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Fig. 1: Demonstration of the bias toward variability for three mark types showing the same data. The red line shows the mean estimated 
averages across all participants in our second experiment. The line chart (center) shows a bias of the estimated average toward higher 
variability in the higher y-values. The bias is smallest when the data is shown as points equally spaced along the x-axis (left). The bias 
in line charts is in the same direction as the bias of estimates of points sampled at equal intervals along the arc of the line (right). 

Abstract— We investigate variability overweighting, a previously undocumented bias in line graphs, where estimates of average value 
are biased toward areas of higher variability in that line. We found this effect across two preregistered experiments with 140 and 420 
participants. These experiments also show that the bias is reduced when using a dot encoding of the same series. We can model 
the bias with the average of the data series and the average of the points drawn along the line. This bias might arise because higher 
variability leads to stronger weighting in the average calculation, either due to the longer line segments (even though those segments 
contain the same number of data values) or line segments with higher variability being otherwise more visually salient. Understanding 
and predicting this bias is important for visualization design guidelines, recommendation systems, and tool builders, as the bias can 
adversely affect estimates of averages and trends. 

Index Terms—bias, lines graph, ensemble perception, average 

1 INTRODUCTION 

Since William Playfair invented line graphs in 1786 [23], they have 
become one of the most common data visualization types. Designers 
use line graphs to visualize stocks, sensor data, machine learning met-
rics, and human vitals (e.g., heart rate). Line graphs show a continuous 
variable’s change over another continuous variable, typically time, as 
the changing position of a line mark. 

We generally assume that visualizations, especially of effective vi-
sual encoding channels such as position, are perceived not perfectly 
but without bias [5]. The popularity of line graphs may be because the 
visual encoding of time series as the position of a line is considered 
effective relative to other visual encoding channels, such as hue, depend-
ing on the task. However, designers should be cognizant of perceptual 
biases that can lead to misinterpretation of visualizations [14, 29]. For 
example, prior work demonstrates that the background color can bias 
the perception of the color of marks [28], and continuous rainbow color 
maps are perceived as discrete categories [17, 25]. 

There may be unexplored biases in line charts as well. When drawing 
a line, the length of the line drawn varies not only with the duration 
of the visualized time series but also with the variability of the values 
(and the resulting variability of the line graph). For example, take two 
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time series of regularly sampled values over the same duration. The 
first value may be constant while the second value oscillates. Both 
time series have the same number of values (the same duration), but in 
the visualization as a line graph, the second line has a longer overall 
length—we call this the arc length of the line. The arc length is the sum 
of the length of all line segments. Steeper line segments are longer than 
other line segments of the same length along x. The arc length of a line 
affects how much visual weight a line has (how much “ink” is needed 
to draw it) and how much it draws viewers’ attention [30]. Within a 
single line, periods of the same length may have a longer or shorter 
arc length depending on how much the line goes up and down, which 
depends on the amount of variability in the visualized time series. 

Estimates of average values may be biased by design features of the 
marks that draw viewers’ attention, as found in prior work [13], and 
increased variability in visualized times series may capture attention. 
Our bottom-up attention is generally attracted to visual information 
that contrasts with its surroundings [30]. Marks can vary in contrast to 
the background and other elements, which dictates how capturing they 
are to our attention, referred to as salience. For example, areas of a 
line graph with high variability also have more ink (often in color) and 
more edges, creating high contrast with the background. Therefore, we 
hypothesize that average estimates in lines are biased toward areas of 
line graphs that have a longer relative arc length (i.e., that have a longer 
arc length for the same duration or that use more ink). Put differently, 
we hypothesize that increased variability in higher values increases the 
average estimate of a time series (and vice versa) in line graphs and 
that the bias is consistent with the salience of the line. 

We tested this hypothesis in two experiments. Our first experiment 
showed that average estimates are biased toward the area of the line 
that visualizes more variable data. In the second experiment, we sought 
to understand the reasons for the observed bias. We hypothesized that 
average estimates in line graphs are consistent with the salience of 
a line. We, therefore, hypothesized that average estimates of points 
drawn along the arc of a line are more consistent with average estimates 
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on lines than points drawn at regular intervals along the time dimension 
of a graph. In other words, the bias to variability may decrease from a 
line graph encoding to a point encoding of the same data. The results 
of the second experiment confirm this hypothesis, and a demonstration 
of the findings is shown in Figure 1. We preregistered the experiments 
on the Open Science Framework (Experiment 1 and Experiment 2) and 
have made our study materials available at (OSF Link). 

Although we are not the first to document that different time series 
have different arc lengths, and that arc length affects aggregates [12, 
21], we experimentally show the effect and reveal how much average 
estimates in line graphs can be biased by variability in the time series. 
Understanding this bias is important because people often use line 
graphs (as one of the most common visualization types) to visually 
assess whether values are, on average, above or below critical thresholds 
or to estimate future trends. Our results show that variability in line 
graph biases the perception of averages and, therefore, conclusions 
people draw. While the variability affects audiences’ perception, it 
may be an artifact of an irrelevant factor that should not affect their 
conclusions. We discuss these implications and potential designs that 
could reduce the observed bias. 

2 RELATED WORK 

Line graphs are a common visualization— especially of time series 
data—in various domains [24], appearing in papers, reports, monitoring 
dashboards, and visual analysis systems. They are generally considered 
an effective visualization for time series data [31]. Mackinlay describes 
a visualization as effective when the information it conveys is more 
readily perceived than with other visualizations [18]. A visualization 
is always effective only with respect to a particular task. In this paper, 
the task is to estimate the average of a time series, which corresponds 
to “compute derived value” in Amar et al.’s popular low-level task 
taxonomy [3]. Whether a visualization is effective depends on choosing 
the right visual mark and effective visual encoding channels. Position 
is considered the most precise visual encoding channel [5]. 

