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Abstract—With most modern visualization tools, authors need to transform their data into tidy formats to create visualizations they 
want. Because this requires experience with programming or separate data processing tools, data transformation remains a barrier in 
visualization authoring. To address this challenge, we present a new visualization paradigm, concept binding, that separates high-level 
visualization intents and low-level data transformation steps, leveraging an AI agent. We realize this paradigm in Data Formulator, an 
interactive visualization authoring tool. With Data Formulator, authors first define data concepts they plan to visualize using natural 
languages or examples, and then bind them to visual channels. Data Formulator then dispatches its AI-agent to automatically transform 
the input data to surface these concepts and generate desired visualizations. When presenting the results (transformed table and 
output visualizations) from the AI agent, Data Formulator provides feedback to help authors inspect and understand them. A user study 
with 10 participants shows that participants could learn and use Data Formulator to create visualizations that involve challenging data 
transformations, and presents interesting future research directions. 

Index Terms—AI, visualization authoring, data transformation, programming by example, natural language, large language model 

1 INTRODUCTION 

Most modern visualization authoring tools (e.g., Charticulator [39], 
Data Illustrator [27], Lyra [42]) and libraries (e.g., ggplot2 [53], Vega-
Lite [44]) expect tidy data [54], where every variable to be visualized 
is a column and each observation is a row. When the input data is in 
the tidy format, authors simply need to bind data columns to visual 
channels (e.g., Date → x-axis, Temperature → y-axis, City → color in 
Fig. 1). Otherwise, they need to prepare the data, even if the original 
data is clean and contains all information needed [3]. Authors usually 
rely on data transformation libraries (e.g., tidyverse [55], pandas [33]) 
or separate interactive tools (e.g., Wrangler [17]) to transform data 
into the appropriate format. However, authors need either program-
ming experience or tool expertise to transform data, and they have to 
withstand the overhead of switching between visualization and data 
transformation steps. The challenge of data transformation remains a 
barrier in visualization authoring. 

To address the data transformation challenge, we explore a funda-
mentally different approach for visualization authoring, leveraging an 
AI agent. We separate the high-level visualization intent “what to visual-
ize” from the low-level data transformation steps of “how to format data 
to visualize,” and automate the latter to reduce the data transformation 
burden. Specifically, we support two key types of data transformations 
(and their combinations) needed for visualization authoring: 

• Reshaping: A variable to be visualized is spread across multiple 
columns or one column includes multiple variables. For example, 
if authors want to create a different scatter plot from the table 
in Fig. 1 by mapping Seattle and Atlanta temperatures to x,y-
axes (Fig. 2- 1 ), they need to first “pivot” the table from long to 
wide format, because both variables of interest are stored in the 
Temperature column and are not readily available. 

• Derivation: A variable needs to be extracted or derived from 
one or more existing columns. For example, if authors want to 
create a bar chart to show daily temperature differences between 
two cities (Fig. 2- 2 ) and a histogram to count the number of 
days which city is warmer (Fig. 2- 3 ), they need to derive the 
temperature difference and the name of the warmer city from the 
two cities’ temperature columns, and map them to the y-axis and 
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Fig. 1: A dataset of Seattle and Atlanta daily temperatures in 2020 
left) and a scatter plot that visualizes them by mapping Date to x-axis, 
emperature to y-axis, and City to color (right). 
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x-axis, respectively, and the city name to color channels of the 
corresponding charts. The derivation is also needed when the 
variable to be visualized requires analytical computation (e.g., 
aggregation, moving average, percentile) across multiple rows 
from a column in the table. For example, to plot a line chart 
to visualize the 7-day moving averages of Seattle temperatures 
(Fig. 2- 4 ), the authors need to calculate the moving average 
using a window function and map it to y-axis with Date on x-axis. 

In this paper, we introduce Data Formulator, an interactive visual-
ization authoring tool that embodies a new paradigm, concept binding. 
To create a visualization with Data Formulator, authors provide their 
visualization intent by binding data concepts to visual channels. Upon 
loading of a data table, existing data columns are provided as known 
data concepts. When the required data concepts are not available to 
author a given chart, the authors can create the concepts: either using 
natural language prompts (for derivation) or by providing examples 
(for reshaping). Data Formulator handles these two cases differently, 
with different styles of input and feedback, and we provide a detailed 
description of how they are handled in Sec. 2. Once the necessary data 
concepts are available, the authors can select a chart type (e.g., scatter 
plot, histogram) and map data concepts to desired visual channels. If 
needed, Data Formulator dispatches the backend AI agent to infer nec-
essary data transformations to instantiate these new concepts based on 
the input data and creates candidate visualizations. Because the authors’ 
high-level specifications can be ambiguous and Data Formulator may 
generate multiple candidates, Data Formulator provides feedback to 
explain and compare the results. With this feedback, the authors can 
inspect, disambiguate, and refine the suggested visualizations. After 
that, they can reuse or create additional data concepts to continue their 
visualization authoring process. 

We also report a chart reproduction study conducted with 10 partic-
ipants to gather feedback on the new concept binding approach that 
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Fig. 2: Visualizations created from df in Fig. 1 that require data transformation: (1) a scatter plot with Seattle and Atlanta temperatures on x,y-axes, 
(2) a bar chart to visualize the temperature difference between the two cities, (3) a histogram to count the number of days each city being warmer, 
and (4) a smoothed line chart that shows the 7-day moving averages of Seattle temperature. 

employs an AI agent, and to evaluate the usability of Data Formulator. 
After an hour-long tutorial and practice session, most participants could 
create desired charts by creating data concepts—both with derivation 
and reshaping transformations. We conclude with a discussion on the 
lessons learned from the design and evaluation of Data Formulator, as 
well as important future research directions. 

2 ILLUSTRATIVE SCENARIOS 

In this section, we illustrate users’ experiences to create visualizations 
in Figs. 1 and 2 using programs and Data Formulator from the initial 
input data in Fig. 1. We refer to this dataset as df in this section. 

