He, Z. Jin, and S. Chaudhuri. Auto-transform: Learning-to-transform
by patterns. Proc. VLDB Endow., 13(11):2368–2381, 2020. 9

[14] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo,
C. Burns, S. Puranik, H. He, D. Song, and J. Steinhardt. Measuring
coding challenge competence with APPS. In J. Vanschoren and S. Yeung,
eds., Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021,
December 2021, virtual, 2021. 9

[15] R. Ji, J. Liang, Y. Xiong, L. Zhang, and Z. Hu. Question selection for
interactive program synthesis. In A. F. Donaldson and E. Torlak, eds., Proc.
of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2020, London, UK, June
15-20, 2020, pp. 1143–1158. ACM. doi: 10.1145/3385412.3386025 9

[16] Z. Jin, M. R. Anderson, M. J. Cafarella, and H. V. Jagadish. Foofah:
Transforming data by example. In S. Salihoglu, W. Zhou, R. Chirkova,
J. Yang, and D. Suciu, eds., SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, pp. 683–698. ACM, 2017. doi: 10.1145/3035918.
3064034 9

[17] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive
visual specification of data transformation scripts. In Proceedings of the

ACM Conference on Human Factors in Computing Systems (CHI), pp.
3363–3372, 2011. doi: 10.1145/1978942.1979444 1, 9

[18] M. B. Kery, D. Ren, F. Hohman, D. Moritz, K. Wongsuphasawat, and
K. Patel. Mage: Fluid moves between code and graphical work in compu-
tational notebooks. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology, UIST ’20, p. 140–151. As-
sociation for Computing Machinery, New York, NY, USA, 2020. doi: 10.
1145/3379337.3415842 9

[19] D. H. Kim, E. Hoque, and M. Agrawala. Answering questions about
charts and generating visual explanations. In R. Bernhaupt, F. F. Mueller,
D. Verweij, J. Andres, J. McGrenere, A. Cockburn, I. Avellino, A. Goguey,
P. Bjøn, S. Zhao, B. P. Samson, and R. Kocielnik, eds., CHI ’20: Honolulu,
HI, USA, April 25-30, 2020, pp. 1–13. ACM. doi: 10.1145/3313831.
3376467 8

[20] Y. Lai, C. Li, Y. Wang, T. Zhang, R. Zhong, L. Zettlemoyer, S. W. Yih,
D. Fried, S. I. Wang, and T. Yu. DS-1000: A natural and reliable bench-
mark for data science code generation. CoRR, abs/2211.11501, 2022. doi:
10.48550/arXiv.2211.11501 9

[21] D. J. L. Lee, V. Setlur, M. Tory, K. Karahalios, and A. G. Parameswaran.
Deconstructing categorization in visualization recommendation: A tax-
onomy and comparative study. IEEE Trans. Vis. Comput. Graph.,
28(12):4225–4239, 2022. doi: 10.1109/TVCG.2021.3085751 9

[22] D. J. L. Lee, D. Tang, K. Agarwal, T. Boonmark, C. Chen, J. Kang,
U. Mukhopadhyay, J. Song, M. Yong, M. A. Hearst, and A. G.
Parameswaran. Lux: Always-on visualization recommendations for ex-
ploratory dataframe workflows. Proc. VLDB Endow., 15(3):727–738,
2021. doi: 10.14778/3494124.3494151 9

[23] T. J. Li, M. Radensky, J. Jia, K. Singarajah, T. M. Mitchell, and B. A.
Myers. PUMICE: A multi-modal agent that learns concepts and condition-
als from natural language and demonstrations. In F. Guimbretière, M. S.
Bernstein, and K. Reinecke, eds., Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology, UIST 2019, New
Orleans, LA, USA, October 20-23, 2019, pp. 577–589. ACM, 2019. doi:
10.1145/3332165.3347899 8

[24] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, et al. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, 2022. 9

[25] C. Liu, Y. Han, R. Jiang, and X. Yuan. Advisor: Automatic visualization
answer for natural-language question on tabular data. In 14th IEEE Pacific
Visualization Symposium, PacificVis 2021, Tianjin, China, April 19-21,
2021, pp. 11–20. IEEE. doi: 10.1109/PacificVis52677.2021.00010 8