However, research also demonstrates the limitations of line graphs 
for various tasks (e.g., [1,2,5,6,9,11,15,33]; reviewed in [24]). Several 
studies compared line charts to other encodings and found that the 
efficacy of line charts depends on the task [2, 6, 11, 15]. Albers, Correll, 
and Gleicher found that line graphs are best suited for identifying the 
min, max, and range while less effective for average estimation [2] (see 
also [6]). Studies have shown that positional encoding may be a precise 
visual encoding channel, but it can produce systematic biases regarding 
how averages are perceived [33] and remembered [19]. Researchers 
investigated bias in composed displays with line and bar graphs [33]. 
When comparing two curved lines, work shows that the steepness of 
the lines causes a perceptual illusion making it challenging to estimate 
differences between the lines visually [5]. 

We are not the first to recognize that line graphs dedicate more visual 
weight to steeper lines. This effect becomes critical when summarizing 
large ensembles of line graphs. Heinrich and Weiskopf reduced the 
salience of steeper lines in density visualizations of parallel coordinate 
plots [12]. Moritz and Fisher aggregated line graphs to create density 
visualizations of large time series [21]. To avoid visual artifacts of 
steeper lines, they normalized each line by the arc length such that 
each time series contributes equally to the density visualization. Zhao 
et al. proposed an effective density computation and extended density 
visualizations with interactivity [34]. However, none of these works 
experimentally confirm that average position estimates in line graphs 
are biased due to the increased salience. 

3 EXPERIMENTS 

In two experiments, we investigated the perception of average values 
in line graphs. The goal of the first experiment was to determine if 
the perception of averages is biased toward variability and whether we 
can predict this bias. To examine one possible source of the bias, in 
Experiment 2, we aimed to identify the contribution of the line encoding. 
To test this, we conducted a study comparing the bias of three mark 
types: 1) points equally spaced along the x-axis, or Cartesian spaced, 
2) points equally spaced along the arc of the line, and 3) a line. 

More variability in the lower y-valuesMore variability in the higher y-values 

N
o

is
e 

fr
o

m
 0

 t
o

 0
.1

5
N

o
is

e 
fr

o
m

 0
 t

o
 0

.1
5

 
N

o
is

e 
fr

o
m

 0
 t

o
 0

.4
N

o
is

e 
fr

o
m

 0
 t

o
 0

.4
 

S
ee

d
 1

S
ee

d
 2

 

Fig. 2: First 8 of 48 stimuli for Experiment 1. The stimuli included two 
variability levels for each seed and conditions where the graphs were 
mirrored creating stimuli with variability in the higher and lower y-values. 

Fig. 3: Example stimulus. Participants can move the grabber up and 
down to where they estimate the line’s average to be. Each series is 
shown as a 500px by 200px graph. 

3.1 Experiment 1 

The first experiment aimed to determine if there was a previously 
undocumented bias in perceptual line graph average estimation. We 
termed this potential bias variability-overweighting, which is when 
people believe that the average value of the data set is closer to the 
more variable data. For example, in Figure 1 center, if a participant 
were to indicate that the average value was located at the red line, they 
would be incorrect. In the figure, the true average is lower, but it could 
be the case that people are biased toward the more variable data. 

We hypothesized that individuals would have a skewed perception 
of averages toward sets of values with higher variance. High variance 
increases the amount of ink in a line graph and, therefore, the visual 
saliency of the line. If, in a line graph, the variance correlates with the 
value plotted along the same axis (here y), then we expect people to 
estimate that most values are where the high-variance data is located. 

To test if variability-overweighting occurs with line graphs, in Ex-
periment 1, we showed participants line graphs of synthetic stock data 
that we modified to induce increased variability. We created stimuli 
that included more variability in the higher y-values and then reflected 
the stimuli to create graphs with more variability in the lower y-values 
(see Figure 2). We will refer to the stimuli with variability in the higher 
y-values as “variability upper” and those with variability in the lower 
y-values as “variability lower.” Participants were tasked with estimating 
the average y-value of the stock data using a draggable line (Figure 3). 
We used a 2 (variability upper vs. lower) × 2 (more vs. less variability) 
within-subjects design for a total of 4 stimuli types of interest. 

We generated the stimuli from 12 seeds to create 48 trials to ensure 
test-retest reliability. Creating images reflected vertically allowed us 
to test if variability-overweighting occurs similarly for higher or lower 
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areas on the y-axis. Participants were shown 48 images in a randomized 
order and estimated the average y-value for each image. We calculated 
each judgment’s Euclidean distance estimation error by subtracting the 
actual average from the estimated average. The direction of the error 
was preserved, such that positive values indicated an overestimation of 
the average value, and negative values represented an underestimation. 

3.2 Experiment 2 

In Experiment 2, we aimed to determine if we could influence the 
degree of variability-overweighting by changing the mark type. To 
test this, we replicated Experiment 1, but we encoded the data using 
1) Cartesian spaced points, 2) points equally spaced along the arc of the 
line, and 3) the same line encoding used in Experiment 1 (see Figure 4). 

We hypothesize that by encoding the time series data as Cartesian 
spaced points, we can reduce the bias toward more variable data. Each 
data point is rendered as one point mark without a connection in this 
encoding. Therefore, two rendered points have the same salience 
regardless of their distance in y. In lines, the salience of the mark 
depends on the length of the arc. We also rendered points at equally 
spaced intervals along the arc (points along the arc) to simulate this 
behavior in our experiment. With points along arc, the average y-
position of the points is heavily biased toward more variability since 
lines between neighboring points with more different values are longer. 
Therefore more points are along the arc of lines with more variability. 
In this encoding, a perfectly accurate viewer cannot estimate the true 
average of the underlying data series. We also included a line encoding 
to replicate Experiment 1. 

As in Experiment 1, we showed participants graphs of synthetic time 
series. We then ask them to estimate the average using a draggable line. 
We used a 3 (point along x, point along arc, line) × 2 (variability upper 
vs. lower) × 2 (more variability vs. no variability) design. 