2.1 Experience with Programming 

We first illustrate how an experienced data scientist, Eunice, uses pro-
gramming to create the desired visualizations with pandas and Altair 
libraries in Python. 
Daily Temperature Trends. Eunice starts with the scatter plot in 
Fig. 1. Because df is in the tidy format with Date, City, and Temperature 
available, Eunice needs no data transformation and writes a simple 
Altair program to create the plot: 

alt.Chart(df).mark_circle().encode(x='Date', y='Temperature', color='City') 

This program calls the Altair library (alt), selects the input dataset df 
and the scatter plot function mark_circle, and maps columns to x,y and 
color channels. It renders the desired scatter plot in Fig. 1. 
Seattle vs. Atlanta Temperatures. To make a more direct comparison 
of two cities’ temperatures, Eunice wants to create a different scatter 
plot (Fig. 2- 1 ) by mapping Seattle and Atlanta temperatures to x,y-
axes. However, Seattle and Atlanta temperatures are not available as 
columns in df. She therefore needs to transform df to surface them. 
Because df is in the “long” format, where temperatures of both cities 
are stored in one column Temperature, she needs to pivot the table to 
the “wide” format. Eunice switches to the data transformation step and 
uses the pivot function from the pandas library to reshape df (Fig. 3). 
This program populates Seattle and Atlanta as new column names from 
the City column, and their corresponding Temperature values are moved 
to these new columns by Date. With df2, Eunice creates the desired 
visualization, which maps Seattle and Atlanta to x,y-axes of the scatter 
plot with the following program: 

alt.Chart(df2).mark_circle().encode(x='Seattle', y='Atlanta') 

Temperature Differences. Eunice wants to create two visualizations 
to show how much warmer is Atlanta compared to Seattle: a bar chart 
to visualize daily temperate differences (Fig. 2- 2 ) and a histogram 
to show the number of days each city is warmer (Fig. 2- 3 ). Again, 
because necessary fields Difference and Warmer are not in df2, Eunice 
needs to transform the data. This time, she writes a program to perform 
column-wise computation, which extends df2 with two new columns 

Fig. 3: Prepare the new data df2 with the pivot function to populate 
Seattle and Atlanta temperatures from City and Temperature columns. 

Fig. 4: Extend df2 in Fig. 3 to derive Warmer, Difference, and Seattle 
7-day Moving Avg columns that are necessary for visualizations in Fig. 2. 

Warmer and Difference (Fig. 4). Eunice then creates the daily temper-
ature differences chart by mapping Date and Difference to x,y-axes 
and the histogram by mapping Warmer to x-axis and the aggregation 
function, count(), to y-axis to calculate the number of entries. 

# extend df2 with new columns 'Difference' and 'Warmer' 
df2['Difference'] = df2['Seattle'] - df2['Atlanta'] 
df2['Warmer'] = df2['Difference'].apply( 

lambda x: 'Seattle' if x > 0 else ('Atlanta' if x < 0 else 'Same')) 

# create the bar chart 
alt.Chart(df2).mark_bar().encode(x='Date', y='Difference', 

color='Warmer') → 

# create the histogram 
alt.Chart(df2).mark_bar().encode(x='Warmer', y='count()', 

color='Warmer') → 

7-day Moving Average of Seattle’s Temperature. Finally, Eunice 
wants to include a line chart for Seattle temperature trends in the report. 
Because daily temperatures fluctuate, she decides to create a smooth 
line chart based on 7-day moving average temperatures. Eunice needs 
an analytical function to calculate the moving average. Because the 
input data is sorted by Date, Eunice chooses the rolling function from 
pandas: she sets window=7 and center=True so that the moving average 
is calculated with a sliding window from day d −3 to day d +3 for each 
date d. This transformation adds the new column Seattle 7-day Moving 

Avg to df2 (Fig. 4; the first 3 days are null because of insufficient data), 



Fig. 5: Data Formulator UI. After loading the input data, the authors interact with Data Formulator in four steps: (1) in the Concept Shelf, create (e.g., 
Seattle and Atlanta) or derive (e.g., Difference, Warmer) new data concepts they plan to visualize, (2) encode data concepts to visual channels of a 
chart using Chart Builder and formulate the chart, (3) inspect the derived data automatically generated by Data Formulator, and (4) examine and save 
generated visualizations. Throughout the process, Data Formulator provides feedback to help authors understand generated data and visualizations. 

and Eunice maps Date and the new column to a line chart to create the 
desired visualization (Fig. 2- 4 ). 

df2['Seattle 7-day Moving Avg'] = df2['Seattle'].rolling(window=7, center=True) 
alt.Chart(df2).mark_line().encode(x='Date', y='Seattle 7-day Moving Avg') 

Remark. In all cases, Eunice can specify visualizations using simple 
Altair programs by mapping data columns to visual channels. However, 
data transformation steps make the visualization process challenging. 
Eunice needs to choose the right type of transformation based on the 
input data and desired visualization (e.g., creating the scatter plot in 
Fig. 1 from df2 would require unpivot instead). Furthermore, Eunice 
needs knowledge about pandas to choose the right function and pa-
rameters per task (e.g., rolling will not fit if Eunice wants to calculate 
moving average for each city in df). Eunice’s programming experience 
and data analysis expertise allowed her to successfully complete all 
tasks. But a less experienced data scientist, Megan, finds this process 
challenging. Megan decides to use Data Formulator to reduce the data 
transformation overhead. 

2.2 Experience with Data Formulator 

Data Formulator (Fig. 5) has a similar interface as “shelf-configuration”-
style visualization tools like Tableau or Power BI. But unlike these 
tools that support only mappings from input data columns to visual 
channels, Data Formulator enables authors to create and derive new 
data concepts and map them to visual channels to create visualizations 
without requiring manual data transformation. 
Daily Temperature Trends. Once Megan loads the input data (Fig. 1), 
Data Formulator populates existing data columns (Date, City, and Tem-
perature) as known data concepts in the Concept Shelf. Because all 
three data concepts are already available, no data transformation is 
needed. Megan selects the visualization type “Scatter Plot” and maps 
these data concepts to x,y and color channels in Chart Builder through 
drag-and-drop interaction. Data Formulator then generates the desired 
scatter plot. 

Seattle vs. Atlanta Temperatures. To create the second scatter plot 
(Fig. 4- 1 ), Megan needs to map Seattle and Atlanta temperatures to 
x,y-axes of a scatter plot. Because Seattle and Atlanta temperatures are 
not available as concepts yet, Megan starts out by creating a new data 
concept Atlanta Temp (Fig. 6- 1 ): she clicks the new + button in the 
Concept Shelf, which opens a concept card that asks her to name the 
new concept and provide some examples values; Megan provides four 
Atlanta temperatures (45, 47, 56, 41) from the input data as examples 
and saves it. Similarly, Megan creates another new concept Seattle 
Temp. Because Data Formulator’s current knowledge to them is limited 
to their names and example values, both concepts are listed as an 
unknown concept for now. (They will be resolved later when more 
information is provided.) 