[26] Z. Liu, C. Chen, F. Morales, and Y. Zhao. Atlas: Grammar-based pro-
cedural generation of data visualizations. In 2021 IEEE Visualization
Conference, 2021 - Short Papers, New Orleans, LA, USA, October 24-29,
2021, pp. 171–175. IEEE, 2021. doi: 10.1109/VIS49827.2021.9623315 8

[27] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data Illustrator: Augmenting vector design tools
with lazy data binding for expressive visualization authoring. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems
(CHI), pp. 123:1–13, 2018. doi: 10.1145/3173574.3173697 1, 8, 9

[28] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin. Natural language
to visualization by neural machine translation. IEEE Trans. Vis. Comput.
Graph., 28(1):217–226, 2022. doi: 10.1109/TVCG.2021.3114848 8

[29] D. Moritz, B. Howe, and J. Heer. Falcon: Balancing interactive latency and
resolution sensitivity for scalable linked visualizations. In S. A. Brewster,
G. Fitzpatrick, A. L. Cox, and V. Kostakos, eds., Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, CHI 2019,
Glasgow, Scotland, UK, May 04-09, 2019, p. 694. ACM, 2019. doi: 10.
1145/3290605.3300924 7

[30] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing visualization design knowledge as constraints: Ac-
tionable and extensible models in draco. IEEE Trans. Vis. Comput. Graph.,
25(1):438–448, 2019. doi: 10.1109/TVCG.2018.2865240 9

[31] A. Narechania, A. Srinivasan, and J. T. Stasko. NL4DV: A toolkit for gen-
erating analytic specifications for data visualization from natural language
queries. IEEE Trans. Vis. Comput. Graph., 27(2):369–379, 2021. doi: 10.
1109/TVCG.2020.3030378 8

[32] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022. 9

[33] T. pandas development team. pandas-dev/pandas: Pandas, Mar. 2023. doi:
10.5281/zenodo.7741580 1, 9

https://doi.org/10.1145/3586030
https://doi.org/10.1145/2983990.2984020
https://doi.org/10.1145/2983990.2984020
https://doi.org/10.1109/TVCG.2021.3114830
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1561/2500000049
https://doi.org/10.1145/3563307
https://doi.org/10.1145/3563307
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3313831.3376467
https://doi.org/10.1145/3313831.3376467
https://doi.org/10.48550/arXiv.2211.11501
https://doi.org/10.48550/arXiv.2211.11501
https://doi.org/10.1109/TVCG.2021.3085751
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1109/PacificVis52677.2021.00010
https://doi.org/10.1109/VIS49827.2021.9623315
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2020.3030378
https://doi.org/10.1109/TVCG.2020.3030378
https://doi.org/10.5281/zenodo.7741580
https://doi.org/10.5281/zenodo.7741580

[34] P. Pasupat and P. Liang. Compositional semantic parsing on semi-
structured tables. In ACL 2015, July 26-31, 2015, Beijing, China, Volume 1:
Long Papers, pp. 1470–1480. The Association for Computer Linguistics,
2015. doi: 10.3115/v1/p15-1142 8

[35] G. Poesia, A. Polozov, V. Le, A. Tiwari, G. Soares, C. Meek, and S. Gul-
wani. Synchromesh: Reliable code generation from pre-trained language
models. In The Tenth International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022, 2022. 8

[36] O. Polozov and S. Gulwani. Flashmeta: a framework for inductive program
synthesis. In J. Aldrich and P. Eugster, eds., Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, Pittsburgh, PA,
USA, October 25-30, 2015, pp. 107–126. ACM, 2015. doi: 10.1145/
2814270.2814310 9

[37] K. Pu, R. Fu, R. Dong, X. Wang, Y. Chen, and T. Grossman. Semanticon:
Specifying content-based semantic conditions for web automation pro-
grams. In M. Agrawala, J. O. Wobbrock, E. Adar, and V. Setlur, eds., The
35th Annual ACM Symposium on User Interface Software and Technology,
UIST 2022, Bend, OR, USA, 29 October 2022 - 2 November 2022, pp.
63:1–63:16. ACM, 2022. doi: 10.1145/3526113.3545691 9

[38] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data
cleaning system. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi,
K. Ramamohanarao, and R. T. Snodgrass, eds., VLDB 2001, Proceedings
of 27th International Conference on Very Large Data Bases, September
11-14, 2001, Roma, Italy, pp. 381–390. Morgan Kaufmann, 2001. 9