We generated the stimuli types from 12 seeds to create 144 total trials. 
Participants viewed 48 images of one mark type from the 144 trials, 
and we calculated the error similarly to Experiment 1. We switched 
to a between-subject experiment to limit the number of graphs each 
participant saw and reduce the possibility of potential bias of viewing 
multiple graph types. 

4 STIMULI GENERATION 

We generated the stimuli for both experiments with the same process. 
This process used a simulation to generate realistically-looking line 
charts that we add linearly-interpolated noise to. We re-scaled the series 
to correct for a subtle yet important bias introduced by the noise. The 
code for our stimuli generation for Experiment 1 and Experiment 2 are 
available online and as supplemental material. 

4.1 Experiment 1 

The stimuli (with a sample shown in Figure 2) are line graphs of 
randomly generated series of numbers. Each series has 120 data points. 
A series is generated from a base series to which we add noise. We 
generated base series from a geometric Brownian motion stochastic 
process [32], a process used to generate realistic-looking stock data. 
We set µ = 0 and σ = 1. We then applied a moving average over 30 
points to smooth the base series. To get 120 data points in a series, we 
generate 120 + 30 = 150 data points from geometric Brownian motion. 
We scale the base series, so all values are between zero and one. To the 
base series (consisting of data points basei), we added uniform random 
noise (centered around 0). The amount of noise increases linearly with 
the value of the base series for positive y-alignment (linear interpolation 
between lowVariability and highVariability). 

noisei = lowVariability × (1 − basei)+ highVariability × basei 

dataPointi = basei + (rand() − 0.5) × noisei 
(1) 

Low variability series have less variability (0.15) than high variability 
series (0.4). We seeded the random number generator for the geometric 
Brownian motion stochastic process and noise to reproduce the same 
series. We curated the set of seeds to generate diverse line graphs with 
different shapes. 
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Fig. 4: First 8 of 144 stimuli for Experiment 2. For each seed, we included 
two variability levels, three mark types, and stimuli with variability in the 
higher and lower y-values. 

We generated a series for negative y-alignment by mirroring the 
series vertically. We mirror each series to understand whether the 
average estimates may be biased toward higher and lower y-values and 
counter-balance this bias in our experiments to measure bias toward 
higher variability. 

mirroredDataPointi = 1 − dataPointi (2) 

4.2 Scaling the averages 

To allow for comparison across stimuli, we set the values between zero 
and one. We could naively scale the generated series to [0,1], but this 
would invalidate our experiment. To understand why, assume without 
loss of generality that the averages of the base series are around 0.5 
and that the generation procedure adds noise to larger y-values (for not 
mirrored series). Therefore, the generated series are between 0 and 
≥ 1 (with the exact amount depending on the noise). Therefore, if we 
rescaled the data to [0,1], we would push the average values of the 
series to lower y-values. 

Let us assume our participants respond randomly or always estimate 
the average at 0.5. In both cases, we get the same result. Since the 
true averages are overall lower, we would find that estimates are biased 
to be higher than the average. We believe that every experiment that 
investigates bias should test its analysis with random responses. With 
random responses, any observed human bias should disappear. 

To overcome the issue, we scale (multiply) the averages of the low-
noise data to have the same averages as the high-noise data. 

scalingFactor = 
average(highNoiseData) 
average(lowNoiseData) 

(3) 

For mirrored series, we scale by (1−average(highNoiseData))/(1− 
average(lowNoiseData)). After this scaling, all stimuli with the same 
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seed (and mirroring) have the same average. If we simulate an experi-
ment where participants always estimate 0.5, we find no bias toward 
higher-variable areas. 

4.3 Experiment 2 

We use the same stimuli generation procedure as in Experiment 1 and 
the same seeds. In addition to the line encoding, we created graphs with 
points sampled at equal distances along the x-axis and sampled along 
the arc of the lines. This design resulted in three stimuli types (lines, 
Cartesian spaced points, and arc spaced points). Like in Experiment 1, 
we used two—albeit different—levels of variability in the graphs (no 
additional variability, and 0.4). We chose no additional variability for 
the first level to understand the generated series’ baseline bias. We used 
the same level of variability for the high variability series to replicate 
Experiment 1. The series had 60 data points and were scaled as in 
Experiment 1. Figure 4 shows example stimuli. 

5 DESIGN, PROCEDURE, AND PARTICIPANTS 

5.1 Design 

Experiment 1: We used a 2 (variability: .15 and .4) x 2 (variability 
upper vs. lower) within-subjects design. Average estimation error was 
collected as the dependent variable. This design resulted in a total of 
four trial types which were generated 12 times (48 total trials) to ensure 
test-retest reliability. 

Experiment 2: We used a 2 (variability: 0 and .4) x 2 (variability: 
upper vs. lower) x 3 (mark type: line graph, Cartesian spaced points, 
arc spaced points) mix-design. The between-subjects measure was 
mark type, and the within-subjects conditions were variability 0/.4 and 
variability upper/lower. Variability upper/lower was used as a manip-
ulation check. Mean estimation error was collected as the dependent 
variable. Each participant completed the task with graphs that included 
variability 0/.4 and variability upper/lower in a randomized order. The 
total number of trials was the same as in Experiment 1. 

5.2 Procedure 

In both experiments, participants completed this study online on their 
personal machines. After giving Institutional Review Board (IRB) 
approved consent to participate, individuals were given three types of 
instructions. The first set of instructions prompted participants to set 
their browser window to 100% zoom. The second set of instructions 
pertained to the task, which was: 

“Experiment Instructions. Please read the following para-
graphs carefully. You will be asked questions about the infor-
mation in the paragraphs. 
Scenario: Assume that you are a stock market investor. You are 
investing your own money in stocks, and you want to determine 
the average price of a stock over time in order to pick the best 
investment. 
Task: In this experiment, you will be shown graphs of stock 
prices over a one-year period like the one below. Your task is 
to determine the average stock price for that year. 
What is the average stock price? (Click and drag the line to 
indicate the average stock price) 
Response: To indicate the average stock price, use your mouse 
to drag the line on the chart. Move the line to where you think 
the average stock price is for that year. You can readjust the 
line by clicking and dragging. Once you are happy with your 
judgment of the average stock price, click the next button.” 