With these new concepts and the Scatter Plot selected, Megan maps 
new data concepts Seattle Temp and Atlanta Temp to x,y-axes (Fig. 6-
2 ), and then clicks the FORMULATE button to let Data Formulator 
formulate the data and instantiate the chart. Based on the visualization 
spec, Data Formulator realizes that the two unknown concepts are 
related to each other but not yet certain how they relate to the input 
data. Thus, Data Formulator prompts Megan with an example table 
to complete: each row in the example table will be a data point in 
the desired scatter plot. Megan needs to provide at least two data 
points from the input data to guide Data Formulator on how to generate 
this transform (Fig. 6- 3 ). Here, Megan provides the temperatures 
of Atlanta and Seattle on 01/01/2020 and 01/02/2020 from the table 
Fig. 1. When Megan submits the example, Data Formulator infers 
a program that can transform the input data to generate a new table 
with fields Atlanta Temp and Seattle Temp that subsumes the example 
table provided by Megan. Data Formulator generates the new table and 
renders the desired scatter plot (Fig. 6- 4 ). Megan inspects the derived 
table and visualization and accepts them as correct. 

Temperature Differences. To create a bar chart and a histogram 
to visualize temperature differences between the two cities, Megan 
needs two new concepts, Difference and Warmer. This time, Megan 
notices that both concepts can be derived from existing fields based 



Fig. 6: Megan (1) creates new data concepts, Seattle Temp and Atlanta Temp, by providing examples and (2) maps them to x,y-axes of a scatter plot 
to specify the visualization intent. (3) Data Formulator asks Megan to provide a small example to illustrate how these two concepts are related, and 
Megan confirms the example. (4) Based on the example, Data Formulator generates the data transformation and creates the desired visualization. 

Fig. 7: (1) Megan derives the new concept Difference from Atlanta Temp and Seattle Temp using natural language. Data Formulator generates two 
candidates and displays the first one in the concept card. (2) Megan opens the dialog to inspect both, confirms the first one, and saves the concept. 

Fig. 8: Megan creates the bar chart using derived concepts, Difference 
and Warmer, as well as an original concept Date. 

on column-wise mappings, and thus she uses the “derive” function of 
Data Formulator (Fig. 7). Megan first clicks the “derive new concept” 
option on the existing concept Seattle Temp, which opens up a concept 
card that lets her describe the transformation she wants using natural 
language. Megan selects Seattle Temp and Atlanta Temp as the “de-
rived from” concepts, provides a name Difference for the new concept, 
and describes the transform using natural language, “Calculate seattle 
atlanta temp diff.” Megan then clicks the generate button and Data 
Formulator dispatches its backend AI agent to generate code. Data 
Formulator returns two code candidates and presents the first one in the 
concept card. Megan opens up the dialog to inspect both candidates 

and learns that because her description did not clearly specify whether 
she wants the difference or its absolute value, Data Formulator returns 
both options as candidates. After inspecting the example table and the 
transformation code provided by Data Formulator, Megan confirms 
the first candidate and saves the concept Difference. Similarly, Megan 
creates a concept, Warmer, from Seattle Temp and Atlanta Temp with 
the description “check which city is warmer, Atlanta, Seattle, or same.” 
Data Formulator applies the data transformation on top of the derived 
table from the last task and displays the extended table in Data View 
(Fig. 5). Because both concepts are now ready to use, Megan maps 
them to Chart Builder to create the desired visualizations (Fig. 8). 

7-day Moving Average of Seattle’s Temperature. Last, Megan needs 
to create a line chart with 7-day moving average temperatures. Because 
the moving average can be derived from the Seattle Temp column, 
Megan again chooses to use the derive function. Megan starts with a 
brief description “calculate 7-day moving avg” and calls Data Formu-
lator to generate the desired transformation. Upon inspection, Megan 
notices that the generated transformation is close but does not quite 
match her intent: the 7-day moving average starts from d − 6 to d for 
each day d as opposed to d − 3 to d + 3 (Fig. 9). Based on this obser-
vation, Megan changes the description into “calculate 7-day moving 
avg, starts with 3 days before, and ends with 3 days after” and re-runs 
Data Formulator. This time, Data Formulator generates the correct 
transformation and presents the extended data table in Fig. 5. Megan 
then maps Date and Seattle 7-day Moving Avg to x,y-axes of a line chart. 



Fig. 9: Megan derives the 7-day moving averages from Seattle Temp. 
After inspecting the results, she edits the description to be more precise. 

Remark. With the help of Data Formulator, Megan creates visualiza-
tions without manually transforming data. Instead, Megan specifies the 
data concepts she wants to visualize by: 

• building new concepts using examples (when the new concept is 
spread among multiple columns or multiple concepts are stored 
in the same column, e.g., Seattle Temp and Atlanta Temp are both 
stored in the Temperature column); and 

• deriving new concepts using natural language (when the new 
concept can be computed from existing ones using column-wise 
operators, e.g., Difference from Seattle Temp and Atlanta Temp). 

Megan then drags-and-drops data concepts to visual channels of a 
chart. In this process, for derived concepts, Data Formulator displays 
generated candidate code and example table to help Megan inspect and 
select the transformation; for concepts created by example, Data For-
mulator prompts Megan to elaborate their relations by completing an 
example table. Data Formulator then transforms the data and generates 
the desired visualizations. Data Formulator reduces Megan’s visual-
ization overhead by shifting the task of specifying data transformation 
into the task of inspecting generated data. Because Data Formulator’s 
interaction model centers around data concepts, Megan does not need 
to directly work with table-level operators, such as pivot, map/reduce 
and partitioning, which are challenging to master. 

3 THE DATA FORMULATOR DESIGN 

In this section, we describe our design principles, explain Data For-
mulator’s interaction model, and how Data Formulator derives data 
concepts and formulates visualizations from the author’s inputs. 

