
ManiVault: A Flexible and Extensible
Visual Analytics Framework for High-Dimensional Data

Alexander Vieth∗1 , Thomas Kroes∗2 , Julian Thijssen∗2 , Baldur van Lew2 , Jeroen Eggermont2 ,
Soumyadeep Basu2 , Elmar Eisemann1 , Anna Vilanova3 , Thomas Höllt•1 , Boudewijn Lelieveldt•1,2

HSNE
refinement

Image viewer

Data properties

Data Hierarchy

linked
colormap

Spectral viewer

Scatterplot

HSNE
top level

Derived

Fig. 1: Example screenshot of ManiVault used for the exploration of a hyperspectral imaging data set.

Abstract—Exploration and analysis of high-dimensional data are important tasks in many felds that produce large and complex data,
like the fnancial sector, systems biology, or cultural heritage. Tailor-made visual analytics software is developed for each specifc
application, limiting their applicability in other felds. However, as diverse as these felds are, their characteristics and requirements for
data analysis are conceptually similar. Many applications share abstract tasks and data types and are often constructed with similar
building blocks. Developing such applications, even when based mostly on existing building blocks, requires signifcant engineering
efforts. We developed ManiVault, a fexible and extensible open-source visual analytics framework for analyzing high-dimensional data.
The primary objective of ManiVault is to facilitate rapid prototyping of visual analytics workfows for visualization software developers and
practitioners alike. ManiVault is built using a plugin-based architecture that offers easy extensibility. While our architecture deliberately
keeps plugins self-contained, to guarantee maximum fexibility and re-usability, we have designed and implemented a messaging API
for tight integration and linking of modules to support common visual analytics design patterns. We provide several visualization and
analytics plugins, and ManiVault’s API makes the integration of new plugins easy for developers. ManiVault facilitates the distribution of
visualization and analysis pipelines and results for practitioners through saving and reproducing complete application states. As such,
ManiVault can be used as a communication tool among researchers to discuss workfows and results.
A copy of this paper and all supplemental material is available at osf.io/9k6jw, and source code at github.com/ManiVaultStudio.

Index Terms—High-dimensional data, Visual analytics, Visualization framework, Progressive analytics, Prototyping system.

1 INTRODUCTION

High-dimensional data has become important and ubiquitous in many
applications. Yet, understanding this type of data remains challeng-
ing and poses many hurdles ranging from computational effciency to
interpretability. Combinations of automated analysis and interactive vi-

∗• These authors contributed equally.
1 TU Delft, E-mail: {A.Vieth | E.Eisemann | T.Hollt-1} @tudelft.nl.
2 Leiden University Medical Center, E-mail: {J.G.L.Thijssen | T.Kroes |

J.Eggermont | B.van_Lew | S.Basu | B.P.F.Lelieveldt} @lumc.nl.
3 TU Eindhoven, E-mail: A.Vilanova@tue.nl.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifer: xx.xxxx/TVCG.201x.xxxxxxx

sualizations, visual analytics (VA) [12,25], have proven to assist well in
gaining insight for high-dimensional data. A variety of visual encodings
and processing algorithms for high-dimensional data exist. At the same
time, specialized application domains require specialized workfows
for handling their data and often need to adapt established methods to
their use case. Even though these domains encounter different domain-
specifc questions, they often deal with similar abstract data set types.
Additionally, abstracting different domain-specifc workfows regularly
yields similar goals and user tasks [8, 30] which might be tackled with
recurring visual encoding components like heatmaps or analytics meth-
ods such as dimensionality reduction. It is time-consuming and wastes
development resources to reinvent the wheel by re-implementing, e.g.,
a linked selection mechanism for multiple coordinated views every time
a domain-specifc VA solution is needed [29, 34, 39, 57, 69]. We devel-
oped a visual analytics framework, ManiVault, as a fexible solution for
VA software developers, application designers, and practitioners to im-

https://orcid.org/0000-0002-5809-4316
https://orcid.org/0000-0002-0658-2203
https://orcid.org/0009-0007-7585-6451
https://orcid.org/0000-0003-0628-1264
https://orcid.org/0000-0003-0361-9469
https://orcid.org/0000-0002-8918-9203
https://orcid.org/0000-0003-4153-065X
https://orcid.org/0000-0002-1034-737X
https://orcid.org/0000-0001-8125-1650
https://orcid.org/0000-0001-8269-7603
https://osf.io/9k6jw/
https://github.com/ManiVaultStudio
mailto:reprints@ieee.org
mailto:A.Vilanova@tue.nl
https://tudelft.nl