The final set of instructions was an attention check, where participants 
were asked to fill in a blank with the word “stock”. The sentence 
was, “During this study, you will be asked to look at graphs of _____ 
prices.” Following the instructions, participants completed 48 estima-
tion judgments in a randomized order. They indicated their judgments 
using a horizontal slider that was superimposed on the stimuli (shown 
in Figure 3) to estimate the average data value in the graphs. The trials 
included text reminding the participants about the task. If participants 
failed to move the slider, they would be prompted to do so and restricted 

from progressing until they made their judgment. They received no 
feedback as to the accuracy of their judgments. 

Following the main experiment, participants answered open ended 
questions about their strategy and what they thought the experiment 
was about. They also reported their gender and age. 

5.3 Participants 

Based on the effect size calculated from pilot data, a power analysis 
was conducted using G*Power, to determine an adequate sample size, 
and preregistered. At an alpha of 0.05, power of 0.95, 4 predictors, and 
an effect size of adjusted r-square of 0.13, the minimum number of 
participants needed is 132, which we rounded to 140. For Experiment 1, 
participants were 142 people from Amazon’s Mechanical Turk, with 
participation criteria set to workers in the US who were 18 years of age 
or older. Participants demographics were 98 male and 44 female, with 
an average age of 39 (SD = 9). 

For Experiment 2, participants were 420 (140 per between-subjects 
group) people from Amazon’s Mechanical Turk. Of those who chose 
to answer, 46% identified as female, with an average age for the whole 
sample of 41 (SD = 11). IRB approval for this research was obtained 
from (removed for anonymization) University’s IRB. Participants were 
paid in accordance with (removed for anonymization) minimum wage. 

6 RESULTS 

To answer our primary analysis question, whether the perception of 
averages in lines is biased toward variability and whether we can ma-
nipulate and predict this bias, we will detail the results of the two 
experiments. In each experiment, we will begin with descriptive statis-
tics about estimation error. We then show the results of statistical tests 
of our preregistered hypotheses. For all of the analyses, we did not 
remove any participants. 

Following the preregistered analysis, we detail the thematic anal-
ysis of participants’ strategies, including examining the variability-
overweighting exhibited by participants who reported using the correct 
strategy. We also conducted a sensitivity analysis to determine if indi-
viduals who guessed the purpose of the study biased the results. We 
conclude the analysis with model comparisons that use the average 
along the arc to predict the observed biases. 

6.0.1 Accuracy Calculation 

We computed the error for each participant’s estimates as the difference 
between the estimated average and the true average. 

Error = Estimated Average − Average (4) 

We also calculated whether a participant overestimates the average. 
We specify that they overestimated when the estimated average is higher 
than the true average of the time series data. 

Overestimated = 


Overestimated, if Error > 0 
Underestimated, otherwise 

(5) 

To always have the high variability data at the higher y values, we 
also compute a normalized average as: 

Normalized Average = 

 
−Average + 1, if variability upper vs. lower 
Average, otherwise 

(6) 
We similarly compute a normalized error where a positive error 

indicates an estimated average toward higher variability. 

6.1 Experiment 1 

Descriptive statistics. As a preliminary analysis of estimation error, 
we counted how many times participants over or underestimated the 
average. Of the 6816 responses, 3239 (48%) were overestimated, and 
3577 (52%) were underestimated (see Figure 5). Participants generally 
underestimated averages. 

Since our experimental data contains graphs with variability in the 
upper and lower y-values, we broke down these counts by this condition 
to determine whether the estimates are toward or away from the higher 
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Fig. 5: Counts of the over- and under-estimations in Experiment 1, broken 
down by the variability upper vs. lower condition. 

variability. As shown in Figure 5, for graphs where the variability was 
in the higher y values, participants overestimated 2305 (68%) trials, and 
they underestimated 1103 (32%). In the condition where the variability 
was in the lower y values, 934 (27%) were overestimated, and 2474 
(73%) were underestimated. In both conditions, the estimation error 
was consistent with the variability. 

Statistical tests of preregistered hypotheses. To determine if the 
findings from the descriptive statistics are robust, we conducted a sta-
tistical analysis of our preregistered hypotheses. We preregistered three 
hypotheses on the Open Science Framework for the first experiment1 . 

H1 “Estimation error will be significantly different than zero.” 

H2 “There will be significantly more estimation error for trials with 
higher variability compared to lower variability.” 

H3 “Estimation error will be observed in the direction of the in-
creased variability (i.e., positive errors will be observed when 
the area of highest variability is above the average y-value and 
negative errors will occur when the highest variability is lower 
on the y-axis than the average.)” 

To test these hypotheses, we conducted the preregistered analysis, 
in which a linear regression model was fit to the data using the R 
function lmer [26] with restricted maximum likelihood estimation pro-
cedures [27]. Note that we used multi-level linear regression models 
to account for correlations between participants’ responses instead of 
the more simplistic pre-registered linear regression models. Linear 
regression assumptions were tested and met. The model included vari-
ability size (.15 vs. .4), variability position (upper vs. lower), their 
interaction, and random intercepts for each participant to predict errors 
in participants’ average estimations. The referents were .15, and vari-
ability in the upper y-values. The resultant model in R notation was: 
Error ∼ variabilitySize ∗ variabilityPosition + (1|Id). 

Test of H1: estimation error will be significantly different than zero. 
The results revealed a significant intercept of the model (b = −0.036, 
t(6,811) = −6.6, p < .001, 95% CI [−.047,−.025]), providing evi-
dence that the absolute estimation error (3.6%) for the referent condi-
tions was meaningfully different than zero (supporting H1). This effect 
can be seen in Figure 6 (left panel), which displays estimation errors 
for each condition, with none of the conditions overlapping zero. 