3.1 Design Principles 

Data Formulator introduces data concepts, an abstraction of the 
columns needed for an author to specify their target visualization. To 
eliminate the author’s burden to manually transform the data table 
before plotting, we designed Data Formulator based on the following 
guiding design principles. 
Treat design concepts as first-class objects. The notion of data con-
cepts is a generalization of table columns: it is a reference to columns 
both from a current table and from a future transformed table. They 
offer two benefits. First, concept-level transformations are easier to 
describe and understand than table-level operators. Table-level trans-
formations require either advanced operators like pivot and unpivot, or 

high-order functions like map and window, while concept-level opera-
tors are first-order functions over primitive elements (e.g., arithmetic) 
or lists (e.g., percentile). This makes it easier for the author to com-
municate with the AI agent and verify the results. Second, we can 
build the interaction experience on top of existing designs people are 
already familiar with: data concepts resemble data columns existing 
shelf-configuration tools commonly use. 
Leverage benefits from multiple interaction approaches. Data For-
mulator employs both natural language interaction (for deriving con-
cepts) and programming-by-example approach (for building custom 
concepts). Natural language descriptions have a superior ability to trans-
late high-level intent into executable code and large language models 
(LLMs) can reason about natural concepts (e.g., academic grades are A, 
B, C, D, and F; months are from January to December). However, it can 
be difficult for the author to provide proper descriptions if they do not 
understand notions like pivoting, and natural language descriptions can 
be imprecise and ambiguous. In contrast, while program synthesizers 
cannot reason about natural concepts, they are less ambiguous, and it is 
easier for the author to convey reshaping operations by demonstrating 
the output relation. By incorporating multiple approaches and feed-
back for different transformation types (derivation vs. reshaping), Data 
Formulator takes advantage of both, reducing the specification barrier 
and improving the likelihood for the AI agent to generate correct and 
interpretable codes. 
Ensure correct data transformation and promote trust. While LLM 
and program synthesizers can automatically generate code to eliminate 
the author’s manual data transformation burden, they can incorrectly 
generalize the author’s specification. Therefore, it is crucial for the 
author to view and verify the results. Our design employs mechanisms 
to ensure such inspection by the author: (1) display multiple candidates 
for the author to review, if available, (2) display both the code (process) 
and the sample output values (results) to help the author understand the 
transformation, and (3) allow the author to edit the generated transfor-
mation code to correct or refine it. 
Improve the system expressiveness. Data Formulator’s expressive-
ness is defined by the combination of transformation function and 
visualization language. Data Formulator’s visualization spec builds 
on top of Vega-Lite specifications. While Data Formulator’s UI does 
not provide options to layer marks, the author can import their custom 
Vega-Lite specs of layered visualizations to achieve the same design. 
For data transformation, Data Formulator supports reshaping options 
from tidyverse as described in Sec. 2, and it supports both column-wise 
derivation and analytical computation that can be generated by the 
LLM. Note that while our transformation language does not include 
aggregation, the author can achieve the same visualization by setting 
aggregation options on the desired axes (e.g., map Month to x-axis and 
avg(Seattle Temp) to y-axis to create a bar chart with average temper-
ature). However, with the current design, the author cannot derive or 
reshape data that first require aggregation without re-importing the 
aggregated data. 

3.2 Interaction Model 

Figure 10 shows Data Formulator’s high-level interaction model. Data 
Formulator first loads data columns from the input table as original 
(and known) concepts (e.g., Date, City, and Temperature concepts in 
Fig. 5). The author uses the Concept Shelf to create new data concepts, 
if needed, in two ways (Sec. 3.3): (1) derive a concept from existing 
ones by interacting with an AI agent using natural language or (2) build 
a custom concept by providing example values. If the new concept is 
derived from known concepts, Data Formulator immediately extends 
the current data table and registers it as a known concept. 

With necessary data concepts known, the author uses the Chart 
Builder to map data concepts to visual channels of a chart. If unknown 
custom concepts are used to specify a visualization, Data Formulator 
asks the author to provide an example relation among the encoded 
concepts to transform the input table by using a programming-by-
example approach. With the necessary data formulations applied, Data 
Formulator generates a Vega-Lite spec and renders the visualization. 



Fig. 10: Data Formulator’s interaction model. 

3.3 Creating New Data Concepts 

The author can derive a concept from one or more data concepts by 
interacting with Data Formulator’s AI agent (Fig. 10- 1 ). In addition to 
a concept name, the author provides both a list of source concepts from 
which the new concept is derived and a natural language description 
of the transformation (Fig. 7- 1 ). Data Formulator then generates a 
contextualized prompt that grounds the description in the context of 
source concepts. This prompt combines the author’s description and the 
descriptions of input parameters for all source concepts (with example 
values sampled from their domains) as comments, and joins it with 
the function prefix to instruct the AI agent to complete a Typescript 
function (as opposed to generate non-code text or uncontrolled code 
snippets). Data Formulator prepares two types of prompts for each 
query to cover simple derivation (Example 1) and analytical computa-
tion (Example 2) because it does not know if analytical computation is 
needed beforehand. 
Example 1: The prompt for “Calculate seattle atlanta temp diff” with 
source concepts Seattle Temp and Atlanta Temp (Fig. 7). 

// Calculate seattle atlanta temp diff 
// @param seattleTemp examples: 51, 45, 48 
// @param atlantaTemp examples: 45, 47, 56 
(seattleTemp: number, atlantaTemp: number) => { 

Example 2: The prompt for “calculate 7-day moving avg” with source 
concept Seattle Temp (Fig. 9). It provides index and seattleTempList so 
that the function can access to other values of the seattleTemp when 
analytical computation is needed (e.g., calculate the moving average for 
current index, derive percentile of the seatteTemp among all values). 

// calculate 7-day moving avg 
// @param seattleTemp examples: 51, 45, 48 
// @param seattleTempList: the list of all seattleTemp 
(seattleTemp: number, index: number, seattleTempList: number[]) => { 

Data Formulator sends both prompts to LLM (we use Codex Davinci 
2 [7]) to generate the transformation code (Fig. 10- 2 ), asking for five 
candidate completions. When candidate programs are returned from 
LLM, Data Formulator filters out programs that are not executable or 
contain error outputs by executing them on sample values from source 
domains. Data Formulator then presents the programs along with their 
example execution results for the author to inspect (Fig. 7). Once 
confirmed, a new derived concept is created and shown in the Concept 
Shelf. If all source fields are known concepts, Data Formulator derives 
a new column by applying the transformation function to every tuple 
from the source columns and appends the column in the current table 
for the author to review (e.g., Fig. 5). 

The author can also build a custom concept by providing its name 
and a set of example values that belong to its domain (Fig. 10- 3 ). 
Custom concepts are designed to support data reshaping: the author 
creates custom concepts when (1) the concept is spread across multiple 
columns; the author wants to combine multiple columns in a wide table 
to create one new concept in a long table, (2) multiple concepts are 

stored in one column; they want to surface fields from a long table, 
and (3) multiple values for a concept are collapsed in a column as a 
list (e.g., the value for an “actors” column is a list of actors for each 
movie); the author wants to split the list into multiple rows (i.e., one 
actor per row). These custom concepts are not known yet upon creation 
because Data Formulator needs additional information from the author 
to resolve their relation with the input data. As we will describe in 
the next section, the resolution is achieved by inferring the reshaping 
program based on the example relations provided by the user. 