[39] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive construction
of bespoke chart layouts. IEEE Trans. Vis. Comput. Graph. (Proceedings
of InfoVis), 25(1), 2019. doi: 10.1109/TVCG.2018.2865158 1, 8, 9

[40] D. Ren, B. Lee, M. Brehmer, and N. H. Riche. Reflecting on the evaluation
of visualization authoring systems : Position paper. In M. Sedlmair,
P. Isenberg, M. Meyer, and T. Isenberg, eds., 2018 IEEE Evaluation
and Beyond - Methodological Approaches for Visualization, BELIV 2018,
Berlin, Germany, October 21, 2018, pp. 86–92. IEEE Computer Society,
2018. doi: 10.1109/BELIV.2018.8634297 7, 9

[41] B. Saket, H. Kim, E. T. Brown, and A. Endert. Visualization by demon-
stration: An interaction paradigm for visual data exploration. IEEE Trans.
Vis. Comput. Graph., 23(1):331–340, 2017. doi: 10.1109/TVCG.2016.
2598839 8

[42] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum (Proceedings of EuroVis), 33(3),
2014. doi: 10.1111/cgf.12391 1, 8, 9

[43] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. T. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical reflections on visualization authoring
systems. IEEE Trans. Vis. Comput. Graph., 26(1):461–471, 2020. doi: 10.
1109/TVCG.2019.2934281 8

[44] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics (Proceedings of InfoVis), 23(1):341–350, 2017.
doi: 10.1109/TVCG.2016.2599030 1, 8

[45] L. Shen, E. Shen, Z. Tai, Y. Wang, Y. Luo, and J. Wang. GALVIS: visual-
ization construction through example-powered declarative programming.
In M. A. Hasan and L. Xiong, eds., Proceedings of the 31st ACM Inter-
national Conference on Information & Knowledge Management, Atlanta,
GA, USA, October 17-21, 2022, pp. 4975–4979. ACM, 2022. doi: 10.
1145/3511808.3557159 8

[46] A. Srinivasan, N. Nyapathy, B. Lee, S. M. Drucker, and J. T. Stasko.
Collecting and characterizing natural language utterances for specifying
data visualizations. In Y. Kitamura, A. Quigley, K. Isbister, T. Igarashi,
P. Bjørn, and S. M. Drucker, eds., CHI ’21: CHI Conference on Human
Factors in Computing Systems, Virtual Event / Yokohama, Japan, May
8-13, 2021, pp. 464:1–10. ACM, 2021. doi: 10.1145/3411764.3445400 8

[47] C. Stolte, D. Tang, and P. Hanrahan. Query, analysis, and visualization of
hierarchically structured data using polaris. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada, pp. 112–122.
ACM, 2002. doi: 10.1145/775047.775064 8

[48] T. Tsandilas. Structgraphics: Flexible visualization design through data-
agnostic and reusable graphical structures. vol. 27, pp. 315–325, 2021.
doi: 10.1109/TVCG.2020.3030476 9

[49] J. VanderPlas, B. E. Granger, J. Heer, D. Moritz, K. Wongsuphasawat,
A. Satyanarayan, E. Lees, I. Timofeev, B. Welsh, and S. Sievert. Altair:
Interactive statistical visualizations for python. vol. 3, p. 1057, 2018. doi:
10.21105/joss.01057 8

[50] C. Wang, A. Cheung, and R. Bodík. Synthesizing highly expressive

SQL queries from input-output examples. In A. Cohen and M. T. Vechev,
eds., Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017, pp. 452–466. ACM, 2017. doi: 10.1145/3062341.3062365 9

[51] C. Wang, Y. Feng, R. Bodík, A. Cheung, and I. Dillig. Visualization by
example. Proc. ACM Program. Lang., 4(POPL):49:1–49:28, 2020. doi:
10.1145/3371117 9

[52] C. Wang, Y. Feng, R. Bodík, I. Dillig, A. Cheung, and A. J. Ko. Falx:
Synthesis-powered visualization authoring. In Y. Kitamura, A. Quigley,
K. Isbister, T. Igarashi, P. Bjørn, and S. M. Drucker, eds., CHI ’21: CHI
Conference on Human Factors in Computing Systems, Virtual Event /
Yokohama, Japan, May 8-13, 2021, pp. 106:1–106:15. ACM, 2021. doi:
10.1145/3411764.3445249 8, 9