Test of H2: significantly more estimation error for trials with higher 
variability. The results also revealed a significant main effect of variabil-
ity (b = −.022, t(6,811) = −6.5, p < .001, 95% CI [−.029,−.016]). 
This effect can be seen in Figure 6, where there is a meaningful separa-
tion between the two variability types for the variability upper vs. lower 
conditions (denoted with H2). This finding supports H2, suggesting 
significantly more estimation error for trials with higher variability than 
lower variability. 

Test of H3: estimation error will occur in the direction of the 
increased variability. There was also a significant interaction be-

1In the original pre-registration, we used the term noise rather than variability. 
We updated the term here to be consistent. 

tween variability .15 vs .4 and variability upper vs. lower (b = .034, 
t(6,811) = 7, p < .001, 95% CI [.025, .044]). To unpack the interaction, 
we ran the same model as above but with the variability in the lower 
y-value graphs as the referent. This model yielded a significant effect 
of variability but in the opposite direction (b = .012, t(6,811) = 3.39, 
p = .001, 95% CI [.005, .018]) compared to the prior model (b = -.022). 
As seen in Figure 6, errors occurred in the direction of the increased 
variability, supporting H3. We found positive errors when the area of 
highest variability was above the average y-value and negative errors 
when the highest variability was lower on the y-axis than the average. 

6.2 Experiment 2 

To examine one possible source of the variability-overweighting, in 
Experiment 2, our goal was to identify the contribution of the line 
encoding. We predicted that there would be an interaction between 
variability and the mark type, such that the effect of variability will be 
smaller for graphs with points spaced along the x-axis than graphs with 
points spaced along the arc and line graphs. 

Descriptive statistics. Using the same methods as in Experiment 1, we 
counted how many times participants were biased toward variability 
(see Figure 7). Of the 6720 responses, 3724 (55%) for Point, 4226 
(63%) for Line, and 4738 (71%) for Point Arc were biased toward 
variability. 

Statistical tests of preregistered hypotheses. To test the reliability of 
the descriptive statistics, we preregistered two hypotheses on the Open 
Science Framework for the second experiment. 

H4 “There will be significantly more estimation error for trials with 
higher variability than no additional variability.” 

H5 “The least variability-overweighting will occur in graphs with 
points that are equally spaced along the x-axis.” 

We used a multilevel model to fit the data using the lmer pack-
age [4] in R, which is appropriate for mixed designs with between-
and within-subjects variables. The model used variability (0 and .4) 
to predict normalized estimation error (testing H4). We calculated the 
normalized estimation error for each condition using the absolute error 
(the error is computed in the same way as in Experiment 1) when the 
graph was vertically mirrored. We used normalized error rather than 
error and removed the variability upper vs. lower term to reduce the 
complexity of the model, which was preregistered. To evaluate H5, we 
also included an interaction term between mark type and variability 
and the necessary lower-order terms. Finally, we included random 
intercepts for each participant. The resultant model in R notation was: 
NormalizedEstimationError ∼ markType ∗ variability + (1|Id). The 
referents of the model were the line mark and zero variability. 

Test of H4: significantly more estimation error for trials with higher 
variability. Replicating Experiment 1, the model results revealed a 
main effect of variability (b = 0.03, t(20,153) = 10.03, p < .001, 95% 
CI [.024, .036]), indicating that graphs with more variability had greater 
estimation error. Figure 8 shows that, when collapsed across the mark 
types, estimation error increased by .03 from graphs with no additional 
variability to .4 variability (confirming H4). The meaningful increase in 
error with the more variable graphs can also be seen in Figure 6 (right 
panel), which shows the impact of variability on each mark type. 

Test of H5: least variability-overweighting in graphs with equally 
spaced points. As shown in Figure 6 (right panel), Point (Cartesian 
spaced) had the smallest change in normalized error from charts with 
low to high variability (0 to .4). Our results revealed the change from 
low to high variability was meaningfully larger for Line vs. Point 
(b = −.023, t(20,153) = −5.45, p < .001, 95% CI [−.031,−.015]). 
The change in normalized error from low to high variability was also 
meaningfully larger for Point Arc vs. Point (b = .05, t(20,153) = 
10.74, p < .001, 95% CI [−.031,−.015]). Point Arc showed the largest 
increase in the normalized error of 5%, followed by Line (3%), and 
then Point (.69%). 
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Fig. 7: Counts of the number of estimates that were biased toward 
variability in Experiment 2 for each mark type. 

Fig. 8: The meaningful main effect of variability in Experiment 2, averaged 
over the mark types, including annotations describing confirmed H4. The 
black bars within the density plots show 95% CIs with a mean dot. 

We conducted a follow-up regression analysis to determine if the 
small increase in normalized estimation error was meaningful for Point. 
This analysis revealed a meaningful but small bias for Point (b = .007, 
t(6,718) = 2.24, p = .025). In sum, these results support H5, indicating 
that the points equally spaced along the x-axis had the least bias (.69%), 
with the line (3%) and points along the arc showing greater bias (5%). 

6.3 Open Responses for Experiments 1 and 2 

After completing the estimation judgments, participants answered an 
open-ended question about their strategies in the task. The question 
was, “We are very interested in how you made your decisions about 
the average stock price. Please list all the things you considered when 
making your judgments.” Two raters read the responses and coded them 
based on the six most common strategies to analyze these data. The 
following sections report the six most frequent strategies and include 
example responses. In this analysis, we identify that a small proportion 
of the participants reported using the correct strategy. We conducted a 
follow-up analysis to determine if those who were consciously aware 
of the correct strategy displayed less variability overweighting. 

Participants also reported their beliefs concerning the purpose of 
the experiment to determine if any participants intentionally biased 
their judgments. The question text included,“What do you think the 
experiment was about?” In the second part of this section, we report 
the proportion of participants who were aware of the purpose of the 
study. Then we conducted a sensitivity analysis to determine if the 
people who guessed the purpose of the study meaningfully impacted 
the findings. 