With data concepts (including newly crated ones) ready, the author 
is ready to interact with the Chart Builder to create visualizations. 

3.4 Specifying and Formulating the Visualization 

Chart Builder employs a shelf-configuration interface: authors drag-
and-drop data concepts to visual channels of the selected visualization 
to specify visual encoding. Based on the encoding, Data Formulator 
generates a Vega-Lite specification (e.g., Fig. 11) to render the visual-
ization. Data Formulator adopts a chart-based specification: each chart 
type corresponds to a Vega-Lite template with placeholder encodings 
to be filled from the author specification. Data Formulator currently 
supports scatter plots (circle-based, bubble chart, ranged dot plots), 
bar charts (single-column, stacked, layered, grouped, histogram), line 
charts (with and without dots), heatmap, and custom charts (with all 
compatible visual channels). 

{ "mark": "circle", "encoding" : { "x": {"field": "Date", "type": "temporal"}, "y": 
{"field": "Temperature", "type": "quantitative"}, "color": {"field": "City"} } } → 

{ "mark": "circle", "encoding" : { "x": {"field": "Seattle Temp", "type": 
"quantitative"}, "y": {"field": "Atlanta Temp", "type": "quantitative"} } } → 

Fig. 11: Vega-Lite specs for the scatter plots in Fig. 2-1 and Fig. 6. 

When all fields used in the visual encoding are available, Data For-
mulator combines the Vega-Lite spec with the input data to render the 
visualization (e.g., Fig. 1). Otherwise, when some concepts are un-
known (unresolved custom concepts or concepts derived from unknown 
ones), Data Formulator first interacts with the author and then calls the 
program synthesis engine to create the transformed table. 

Once the author specifies the visual encoding, Data Formulator first 
checks if any unknown concepts are used. If so, it asks the author 
to illustrate the relation of unknown concepts with other concepts 
used in the visual encoding by filling out an example relation in a 
sample table (e.g., Fig. 10- 5 ). Data Formulator needs such example 
relation to disambiguate the visualization intent because unknown 
concepts contain example values only from their own domains, missing 
information on how they will be related row-wise in the transformed 
table. For example, Data Formulator generates the example relation 
with Seattle Temp and Atlanta Temp fields as shown in Fig. 6- 3 for the 
author to complete. To reduce the author’s efforts, Data Formulator pre-
fills two example values of Atlanta Temp based on its sample domain 
and asks the author to complete their corresponding Seattle Temp values 
(e.g., what’s Seattle Temp when Atlanta Temp is 45). Each row in the 
example relation will be a row in the transformed data, which will then 
be mapped to a point in the scatter plot. 

Once the author submits the example relation, Data Formulator calls 
the program synthesizer to solve the data reshaping problem (Fig. 10-
6 ). Given an example relation E, with input data T , the program 
synthesizer solves the programming-by-example problem to find a 
reshaping program p such that E ⊆ p(T ) (i.e., the transformed data 
should generalize the example E). The reshaping program p is defined 
by the grammar in Figure 12, where p is recursively defined over four 
core reshaping operators from the R tidyverse library. We include only 
reshaping operators because other operators like unite and summarise 
are already supported by Data Formulator’s ability to derive concepts 
from natural language. With this grammar, the program synthesizer 
performs an enumerative search in the program space for candidate 
programs. To speed up this combinatorial search process, we leverage 
abstract interpretation to prune the search space: the program synthesis 



p ← T 
| pivot_longer(p, c̄) (pivot from wide to long) 
| pivot_wider(p,cname,cvals) (pivot from long to wide) 
| separate(p,c) (split a column into two) 
| separate_rows(p,c) (separate a collapsed column into rows) 

Fig. 12: Reshaping operators supported by Data Formulator. T refers to 
input data, and c refers to column names. 

engine returns candidate programs that satisfy the example relation to 
Chart Builder. Note that multiple candidates could be generated since 
the example relation is small and potentially ambiguous. In practice, 
unlike other programming-by-example tools, the small example relation 
is precise enough to constrain the program space that only the correct 
candidate is returned, because the program synthesizer only needs to 
solve the reshaping problem. 

With generated reshaping programs, Chart Builder prepares the input 
data: it first generates a reshaped table from each reshaping program 
and then for every derived concept used in the encoding, it extends the 
reshaped table with a new column by applying the transformation func-
tion on every tuple in the table. This way, Data Formulator generates a 
new table with all necessary fields to instantiate the visualization. 

Data Formulator presents the prepared table and candidate visualiza-
tions for the author to inspect (Fig. 5- 3 4 ). When the author confirms 
and saves a desired visualization, the transformed data is used to re-
solve unknown concepts: these concepts are now available as known 
concepts to be used to create visualizations. 

3.5 Implementation 

Data Formulator is built as a React web application in Typescript; its 
backend is a Python server that runs on a Dv2-series CPU with 3.5 GiB 
RAM on Azure. Data Formulator’s backend queries the OpenAI Codex 
API for concept derivation and runs the synthesis algorithm locally. 
Data Formulator’s scalability to larger data relates to (1) the frontend’s 
visualization rendering capability and (2) the backend’s efficiency to 
execute data transformation scripts. To scale up Data Formulator for 
large datasets, we envision a sampling-based approach [29], where 
Data Formulator presents results on a representative subset of data to 
enhance interactivity and returns full results asynchronously. 

4 EVALUATION: CHART REPRODUCTION STUDY 

We conducted a chart reproduction study [40] to gather feedback on 
the new concept binding approach that employs an AI agent, and to 
evaluate the usability of Data Formulator. 

4.1 Study Design 

Participants. We recruited 10 participants (3 female, 7 male) from a 
large technology company. All participants had experience creating 
(simple) charts and identified themselves as a person with normal or 
corrected-to-normal vision, without color vision deficiency. Six partici-
pants are data scientists, two are applied scientists, and the remaining 
two are data & applied scientists, and they are all located in the United 
States. Four participants are in their 30’s, three are in 20’s, and one 
participant is in each of the 40’s, 50’s, and 18-19 age group. They had 
varying levels of self-identified expertise in terms of chart authoring, 
computer programming, and experience with LLMs. 
Tasks and Datasets. We prepared six chart reproduction tasks with 
two datasets (3 tasks for each dataset): daily COVID-19 cases from 
Jan 21, 2020 to Feb 28, 2023 (3 columns; 1,134 rows) for the first 
task set (Tasks 1-3) and daily temperatures in 2020 for Seattle and 
Atlanta (4 columns; 732 rows; Fig. 1) for the second set (Tasks 4-6). 
In both task sets, each subsequent task is built upon the previous one. 
One task (Task 4) required building two new concepts for reshaping 
and the other five tasks required the use of derived concepts. We also 
prepared three tutorial tasks, using students’ exam scores dataset (5 
columns; 1,000 rows): in addition to the scores for three subjects (math, 
reading, and writing), the data table included a student’s id and major. 