Table 1: Comparison with other visual analysis tools that are most similar to ManiVault.

ManiVault XmdvTool [66] GGobi [58] Visplore [65] Tableau [59] ParaView [3] Inviwo [23]

Focus on high-dim. data • • • • • — —
Focus on feld data — — — — — • •
Extensible • • a • — — • •

d• cVisual Analytics • • • b • • —
d dProgressive Analytics • — • b • — — —

VA system authoring • — — — • d • e —
Active development • — — • • • •
License LGPL-3 Public domain EPL Commercial Commercial BSD-3 BSD-2

a No dynamic extension loading b When used with its API, e.g., in combination with R c Via Trame [27] d The systems can be extended with Visual
Analytics functionality by plugins or Python integration, but the focus is on interactive feld visualization e Focus on dashboards with pre-populated data

plement algorithms and visual encodings, prototype workfow-specifc
tool sets, and perform their data exploration and analysis respectively.

Existing VA systems for exploring general multivariate data do not
meet all of these goals. Commercial products like Visplore [40, 41]
or Spotfre [1, 2] come with wide feature ranges but are closed-
source and not easily extensible. Older open-source frameworks like
XmdvTool [66] and GGobi [58] are mostly limited to visual analysis
and lack analytics functions. ParaView [3] and Inviwo [23] are capable
of displaying multivariate data as well but focus on feld data and the
representation of spatial structures. Business intelligence solutions like
Tableau [56, 59] mostly focus on dashboard creation and chart recom-
mendations. Other fast dashboard prototyping tools, like Keshif [70],
provide infrastructure like linked selections of various data visualiza-
tions but lack analytics capability. With ManiVault we propose a visual
analytics framework for general high-dimensional data that is easily
extendable and lets both developers and practitioners re-use algorithmic
and visualization building blocks for prototyping and reusing visual
analytics systems.

Growing data sizes, both in the number of items and dimensions,
increasingly complicate interactive analysis. Progressive visual ana-
lytics [55] intends to overcome this issue by continuously providing
intermediate results of the current data analysis step. The ability to con-
trol the analysis based on continuous feedback is crucial for progressive
VA systems [4]. In ManiVault we implement a data-centric and modular
framework that facilitates continuous data updates and algorithm steer-
ing out of the box. The ManiVault core application manages data sets
and plugins, which provide both analysis and visualization functional-
ity. This architecture allows for fast data changes, selection updates,
and overall fexible data exploration. Additionally, since each plugin
is agnostic of any other, the system is easy to extend with new data
types, visualizations, and analysis algorithms. ManiVault is written in
C++, using the Qt framework [60] for cross-platform GUI development.
OpenGL is used for high-performance rendering (e.g., our scatterplot
plugin) but viewer plugins based on lower threshold JavaScript libraries
like D3 [7] and Vega-Lite [50] are also possible. ManiVault is open
source and can be found at github.com/ManiVaultStudio.

To summarize, in this paper we describe
• ManiVault, a modular and extensible visual analytics framework

designed for high-dimensional data,

• several functionality extensions in the form of basic data-, viewer-,
and analytics plugins, and

• three use cases ranging from plugin development to a practi-
tioner’s workfow.

2 RELATED WORK

Visual analysis of high- and multidimensional data is broadly discussed
in literature [17, 24, 68]. Here, we review the most relevant work on
Visual Analytics (VA) systems for multidimensional data and visualiza-
tion design environments with respect to our framework.