6.3.1 Reported strategies 

We identified six main strategies that participants used to estimate the 
average of the stock data. Using the strategy codes, we computed 
inter-rater reliability scores (IRR, Cohen’s Kappa) [8] for the codes 
to determine the level of agreement between the raters (shown in the 
bottom row of Table 1). The average inter-rater reliability for the six 
questions was .83 and ranged from .70 to .89. This range of inter-rater 
reliability scores indicates a substantial level of agreement between 
the two raters [20]. The codes were not mutually exclusive, and many 
times participants indicated that they used several strategies, in which 
case they received multiple codes. The proportion of strategies reported 
in Table 1 is for the codes the two raters agreed on. 

Mental averaging. The most commonly reported strategy was 
mentally computing the average using visual perception. For example, 
a participant wrote, “I marked the point on the graphs where it seemed 
like the generalized average would fall if the points on the graph were 
boiled down into numbers and you wanted to find the average of those 
numbers.” Another participant described, “I tried to get a visual sense 
of where the average would fall. I looked for a good mid point of 
the overall graph.” Table 1 shows that this was the most commonly 
reported strategy for each mark type. 

Focusing on extrema. The second most common strategy was to 
focus on the max and min points and select a location between those 
extrema. For example, a participant wrote, “I looked at the highest and 
lowest point and went with the middle.” Another example includes, “I 
looked at the lowest mark and the highest mark and then the middle of 
that, but looked to see if there were upper or lower trends and adjusted 
accordingly to that...” Focusing on the extrema is not the most effective 
strategy. It is surprising to see that, on average, roughly 17% of the 
participants indicated that they incorporated the high and low points 
into their average estimations. 

Incorporating variability. Roughly 15% of participants reported 
incorporating variability into their judgments. However, they incorpo-
rated the variability in different ways. For example, one type of strategy 
included incorporating the areas with both high and low variability. For 
example, a participant wrote, “I tried to find out the relatively stable 
parts of the graph, these were useful when they extended over a long 



Table 1: The six most reported strategies for each experiment and the proportion of participants who correctly guessed the purpose of the study. 
The last column shows the inter-rater reliability score (IRR), which indicates the level of agreement between raters. IRR scores over .61 indicate 
substantial agreement between raters [20]. 

Reported Strategy Guessed purpose 
of study 

Exp mental 
averaging 

focusing on 
extrema 

incorporated 
variability 

equal number of 
points or line 

below and above 

equal area 
below and above 

beginning and 
end points 

variability-
overweighting 

Exp 1 
Line 

56.74% 21.28% 21.99% 5.67% 3.55% 4.96% 2.13% 

Exp 2 
Line 

52.42% 23.39% 17.74% 8.87% 5.65% 2.42% 4.03% 

Exp 2 
Points 

38.13% 9.35% 10.07% 24.46% 1.44% 2.16% .72% 

Exp 2 
Point Arc 

32.85% 18.25% 12.41% 7.30% 5.11% 1.46% 1.46% 

Average 44.92% 17.93% 15.53% 11.65% 3.88% 2.77% 2.03% 

IRR .83 .88 .70 .87 .89 .83 

period of time. I also considered the effect of the crests and troughs 
and the depth of these extreme occurrences. Using these as a metric, I 
tried to estimate the average.” 

In contrast, another group of participants focused more on areas 
with low variability. For example, “Most of the time the stock price 
comes to certain point, and jumps again or fall back, I consider the 
price where it is often stable for more time.” or “It was easier to make 
the average when the stock prices were not changing much and the 
graph was more even. When the prices were more “jumping”, I tried 
to find the phase where these trends stayed the longest and put my 
average around it.” Participants who reported this type of strategy 
seemed averse to variability or uncertainty, which is a well-known bias 
in psychology [7, 16]. 

Equal number of points or line below and above. A strategy we 
did not anticipate was ensuring an equal number of points or line lengths 
above and below the judgment indicator. To indicate their responses, 
participants drug a line on the graph. By allowing participants to place 
a line directly on the graphs, participants could then easily count the 
number of points above and below the line. One participant simply 
wrote, “I tried to have the number of points above and below the line be 
approximately equal.” Unsurprisingly, this strategy was most common 
for participants who viewed graphs with points equally spaced along the 
x-axis (24%). Although less common, some participants who viewed 
the line encoding also used this strategy (5-8%). A participant explains, 
“I tried to get half of the trend line above and half of the trend line below 
the average line and where I placed it.” 

Beginning and endpoints. Another suboptimal strategy was to 
focus on the beginning and ending values of the time series. While 
a small proportion of participants used this strategy (roughly 3%), it 
is noteworthy because it reflects a misconception. For example, one 
participant wrote, “I mainly looked at the stock at the beginning and 
end of the year. Afterwards, I tried to make an educated guess on what 
the average stock price would be.” Another person describes also being 
confused about the impact of data at the end of the time series. They 
wrote, “Depending on how the end of the chart looks, I draw a different 
strategy. If the chart is rallying, I believe the average price is at the 
low before this rally. If the chart is going down, I place it at the lowest 
low there was throughout the chart.” 

Equal area (correct strategy). The correct strategy was to select a 
location with equal area above and below the estimated average. Only 
a small number of people reported using this strategy (roughly 4%). 
An example is, “I just tried to make the volume of the areas above and 
below the line approximately equal. That was my only strategy. Think I 
learnt it in a maths or stats course.” 

As the equal-area strategy is the correct approach, we wanted to de-
termine if participants who used it showed less bias in their judgments. 
To compare performance between those who used the equal-area strat-

egy to those who did not, we computed the bias for the two groups for 
Experiment 2. Figure 9 shows the nine participants with the correct 
strategy in the Point Arc and Line groups and the two in the Point group 
compared to a distribution representing all the other strategies. Note 
that there is one distribution for all people with the incorrect strategies 
compared to individual distributions for those with the correct ones. 
We did this to clarify that a small number of people had the correct 
strategy and meaningful variation exists between them. 