The first tutorial task was about creating a chart with known/available 
concepts, while the second and third tutorial tasks were for creating 
charts using derived concepts and unknown concepts, respectively. 
Finally, we produced two practice tasks (one for reshaping and another 
for derivation). For these, the exam scores dataset was transformed into 
a long format, including math and reading scores under the subject and 
score column, resulting in 4 columns and 2,000 rows. 

Setup and Procedure. We conducted sessions remotely via the Mi-
crosoft Teams. Each session consisted of four segments: (1) a brief 
explanation of the study goals and procedure, (2) training with tutorial 
and practice, (3) chart reproduction tasks, and (4) debrief. 

The training segment started with a quick introduction of Data For-
mulator’s basic interactions using a simple task that does not require 
data transformation. Then, with their screen shared and recorded with 
audio, participants went through a tutorial and created three visual-
izations following step-by-step instructions provided in slides. They 
next created two visualizations on their own as practice. After an op-
tional break, the participants performed six reproduction tasks using the 
two datasets mentioned above. Each task included a description (e.g., 
“Create a Scatter Plot to compare Atlanta Temperature against Seattle 
Temperature.”), the labels for axes and color legend (if necessary), and 
an image of the target visualization. (Study materials are included in 
the supplemental material.) We encouraged the participants to think 
aloud, describing their strategies, whether any feature of Data Formula-
tor works or makes sense, if the system behaves as they expect, etc. We 
recorded if the participants required a hint (and which hint) and how 
long it took for them to complete the task. The recorded completion 
time is not intended to indicate performance, as we wanted to gain 
insights about our approach using the think aloud method. Instead, we 
wanted to see if and how the participants completed, faltered, or recov-
ered for each task, within a reasonable amount of time. The session 
ended with a debriefing after the participants filled out a questionnaire 
with 5 questions about their experience with Data Formulator. The 
entire session took about two hours to complete, while the training 
segment took about an hour. We compensated each participant with a 
$100 Amazon Gift card. 

4.2 Results 

After an hour-long tutorial and practice session, most participants could 
use Data Formulator to create different types of charts that involve ad-
vanced data transformations. Furthermore, they were generally positive 
about their experience with Data Formulator in chart authoring. 

Tasks Completion and Usability Issues. Participants completed all 
tasks on average within 20 minutes, with a deviation of about four and 
a half minutes. Table 1 shows the average and standard deviation of 
task completion time in minutes, along with the total number of hints 
provided for each chart reproduction task (for all 10 participants). The 
participants spent most of their time (on average less than five minutes) 
on Task 6 because it was not trivial to inspect the code to generate 
7-day moving average. For Tasks 5 and 6, we had to give one hint 
(to two different participants) to guide them to use a different type of 
concept (they needed to derive a concept but initially tried to build a 
concept). There were a few cases that we had to provide a hint to a 
single participant: how to select multiple sources for derivation (Task 
4), what are the correct source concepts for derivation (Tasks 2 & 5), 
and the example values should be from the original table (Task 4). We 
had to provide the highest number of hints for Task 1. This was because 
when participants derived the year from the date value, its data type 
was set to number and the participants did not know or remember how 
to change its data type to string. (As detailed below, some participants 
tried to fix it by providing a different natural language prompt). 

For derived concepts, once the participants identified the correct 
interaction approach and input fields, they are able to describe and 
refine the transformation in natural language to solve the tasks. We 
recorded all participants’ prompts (see supplementary material). On 
average, participants made 1.62 prompt attempts per derived concept, 
and the length of those prompts averaged 7.28 words. The system 
generated an average of 1.94 candidates per prompt attempt. 



Table 1: The average and standard deviation of task time (in minutes) 
and the total number of hints provided for chart reproduction tasks. 

Task Average Time Standard Deviation Total Number of Hints 

Task 1 2:21 0:45 7 
Task 2 3:19 2:09 2 
Task 3 3:45 1:33 2 

Task 4 2:43 1:33 2 
Task 5 2:22 1:55 3 
Task 6 4:29 1:39 2 

Participants rated Data Formulator on five criteria using a 5-point 
Likert scale (5 being the most positive) as follows: easy to learn (M = 
3.90, SD = 0.88), easier than other tools to transform data (M = 3.80, 
SD = 1.23), AI-agent’s usefulness (M = 4.4, SD = 0.70), helpful to 
verify generated data (M = 4.1, SD = 0.74), and the trustworthiness of 
generated data (M = 4.7, SD = 0.48). 

Participants provide feedback to improve the user interface. Four 
participants expected a way to multi-select on concept cards and click 
“derive” for deriving a concept from multiple existing ones. The current 
method of clicking “derive” on one concept and then multi-selecting 
is not intuitive. Two other participants expected the AI to select or 
identify which concepts to derive from based on their prompts. A few 
participants expected to change data type using the prompt (e.g., “year 
as a string” when the year is extracted from date). Five participants 
wanted the derived examples table to show more values, or unique 
derived values. Reshaping data was at times a point of confusion: two 
participants found it difficult to understand how the AI formulated 
candidate datasets, while two others did not intuit or remember the 
task sequence to formulate data for unknown concepts. When required 
to reshape data, three participants entered plausible, but not exact 
values in the example table during the training: they misunderstood the 
rigid connection to the original dataset. To strengthen that connection 
participants recommended including additional columns (especially a 
column that is unique for a pivot transform) or to filter or highlight 
rows of the data table view that correspond to the values used in the 
example table. We also observed users’ attempts to re-use a derived 
concept as a commutative function on other concepts: two participants 
tried to drag a derived concept and drop it on other concepts. 