2.1 Visual Analysis and Analytics Systems
VA systems for the exploration and analysis of high-dimensional data
are well established both in academia and industry [14, 19]. Table 1
gives an overview comparison between ManiVault and visual analysis
tools that we deem most similar. Most VA systems employ coordinated

multiple views [47] with linked selections for data exploration, and we
follow this approach with ManiVault as well. Chen et al. [10] discuss
common practices and guidelines for the layout of multiple views.

Pioneering visual analysis frameworks for multidimensional data
include XmdvTool [66], Spotfre [1], GGobi [58] and the InfoVis
toolkit [16]. These frameworks mostly focused on displaying data with
a variety of visual idioms and enabled exploration with brushing tools
and linked selections. XmdvTool was extended with several dimen-
sionality reduction and clustering methods [13, 71, 72]. GGobi [58]
integrates with the R language which enables users to apply analysis al-
gorithms via scripting. Spotfre grew into a commercial, closed-source
product with extensive analytics capabilities, while the others are open-
source, albeit unmaintained. All of these tools predate Progressive VA
and are not optimized for the specifc needs of continuous updates and
steering of analytics processes. ManiVault is designed around the prin-
ciples of progressive VA from the start using a data-centric architecture.
Data-producing and -transforming plugins can continuously update
the data managed by the core, while data consumers get automatically
notifed about these changes. Tableau [59], building on the Polaris
system [56], might be the most prominent and representative universal
VA system. Marketing itself as a business intelligence tool, Tableau
focuses on fexible visualization of various data types and more general
analytics functions can be added via Python or R scripts. Similarly, Vis-
plore [40, 41] implements a suit of statistical analysis and visualization
methods for tabular data and aims at providing quick visual feedback
for visual interactions and data queries. Its commercial offspring [65]
offers a more direct integration of scripting languages to supplement
built-in analysis functions.

The open-source ParaView [3], like many other analysis frameworks
for spatial feld data, e.g., volume data, [6, 11, 48, 52] is based on the
VTK library [51], and provides a wide range of visualization and anal-
ysis functions in an extensible framework. ParaView follows VTK’s
visualization pipeline and is designed around the fow of data through
various transformations to their fnal visual presentation. Similarly, the
commercial Amira Software [54, 61] offers a range of analysis func-
tions for multidimensional volumetric data but it is not freely extensible.
Many visual analysis systems traditionally target either geometric or
abstract tabular data. However, in recent years, the analysis of spatial
and non-spatial data has become increasingly integrated [53]. With
ManiVault we create a system for general high-dimensional data that
can be extended to handle arbitrary spatial or abstract data types. Our
data-centric system design enables fexible exploration workfows in-
stead of having practitioners concerned about data fow through each
step of the visualization pipeline.

2.2 Visualization Design Environments

Visualization design environments or similarly visualization prototyping
systems are tools for creating visualizations that provide a graphical
user interface for specifying visual encodings of data and interaction
dynamics. Many such systems exist, and here we provide an overview
of the tools most similar to ManiVault.

Lyra [49] offers fne-grained design options for single plots through
handles, drop-zones, and other interaction mechanisms for graphical
setup of re-usable Vega or Vega-Lite [50] specifcations. Lyra 2 [73]
extends this framework by letting users defne interactions like brush-
ing and selection linkage between multiple plots. iVisDesigner [46]

https://github.com/ManiVaultStudio

follows similar principles but places emphasis on collections of data
visualizations in a dashboard format. Keshif [70] focuses on a novice
user audience by automatically aggregating data and selecting visual
representations based on pre-defned mappings for various data types.
In contrast to the above design environments for single or multiple
visualizations, ManiVault is a design environment for complete visual
analytics systems including automated analysis methods. While the
above systems are focused on abstract data, Inviwo [23] presents a
visualization prototyping system for spatial feld data. Its design allows
users to specify visualizations on various abstraction levels, from visual
(connecting functional boxes) to conventional programming. Compared
to Inviwo’s data-fow model, ManiVault is data-centric and focused
on providing several visualizations and analytics tool building blocks.
ManiVault’s core system coordinates views on the data and enables
linked selections between views out-of-the-box.