Taking the individual distributions from those with the correct strat-
egy as a whole compared to the distributions for those with the incorrect 
strategy, we found that people with the correct strategy showed 12.7% 
less bias (.028 normalized error) than those with the incorrect strategy 
(.032 normalized error). The disparity between those with the correct 
strategy (.021 normalized error) and without (.041 normalized error) 
was most pronounced for the Line encoding with .4 variability (change 
of .019 or 46% reduction). We opted not to do a statistical analysis on 
these groups as they were highly unbalanced (20 participants vs. 398) 
and were not equally distributed across the groups. However, visual 
analysis reveals a general tendency where using the correct strategy 
leads to less bias. 

6.3.2 Knowledge about the experiment purpose 

Several people in each experimental condition made guesses somewhat 
close to the actual experiment goals in response to the question, “What 
do you think the experiment was about?” For example, one person 
wrote, “How people picture averages differently when there are smooth 
transitions versus spikes in the graph.” and another person wrote “I 
think it was about how accurate people can estimate the average of a 
line and if different line conditions affect the accuracy, such as jagged 
line vs. smooth line...” 

In Experiment 1, three people guessed the purpose of the study, and 
ten correctly guessed in Experiment 2. We conducted a sensitivity 
analysis to determine if those participants biased the findings. In this 
analysis, we removed the participants that relatively accurately guessed 
the manipulations of the study and reran the preregistered analysis for 
Experiment 2. Across all the findings, there was no meaningful impact 
of removing the participants who guessed correctly. To illustrate these 
effects, in Figure 10, we show the original data from Experiment 2 
with density plots. Overlayed on the density plots are quantile dot 
plots that show the data after removing the participants who guess 
the manipulations in the study. As seen in Figure 10, where all the 
distributions for each condition overlap, removing the participants did 
not meaningfully impact the results. 

6.4 Predictive Model 
Chart authors should consider different designs if a particular line chart 
is prone to bias. To help chart authors know whether a chart may be 



Fig. 9: Strategy analysis for Experiment 2, where individual participants 
with the correct strategy (gray background) are shown compared to the 
other participants (foreground density plots). These data are broken 
down by mark type and variability. The horizontal bars within the density 
plots show 95% CIs with a mean dot. The dashed line denotes zero 
normalized error. 

biased without running their own perceptual experiments, we sought to 
build a model that predicts participants’ responses. We aim to predict 
the bias and average estimate only based on properties of the data we 
can observe in a given line chart rather than based on the parameters 
of the data generation method since the latter is typically not known. 
We also chose to only use a simple model with few features (rather 
than, e.g., the whole time series as input) since we are interested in the 
model’s generalizability. 

We hypothesize that such a model is possible. If the salience of 
longer line segments drives the estimates of averages, we may be able 
to predict the estimates of averages using the true average and the 
average of the values along the arc—arc average for short. 

To understand whether the arc average is a meaningful predictor, 
we computed the Pearson correlation between the average error of 
the average estimate for each stimulus to the error of the arc average 
estimate. For Experiment 1, the correlation is 0.85 (p < .001), and for 
Experiment 2, the correlation is 0.64 (p < .001). This suggests that the 
arc average is meaningful to predict the variability overweighting bias. 

To predict the estimated average we created linear regression models 
that frst used the average of the data points to predict participants’ 
responses and then a second model that included the arc average. The 

Fig. 10: Sensitivity analysis for Experiment 2, in which the original data 
from Experiment 2 is displayed with density plots, and the data that 
excludes people who guessed the purpose of the experiment is shown 
with quantile dotplots. The black bars within the density plots show 95% 
CIs with a mean dot. 

goal of the second model was to evaluate if the arc average accounted 
for meaningfully more variability in participants’ responses than the 
average of the data set alone. We then statistically compared the two 
models to determine if the arc average model was a signifcantly better 
ft, using the data from Experiments 1 and 2. 

For Experiment 1, we ft a linear regression model using the average 
of the data point to predict participants’ estimates. The average of 
the data points meaningfully predicted participants’ responses (b = .53, 
t(6814) = 51.80, p < .001) with a model adjusted r-squared of .28. For 
the second model that included arc average, both the average of the data 
points (b = .45, t(6813) = 39.42, p < .001) and arc average (b = .25, 
t(6813) = 15.70, p < .001) meaningfully accounted for variance in 
participants judgments. The second model had an adjusted r-squared 
of .31. This result suggests that after accounting for the meaningful 
impact of the average of the data points, for every one unit change 
in arc average, participants’ judgments were biased by .25. We then 
compared the two models using an ANOVA. This comparison revealed 
that the second model, which included arc average, had a signifcantly 
better ft than the frst model (F(2,6813) = 246.58, p < .001). 

We also completed the same sequence of model comparisons for the 
data in Experiment 2 using only the data for the line stimuli. For the frst 
model, the impact of the true average was b = .69, t(6718) = 76.07, 
p < .001, with an adjusted r-squared of .46. For the second model, 
the effect of the true average (b = .39, t(6717) = 11.62, p < .001) was 
larger than the impact of the arc average (b = .34, t(6717) = 9.18, 
p < .001), with an adjusted r-squared of .47. This result suggests that 
after accounting for the meaningful impact of the true average, for every 
one unit change in arc average, participants’ judgments were biased by 
.34 (compared to .25 from Experiment 1). When comparing the two 
models, we found that the model that included the arc average had a 
meaningfully better ft than the one that did not (F(2,6717) = 84.30, 
p < .001). 

Fig. 11: The two response functions of a generalized additive model 
(GAM) trained on the line data from Experiments 1 and 2. The response 
functions resemble linear functions, making linear models appropriate 
for these data. 



We then created a linear model from the data for both experiments 
with three parameters: intercept (b = .14, t(13533) = 32.58 p < .001), 
average (b = .40, t(13533) = 34.36, p < .001), and arc average (b = 
.31, t(13533) = 21.87 p < .001), and an adjusted r-squared of .39. We 
selected a linear model because we found that a more sophisticated 
GAM [10] used nearly linear feature functions (Figure 11). 
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Fig. 12: Predicted and estimated averages for all stimuli. 