Overall Reaction and Experience. To understand participants’ re-
action to the new concept-drive approach employing an AI agent, we 
analyzed the debrief interview, during which participants stated some-
thing or confirmed an observation made by the experimenter. Using the 
transcription from the recorded sessions, one researcher applied an open 
coding method to surface all unique feedback, issues and ideas from 
the participants. He expanded the codes to generalize for semantically 
similar participant statements. While quantities of qualitative data does 
not provide a metric for importance, we counted how many participants 
mentioned each code, providing how frequently our participants had 
shared experiences or ideas with Data Formulator. 

Overall, participants were positive about their experience with Data 
Formulator. All 10 participants said that natural language prompts 
work well for generating data transforms and eight mentioned that 
AI is a helpful tool for the study tasks. Participants more frequently 
praised the derived concept than the unknown concept method for 
transforming data. Specifically, when it comes to verifying candidate 
derived concepts: all except one participant commented that displaying 
code was helpful and seven found the example derived values table to 
be useful. While only half of the participants commented that pivoting 
with unknown concepts is easier than with other tools, only three 
affirmed the example data table being helpful. 

Five participants mentioned that they were impressed by the power of 
the AI agent to generate data transforms. Five participants found having 
candidates (for both derived and formulated data) to be helpful because 
the candidates provided an opportunity to choose a correct answer, or 
at the least to select a promising direction to refine. Participants also 
explained that generating candidates increases trust in a collaborative 
experience. On the other hand, three participants mentioned they are 
reluctant to give much trust to the AI generative features of the tool. 

5 RELATED WORK 

Data Formulator builds on top of prior research in visualization author-
ing tools, data transformation tools, and code generation techniques. 

Visualization Grammars and Tools. The grammar of graphics [56] 
first introduces the representation of visualizations based on chart types 
and encodings of data columns to their visual channels. Many high-
level grammars are designed to realize this idea. For example, gg-
plot2 [53] is a charting library in R based on visual encodings. Vega-
Lite [44] and its Python-wrapper Altair [49] extend the traditional gram-
mar of graphics design with rules for layered and multi-view displays, 
as well as interactions, and Animated Vega-Lite [63] further extends it 
to support animations. These grammars hide low-level implementation 
details and are concise. Therefore, they are generally preferred for the 
rapid creation of visualization in exploratory settings over toolkits and 
libraries like Protovis [4], Atlas [26], and D3 [5] that are designed for 
more expressive and novel visualization authoring. High-level gram-
mars inspire interactive visualization tools like Tableau [47], Power 
BI, Lyra [42], Charticulator [39], and Data Illustrator [27]. These tools 
adopt a shelf-configuration design: authors map data columns to vi-
sual encoding “shelves” often using the drag-and-drop interaction, and 
enerate specifications in high-level grammars to render visualizations. 
These grammars and tools require that the input data is in a tidy format, 
where all variables to be visualized are columns of input data. Because 
this means authors often need to transform the data first to create any 
visualizations, Satyanarayan et al. recognized the automatic inferring 
or suggestions of appropriate transformations when necessary, as an 
important research problem [43]. 

To reduce authors’ efforts, visualization by demonstration [41,45,62] 
and by example [52] tools are introduced. Lyra 2 [62] generates inter-
action rules after authors perform an interaction on the visualization. 
VbD [41] lets users demonstrate transformations between different 
types of visualizations to produce new specifications. Although these 
approaches reduce the chart specification efforts, they require tidy input 
data. Falx [52], on the other hand, addresses the data transformation 
challenge with a visualization-by-example design. Falx lets authors 
specify visualizations via low-level example mappings from data points 
to primitive chart elements. However, Falx does not support derivation 
types of transformation because of its underlying programming-by-
example algorithm limitations; its requirement to focus on low-level 
elements also introduces a challenging paradigm shift for users who are 
more familiar with tools that focus on high-level specifications [44, 47]. 

Natural language interfaces [8, 11, 19, 25, 28, 35] enhance users’ 
ability to author and reason about visualizations. NCNet [28] uses a 
Seq-to-Seq model to translate chart description texts into Vega-Lite 
specs. VisQA [19] is a pipeline that leverages semantic parsing tech-
niques [34] to provide atomic data-related answers based on its visual-
izations. NL4DV [31] and Advisor [25] generate visualizations based 
on user questions. To manage ambiguity in natural language inputs [46], 
DataTone [11] ranks solutions based on user preference history, and 
Pumice [23] introduces a multi-modal approach that leverages examples 
to refine the initial ambiguous specification. Data Formulator’s concept 
derivation interface is based on natural language. Data Formulator 
benefits from large language models’ expressiveness [7], and manages 
ambiguity by restricting the target function type to columns-to-column 
mapping functions (as opposed to arbitrary data transformation scripts). 
In the future, more powerful language models can be plugged into Data 
Formulator to improve code generation quality. 

Data Formulator adopts the shelf-configuration approach like 
Tableau and Power BI, but it supports encoding from data concepts 
to visual channels to address the data transformation burden. Because 
Data Formulator can automatically transform the input data based on 
the concepts used in the visualization specification, authors do not need 
to manually transform data. Furthermore, because Data Formulator’s 
Chart Builder resembles tools like Power BI and Tableau, it lets the 
authors focus on high-level designs. Data Formulator’s multi-modal 
interaction approach supports both derivation and reshaping tables. 
While Data Formulator currently focuses on standard visualization sup-
ported by Vega-Lite, its AI-powered concept-driven approach can also 



work with expressive and creative visualization design tools like Struct-
Graph [48] and Data Illustrator [27] to automate data transformations. 
Data Transformation Tools. Libraries and tools like tidyverse [55], 
pandas [33], Potter’s Wheel [38], Wrangler [17], Tableau Prep, and 
Power Query are developed to support data transformation. They 
introduce operators to reshape, compute, and manipulate tabular data 
needed in data analysis. Automated data transformation tools, including 
programming-by-example tools [16, 36, 50] and initiative tools [13, 17, 
18, 60], are developed to reduce authors’ specification effort. Data 
Formulator tailors key transformation operators from the tidyverse 
library (reshaping and derivation) for visualization authoring. Because 
the desired data shape changes with visualization goals, even with these 
tools, authors still need the knowledge and effort to first identify the 
desired data shape, and then switch tools to transform the data. Data 
Formulator bridges visual encoding and data transformation with data 
concepts to reduce this overhead. 
Code Generation. Code generation models [7, 9, 10] and program syn-
thesis techniques [6, 12, 50, 61] enable users to complete tasks without 
programming by using easier specifications, including natural language, 
examples, and demonstrations. Code generation models like Codex [7], 
PaLM [9], and InCoder [10] are transformer-based causal language 
models (commonly referred to as LLMs) that complete texts from natu-
ral language prompts. These LLMs can generate expressive programs 
to solve competitive programming [14, 24], data science [20], and soft-
ware engineering tasks [1] from high-level descriptions. Programming-
by-example [52] and programming-by-demonstration [2, 37] tools can 
synthesize programs based on users’ output examples or demonstrations 
that illustrate the computation process. Natural language approaches 
are highly expressive, but some tasks can be challenging to phrase. On 
the other hand, while programming-by-example techniques are precise, 
they are less expressive and do not scale to large programs as they re-
quire well-defined program spaces. Therefore, Data Formulator adopts 
a mixed-modality approach to solve the data transformation task. It 
leverages the Codex model [7] for concept derivations and the example-
based synthesis algorithm [51] for reshaping, which takes advantage of 
both approaches to reduce authors’ specification overhead. 