From a plugin-in developer’s perspective, ManiVault resembles the
prefuse [20] and ComVis [35] toolkits. They provide development
environments and software components for building dynamic visual-
izations. Both focus on non-spatial data and target graph and tabular
data set types. Scripting-based solutions like Dash [43] for creating
dashboard applications or Voilà [28] for converting Jupyter notebooks
into standalone web pages provide a GUI front-end to the wide offer of
analysis libraries in the Python, R or Julia ecosystems. ManiVault is
specifcally laid out for progressive and high-dimensional data analysis.
Our C++ implementation supports high-performance computations and
interactions necessary for visual analytics.

3 DESIGN CONSIDERATIONS

We designed ManiVault as a VA framework with multiple user groups
in mind. While these groups can overlap, their requirements for the
effective and convenient use of ManiVault are varied.

3.1 General Setting
High-dimensional data has become ubiquitous in many domains and the
analysis of such data plays a pivotal role in acquiring insights into com-
plex systems. Analytics software in different domains targeted at such
data generally utilizes comparable sets of analytical and visual tools,
such as dimensionality reduction, clustering algorithms, scatterplots, or
parallel coordinates plots. These generic tools are then combined with
data-, user-, and domain-specifc tools and customizations to create a
specifc application. The primary motivation for developing ManiVault
is to facilitate rapid construction of visual analytics applications for
high-dimensional data without the need to re-implement common func-
tionality. Modularity is a key aspect for creating reusable tools, both
on a code as well as a user-facing abstraction level. The second main
motivation for ManiVault is a need for fexible exploratory analysis,
but also subsequent sharing of results, as well as the means to recreate
the corresponding workfows. We learned of the target user charac-
teristics and design requirements during multiple collaborations with
practitioners in various felds [21, 33, 44, 62] spanning several years.

3.2 Target Users
We identifed three target user groups, each with specifc requirements:
U1 Developers use ManiVault to implement new ideas and methods.
These users, e.g., visualization researchers, interact with the system
via code in order to create customized modules. Developers need
the framework to provide a stable API that allows for the integration
of their methods with little overhead. Further, they need existing
modules to focus on their specifc contribution; e.g., a developer of a
dimensionality reduction method might want to visualize results in an
existing scatterplot module without having to implement their own.

U2 Application designers combine and adapt existing modules to
create stand-alone applications for specifc use-cases. Not all options
of a view (e.g., the point size in a scatterplot) might be necessary
for a specifc workfow, and providing all options in the GUI can be
distracting. In these scenarios, ManiVault needs to support fexible
GUI customization. To minimize the burden, the framework should
support such customization directly in the GUI without programming.

U3 Practitioners and domain experts use the software to analyze their
high-dimensional data. Practitioners need ManiVault to allow for a
fexible data exploration process, to provide responsive user interfaces,
and to offer domain-specifc visualization and analysis modules. Once
their analysis is fnished, practitioners need the ability to easily share
and reproduce the results and their workfow in ManiVault. Given a
well-defned workfow, they also need easy access to specifed presets
of visualization and analysis layouts.

The boundaries between these user groups are fuid. E.g., a skilled
practitioner might want to extend a pre-bundled application with a
module or develop a module themselves.

3.3 System Requirements
Based on the general usage setting and needs of our target users, we
defne the following high-level requirements for a visual analytics
platform such as ManiVault. The framework must be:
R1 Extensible: ManiVault has to provide an interface for adding new
functionalities. It must be possible to create modules for new

a data types,
b visualizations,
c analytics methods,
d data transformations,
e loading/writing data.

R2 Flexible: ManiVault must allow for workfows in multiple domains
and specifcally enable straightforward workfow adaption during use.

R3 Linkable: ManiVault must provide modules with an API to easily
link data selections and synchronize parameters, such that no depen-
dencies between modules are created.