[53] H. Wickham. ggplot2 - Elegant Graphics for Data Analysis. Use R.
Springer, 2009. doi: 10.1007/978-0-387-98141-3 1, 8

[54] H. Wickham. Tidy data. The Journal of Statistical Software, 59, 2014. 1
[55] H. Wickham, M. Averick, J. Bryan, W. Chang, L. McGowan, R. François,

G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. Pedersen,
E. Miller, S. Bache, K. Müller, J. Ooms, D. Robinson, D. Seidel, V. Spinu,
K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome
to the tidyverse. J. Open Source Softw., 4(43):1686, Nov. 2019. doi: 10.
21105/joss.01686 1, 9

[56] L. Wilkinson. The Grammar of Graphics, Second Edition. Statistics and
computing. Springer, 2005. 8

[57] K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-
tion recommendations. IEEE Trans. Vis. Comput. Graph., 22(1):649–658,
2016. doi: 10.1109/TVCG.2015.2467191 9

[58] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, CHI ’17, p.
2648–2659. Association for Computing Machinery, New York, NY, USA,
2017. doi: 10.1145/3025453.3025768 9

[59] K. Xiong, Z. Luo, S. Fu, Y. Wang, M. Xu, and Y. Wu. Revealing the
semantics of data wrangling scripts with comantics. IEEE Trans. Vis.
Comput. Graph., 29(1), 2023. doi: 10.1109/TVCG.2022.3209470 9

[60] C. Yan and Y. He. Auto-suggest: Learning-to-recommend data preparation
steps using data science notebooks. In D. Maier, R. Pottinger, A. Doan,
W. Tan, A. Alawini, and H. Q. Ngo, eds., Proceedings of the 2020 Interna-
tional Conference on Management of Data, SIGMOD Conference 2020,
online conference Portland, OR, USA, June 14-19, 2020, pp. 1539–1554.
ACM. doi: 10.1145/3318464.3389738 9

[61] T. Zhang, Z. Chen, Y. Zhu, P. Vaithilingam, X. Wang, and E. L. Glassman.
Interpretable program synthesis. In Y. Kitamura, A. Quigley, K. Isbister,
T. Igarashi, P. Bjørn, and S. M. Drucker, eds., CHI ’21: CHI Conference on
Human Factors in Computing Systems, Virtual Event / Yokohama, Japan,
May 8-13, 2021, pp. 105:1–16. ACM. doi: 10.1145/3411764.3445646 9

[62] J. Zong, D. Barnwal, R. Neogy, and A. Satyanarayan. Lyra 2: Designing
interactive visualizations by demonstration. IEEE Trans. Vis. Comput.
Graph., 27(2):304–314, 2021. doi: 10.1109/TVCG.2020.3030367 8

[63] J. Zong, J. Pollock, D. Wootton, and A. Satyanarayan. Animated vega-lite:
Unifying animation with a grammar of interactive graphics. IEEE Trans.
Vis. Comput. Graph., 29(1):149–159, 2023. doi: 10.1109/TVCG.2022.
3209369 8

https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/3526113.3545691
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/TVCG.2016.2598839
https://doi.org/10.1109/TVCG.2016.2598839
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/3511808.3557159
https://doi.org/10.1145/3511808.3557159
https://doi.org/10.1145/3411764.3445400
https://doi.org/10.1145/775047.775064
https://doi.org/10.1109/TVCG.2020.3030476
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1109/TVCG.2022.3209470
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3411764.3445646
https://doi.org/10.1109/TVCG.2020.3030367
https://doi.org/10.1109/TVCG.2022.3209369
https://doi.org/10.1109/TVCG.2022.3209369

	Introduction
	 Illustrative Scenarios
	Experience with Programming
	Experience with Data Formulator

	The Data Formulator Design
	Design Principles
	Interaction Model
	Creating New Data Concepts
	Specifying and Formulating the Visualization
	Implementation

	Evaluation: Chart Reproduction Study
	Study Design
	Results

	Related Work
	Discussion and Future Work
	Conclusion
	Supplemental Material