For most stimuli (90%), the model predicted the correct direction of 
the bias. The predicted estimated average fits well with the estimated 
averages (Figure 12). The model’s mean absolute error is .014, which 
means that with values in the range of [0,1], the prediction is only off 
by 1.4%. The RMSE is .019, also indicating a good fit. 

7 DISCUSSION 

The results of Experiment 1 (Figure 6, left) support our hypothesis that 
estimation error is significantly biased toward the direction of larger 
variability in data. This bias could be caused by more variability leading 
to steeper line segments that use more ink and are more visually salient. 
Prior work has also found that areas of higher salience in scatter plots 
can bias average estimation [13]. To test this theory, we conducted 
Experiment 2, using a dot plot instead of a line chart to encode the 
series data. In the dot plot, the amount of salience is proportional to the 
amount of data in each x-interval and independent of the steepness of 
the line segment. 

Experiment 2 (Figure 6, right) replicates the findings from Experi-
ment 1. The experiment additionally supports our hypothesis that we 
can reduce the bias by encoding the series data as a dot plot instead of 
a line chart. To simulate the higher salience of steep line segments, we 
also tested a design that spaces points along the arc of a line. We found 
that the line bias was significantly higher than the bias of the dot plot 
but lower than the average estimation of the points along the arc. These 
results support our theory that the bias is toward more visually salient 
areas of the chart but cannot yet explain the full extent of the bias. 

We generated the stimuli for our experiments using different levels 
of variability. Since these parameters are typically unknown, it would 
be impossible to model the bias in real-world applications. However, if 
we assume that the bias is caused by the salience of steep line segments, 
we can compute the direction of the bias directly from the average of 
the points along the arc of the line. We can also estimate the magnitude 
of the bias as a function of the average of the series and the average of 
the points along the arc using a simple regression model (Section 6.4). 
Future work could refine this model using more features. 

Our experiments show that average estimates are biased toward 
higher variability. We believe that we could similarly bias trend es-
timation in line graphs. For example, a line graph could have more 
variability for smaller values in the first half and higher variability for 
larger values in the second half. Since we found that the estimates 
of averages for the first half are lower than the true average and that 
estimates for the second half are higher, we can expect that a person 
also perceives a more extreme increase (stronger trend) than there is. 
Our experiment only investigated average estimation in isolated charts. 
As such, future work must confirm that this bias exists in combined 
charts. Suppose trend estimation could be biased by variability. In that 
case, malicious people who can affect the variability of series could 

influence decisions other people make based on trends in data, such as 
in stock trading. 

The results of our experiments have implications for the design of 
charts in applications where people estimate the average or trend of 
a series. Designers should consider whether they can replace a line 
chart with a dot plot to reduce the bias. However, the dot plot design 
makes the data order and the delta between consecutive points less 
clear. There may also be other ways to reduce the bias, such as using 
a different type of line chart that de-emphasizes steep line segments 
using thinner line segments or lines with lower opacity. 

We asked participants about their strategies for estimating the aver-
age and found that people used a variety of strategies, the majority of 
which were incorrect. The high proportion of misconceptions observed
in participants’ strategies is concerning. We also found that those who 
used the correct strategy of aiming for an equal area between the average 
line and the data line seemed to be less biased (Section 6.3.1). While 
we have too few people to draw firm conclusions, this insight suggests 
that people may be able to learn to reduce the bias by using the correct 
strategy. When we initially developed this work, we hypothesized that 
the biases would be driven by visual salience, a bottom-up attentional 
process. While such unconscious processes are certainly part of the 
cause, these data provide some indication that strategies may play a role. 
One limitation of this work is that we cannot disambiguate the effects
of visual salience and strategies. The interconnection between the two 
is consistent with theories in visual attention that suggest strategies 
and bottom-up processes are intrinsically interconnected, forming a 
feedback loop [22, 30]. It is also possible that both the mark type and 
response method bias participant strategies, which could have impacted 
attention and responses. Despite these limitations, our findings point to 
the possibility that visual literacy training might benefit from teaching 
people to use the correct strategy. 

We carefully designed the stimuli of the experiment such that sim-
ulated random responses did not show the bias we expected in real 
responses (Section 4.2). We only found this subtle issue after some ini-
tial data generation and pilots and would therefore encourage everyone 
who runs experiments that test human biases to test their experiments 
with random data. 

8 CONCLUSION AND FUTURE WORK 

This paper shows that average estimates are biased toward areas of 
higher salience, caused by increased variability in the visualized data. 
Since this bias can affect the conclusions drawn from data, visualization 
designers who create line graphs must be aware of it. This bias is not 
only significant but also practically relevant. The amount of variability 
in a line graph may be due to irrelevant (to the conclusions) factors, such 
as inconsistencies in the data collection, such as varying sensor noise. 
In the worst case, a malicious actor could introduce small amounts of 
noise to mask larger changes or nudge analysts to see larger changes. 

By quantifying the bias, we can consider showing viewers warnings 
when we expect the bias to affect the conclusions drawn from a graph or 
consider alternative visual encodings that do not have the bias shown in 
this paper. For example, we showed how points instead of lines reduce 
the bias. Another idea could be to reduce the salience of steep lines by 
varying the opacity or line width. Alternatively, designers could con-
sider annotating graphs with averages or other visual encodings when 
average estimates are needed. However, designers need to consider 
potential biases that additional visual encodings could introduce. 

We discussed that biased average estimates could also lead to biased 
trend estimates. Future work should investigate how manipulations 
of time series data visualized as line graphs affect trend estimates. 
Participants in our study represent a general population of people with 
some but not expert-level visualization literacy. If trend estimates 
can be affected, we should also investigate whether experts such as 
scientists, doctors who look at vitals, and stock traders are as affected 
as the general population. An avenue for investigating this effect could 
be to analyze historical data such as stocks and see whether increased 
variability affected traders’ investments. 
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[31] M. Waldner, A. Diehl, D. Gračanin, R. Splechtna, C. Delrieux, and 
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