R4 Confgurable: ManiVault must provide options for GUI confgu-
ration during runtime through the user interface.

R5 Distributable: ManiVault must be able to save its current state,
including layout, data sets, and settings and reproduce a saved state.

R6 Performant: ManiVault must be performant when handling large
data, stay responsive and provide interfaces to interact with processes
during calculation to support progressive VA.

4 MANIVAULT ARCHITECTURE

In order to ensure easy extensibility (R1), ManiVault is implemented as
a modular system, see Fig. 2a. The core application is a lightweight set
of managers and any user-facing functionality is dynamically loaded
from self-contained libraries, i.e., plugins, respectively discussed in
Secs. 4.1 and 4.2 (R6). This compartmentalization into a core and
extensions provides easier maintainability, better scalability, and faster
development. Together with a data-centric system structure (Sec. 4.3),
this enables fexible workfows (R2) with various analytics and visu-
alization techniques. ManiVault features an intricate notifcation and
parameter sharing system to allow for communicating between plugins,
see Sec. 4.4 (R3). GUI management objects, called actions (Sec. 4.5),
implement a part of the communication system and the confguration
and serialization system, see Secs. 4.6 and 4.7 (R4, R5).

4.1 Core Application
ManiVault’s core is modularized into a set of managers, actions, and
utilities as shown in Fig. 2a. ManiVault comprises a data-centric archi-
tecture: a data manager stores and administers access to data sets. All
data sets are organized hierarchically, such that derived data sets like
clusterings, embeddings, or proper subsets are marked as children of
their respective source data. This enables simple access to properties of
the parent data set and propagation of selections from derived to source
data sets. Analysis, transformation, visualization, and loading/writ-
ing functionality as well as the defnition of data types themselves
are separated into plugins. A plugin manager loads plugins into the
core and makes them available to the user. Each plugin can consume
data, i.e., process existing data in the core and/or produce data, i.e.,
store a new or alter an existing data set in the core. While each plugin
is self-contained, communication between plugins is made possible

Core

Plugins

Data Loader Writer

Linked parameters

Core events
Data
flow

Analysis ViewTransform

Data
manager

Event
manager

Project
manager

Settings
manager

Workspace
manager

Plugin
manager

Actions Utilities

S
ynchro

nize

Sends events to all plugins

(a) ManiVault system (c) Parameter linking(b) Core events

Shared parameters

Core

Analysis

DecimalAction
TriggerAction...

...

DecimalAction
ColormapAction...

View

View A

DecimalAction

P
ub

lis
h

{
 connect(data1, dataChanged, updateViewA);
 // change selection
 notifyDatasetSelectionChanged(data1);
}

View B

{
 connect(data1, nameChanged, updateViewA);
 // change data
 notifyDatasetDataChanged(data1);
}

Fig. 2: ManiVault’s system architecture. The core manages data and events, provides GUI management (actions), etc. Green borders indicate
plugins, a light-grey background the core. Data fow from the core to data consumer plugins and from data producer plugins to the core is indicated
with arrows. (b) View A listens to notifyDatasetDataChanged emitted by View B. View B does not listen to the notifyDatasetSelectionChanged
event triggered by View A, but any plugin could. (c) a view plugin published a DecimalAction, moving the action in a shared parameters space and
immediately subscribes to it. Now, an analytics plugin can connect to the shared action, enabling synchronization across plugins.

using two messaging systems (Sec. 4.4). An event manager in the core
administers globally defnes notifcations while actions are used for
run-time confgurable notifcations (see Figs. 2b and 2c).

The general application layout is handled by a workspace manager
which takes care of the arrangement of all GUI widgets provided by
view plugins. The core contains two main system view plugins, a
data hierarchy, and a data properties viewer. The former displays the
internal hierarchical data structure, while the latter shows properties
of the data (number of data points, dimensions, active selections) and
gives users access to the settings of analytics plugins, as discussed in
more detail in Sec. 5. ManiVault provides a number of actions, GUI
management objects, and administers any user-defned linking between
them, see Sec. 4.5. Further, a project manager is responsible for saving
and loading the current state of the application, including loaded data
sets, the GUI layout, opened plugins, and linked parameters. Global
settings applicable to, e.g., all plugins or the general application layout
are handled by a dedicated settings manager.