Because code generation techniques generalize programs from in-
complete user specifications, generated programs are inherently am-
biguous, and thus require disambiguation to identify a correct solution 
among candidates. Prior work proposes techniques to visualize the 
search process [61], visualize code candidates [52, 59], and present 
distinguishing examples for authors to inspect [15]. Data Formulator 
provides feedback to the authors by presenting the generated code 
together with its execution results for them to inspect, select, and edit. 

6 DISCUSSION AND FUTURE WORK 

Unified Interaction with Multiple Modalities Data Formulator em-
ploys two different modalities for authors to specify different types 
of data transformation: natural language for concept derivation and 
examples for table reshaping (Sec. 3). This design combines strengths 
of both modalities so that the authors can better communicate their 
intent with the AI agent, and the AI agent can provide precise solutions 
from a more expressive program space. However, choosing the right 
input modality when creating a new concept can be challenging for 
inexperienced authors. To address this challenge, we envision a strati-
fied approach where the authors just initiate the interaction in natural 
language, and the AI agent will decide whether to ask the authors, for 
example relations for clarification or to directly generate derivation 
codes. This design will shift the effort of deciding which approach to 
start with from the authors to the AI agent, and “by-example” specifica-
tion will become a followup interaction step to help the authors clarify 
their intent. We envision this mixed-initiative unified interaction will 
further reduce the authors’ efforts in visualization authoring. 
Conversational Visualization Authoring with AI Agents. Conver-
sational AI agents [32] have the strength of leveraging the interaction 
contexts to better interpret user intent. They also provide opportunities 
for users to refine the intent when the task is complex or ambiguous. 
However, conversation with only natural language is often insuffi-

cient for visualization authoring because (1) it does not provide users 
with precise control over the authoring details (e.g., exploring differ-
ent encoding options, changing design styles) and (2) the results can 
be challenging to inspect and verify without concrete artifacts (e.g., 
programs, transformed data). It would be useful to research how con-
versational AI can be integrated with Data Formulator’s concept-driven 
approach to improve the overall visualization experiences. First, with 
a conversational AI agent, the authors can incrementally specify and 
refine their intent for tasks that are difficult to solve in one shot. Second, 
a conversational agent complements Data Formulator by helping the 
authors explore and configure chart options. Because Data Formulator 
focuses on data transformation, it does not expose many chart options 
(e.g., axis labeling, legend style, visual mark styles) in its interface. A 
conversational AI agent can help the authors access and control these 
options without overwhelming them with complex menus. For example, 
when the authors describe chart styles they would like to change, Data 
Formulator can apply the options directly or dynamically generate edit-
ing panels for them to control. We envision the effective combination 
of conversational AI experiences, and the Data Formulator approach 
will let the authors confidently specify richer designs with less effort. 

Concept-driven Visual Data Exploration. Visual data exploration 
tools [21, 22, 30, 57, 58] help data scientists understand data and gain 
meaningful insights in their analysis process. These tools support a 
rich visual visualization space, yet still require datasets to be in the 
appropriate shape and schema. While Data Formulator is designed 
for visualization authoring, its concept-driven approach can be used 
in visual data exploration to expand the design space. Beyond the 
current concept-driven features of Data Formulator, the AI agent could 
be enhanced to recommend data concepts of interest based on the 
data context or author interaction history. Building on this idea, the 
tool could recommend charts based on all potentially relevant data 
concepts. This expansive leap could overcome one of the limitations of 
chart recommendation systems: by enabling the authors to view charts 
beyond their input data columns without additional user intervention. 

Study Limitations. While our participants had varying levels of ex-
pertise in chart authoring, computer programming, and experience 
with LLMs, many of them had considerable knowledge about data 
transformation methodology and programming. It would be useful 
to investigate if and how people with limited expertise could learn 
and use Data Formulator. The main goal of Data Formulator was to 
reduce manual data transformation in visualization authoring efforts. 
As such, in our study, we focused on derivation and reshaping types 
of data transformations with simple datasets. While they are key types 
of transformation and our tasks covered multiple styles of derivations, 
the transformations we studied are by no means comprehensive. It 
would be valuable to evaluate the broader combinations and complexi-
ties of data transformations. Our study adopted a chart reproduction 
study [40], which is commonly used for evaluating chart authoring 
systems (e.g., [27, 39, 42]). Therefore, our study shares its inherent 
limitations: because we prepared datasets and tasks, and provided target 
visualizations as a reference, we do not know if and how people would 
use Data Formulator to create visualizations with their own data. 

7 CONCLUSION 

This paper introduces Data Formulator, a concept-driven visualization 
authoring tool that leverages an AI agent to address the data transfor-
mation challenge in visualization authoring. With Data Formulator, 
authors work with the AI agent to create new data concepts and then 
map data concepts to visual channels to specify visualizations. Data 
Formulator then automatically transforms the input data and instantiates 
the visualizations. Throughout the authoring process, Data Formulator 
provides feedback to the authors to inspect and refine the generated 
code to promote confidence. As discovered in the chart reproduction 
study, participants can learn and use Data Formulator to create visu-
alizations that require advanced data transformations. In the future, 
the concept-driven visualization approach can potentially benefit the 
design of new visual data exploration tools and expressive visualization 
authoring tools to overcome the data transformation barrier. 



A SUPPLEMENTAL MATERIAL 

We include three zip files in the supplemental material: (1) a 6-minute 
video that walks through user experiences of creating visualizations 
about Seattle and Atlanta temperatures, described in Sec. 2 with Data 
Formulator, (2) a set of short videos that demonstrate additional Data 
Formulator scenarios, and (3) our user study materials including: study 
script, tutorials, study tasks, and prompts created by participants. 
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