Additionally, ManiVault’s core supplies a set of utilities like dedi-
cated renderers, shaders, color maps, mathematical helper classes, such
as vectors and matrices, as well as common algorithms like mean shift
clustering. These tools can be used to create a more coherent visualiza-
tion and analysis setup across plugins. E.g., developers can rely on the
availability of a standard set of color map types in every view plugin,
while maintaining the ability to introduce custom ones.

4.2 Plugin Types
ManiVault works with six distinct plugin types that bundle various
types of functionality. The system can be easily extended with new
functionality by writing a new plugin that will automatically be loaded
on start-up (R1). In combination with the data-centric core architecture,
this enables a user to perform fexible workfow changes (R2).
Data plugins enable extending the types of data the system can handle.
ManiVault provides a base data plugin class that developers can extend
to defne a custom data format. E.g., we provide an image data type
that extends our basic point data type with image dimensions and thus
a mapping of points to image coordinates. The system can generally be
extended with arbitrary data formats.

View plugins provide a view on the data and allow interaction, such as
selection of data elements. Views can be fully-fedged visualizations or
simpler views such as lists. View plugins are primarily data consumers,
i.e., they take a data set as input for visualization, but can also function
as data producers, e.g., by providing means for annotating data. We
provide example plugins with diverse backends, like OpenGL and D3.

Analytics plugins allow for the implementation of data analytics mod-
ules such as dimensionality reduction. As such, they are primarily data
producers but also follow the data consumer API to receive the input
data on which they perform calculations.

Transformation plugins resemble analytics plugins in code but are
semantically different. They are also primarily data producers, but
while analytics plugins derive new properties, e.g., an embedding, that

can have an arbitrary shape, transformation plugins produce data of the
same shape, i.e., with identical items and attributes. An example of
such a transformation is a normalization of the original data.

Loader/Writer plugins respectively load specifc types of data into
the system (data producer) or write it back to fle (data consumer).

4.3 Data Handling
The data handling in ManiVault follows a model-view pattern. Inter-
nally, the core’s data manager keeps a list of raw data models, data
set views, and selection views. A data plugin has to defne both a raw
data model and data set view — the selection view is simply another
instance of the same data set view on the raw data. The raw data model
holds the physical data values of a set and is never exposed directly to
non-data plugins. Therefore, for most intents and purposes, the data
set views can be regarded as the actual data sets present in the system.
They defne access to the raw data for all non-data plugins by providing,
e.g., views on or copies of it. Each raw data object is associated with
exactly one selection object to ensure straightforward selection sharing
across all plugins that access a data set. Selection and set views can be
separately requested and adjusted. This model-view pattern allows for
a simple API and to create and use subsets with minimal overhead.

New data sets can be marked as derived from existing ones, e.g.,
when a new data set is created by an analytics plugin. The derived
data also functions as the user-facing entry point through which the
analytics settings can be accessed. This operation will create new data
set and raw data objects but no new selection view. Instead, selection
views are shared between parent and derived data sets. This simplifes
the propagation of selections between views, e.g., a derived embedding
shown in a scatterplot and the original data in a parallel coordinates
plot. To enable selection sharing between arbitrary data sets, ManiVault
lets users group data sets in the hierarchy view. Selections of any data
sets within a group and with the same number of data points are then
automatically synchronized.

We implemented a set of base data plugins in ManiVault, including
plugins for point data, multichannel images, clusters, color, and text
data. The development of ManiVault so far primarily targeted the
point data type, which can store various high-dimensional integer and
foating point formats. Our image data plugin shows the versatility of
ManiVault’s data handling and the point data type. When loading an
image, two data sets are created: a point data set whose raw data object
stores the actual pixel values and a child image data set whose raw
data object stores metadata like image size. The image data set view
provides access to the parent’s raw data. This confguration ensures
compatibility with analytics, transformation, and view plugins that
expect point data to process multichannel images.

The implemented data handling system is lightweight. Besides
the basic ManiVault core (< 90 MB), the data manager and hierarchy
require < 8 MB of memory (on Windows). Each loaded data set
produces less than 1.5 MB overhead in addition to its binary size,
stemming from the plugin instance and core integration. More details
can be found in Supplemental Material S1.

4.4 Plugin Communication

Coordinated Multiple Views (CMVs) [47] are the basis for virtually
any visual analytics application. While the individual views in a CMV
system naturally map to modules in a modular architecture, an essential
part of CMV systems is the integration of those views. This enables
techniques like brushing and linking [9], where selections on the data
are propagated to all views in the system, or the synchronization of
parameters, like the viewport in an Overview+Detail system [42]. En-
abling such linking of views, without breaking the system’s modularity
(R3) is no trivial task. A plugin should be self-contained with respect to
its functionality. Yet, at the same time, plugins need to be able to com-
municate, such that they can inform other plugins about data changes
and that their parameters can be linked and synchronized throughout
the application.

We have designed and implemented two interfaces to solve the issue
of inter-plugin communication. First, an event-based communication
API to cover common system-wide types of events related to data set
changes (Sec. 4.4.1) and second a parameter-sharing API (Sec. 4.4.2)
as part of our GUI building blocks (Sec. 4.5).

4.4.1 Core Events

The ManiVault core API provides an event-based system for inter-
plugin communication using the publish-subscriber pattern. Plugins
send predefned events to the core, which distributes them, and all
subscribers (typically plugins) can digest these events as depicted in
Fig. 2b. To effciently support linking and brushing (R3), we have im-
plemented such events for any changes of data values like addition
(notifyDatasetAdded), updates (notifyDatasetDataChanged),
removal (notifyDatasetRemoved)), changes to data selections
(notifyDatasetSelectionChanged) and several other data related
changes. A plugin can choose to listen to all events of a certain type or
subscribe only to certain events concerning a specifc data set.

An example of a linked selection is shown in Fig. 3. The fgure
shows a screenshot with three views, a scatterplot and a density plot on
the left, and the properties of a clustering analysis on the right. Clicking
any cluster in the clusters list (Fig. 3a) will update the selection set
attached to the data set and notify the core of these changes with the
notifyDatasetDataSelectionChanged event. The core will then
emit the dataSelectionChanged event with the changed data as an
argument and subscribed plugins will receive a notifcation that triggers
a refresh of the view with the updated selection (red points in Fig. 3b).

4.4.2 Shared Parameters

We designed a complementary API to share parameters between mod-
ules (R3) using GUI actions (Sec. 4.5). With this system, a plugin
parameter is exposed to other plugins by placing it in a public shared
parameter pool, i.e., the parameter is published (Fig. 2c). From there,
other plugins can subscribe to published parameters (provided that the
parameter types match). Any change to a published parameter will
be synchronized with all subscribed parameters. We provide common
GUI elements with ManiVault, that developers can integrate into their
plugins such that the user can publish a parameter or subscribe to any
published parameter at run-time through the GUI (R4).

Figure 3 presents an example in the form of the kernel band-
width (sigma) parameter used in kernel density estimation (KDE)
employed in density plot visualizations (Fig. 3c) but also mean-shift
clustering. We have implemented plugins for both that allow real-time
changes of the sigma parameter, based on Lampe and Hausers real-time
KDE [31]. Linking this parameter between the density plot and the
clustering module enables visually fnding a suitable density estimation
while the clustering is updated on-the-fy. To link the parameters the
user simply clicks on the underlined label in the GUI (Fig. 3d), e.g., in
the density plot view, and chooses "publish". After defning a suitable
name for the parameter, the user can then click on the corresponding
label in the settings widget of the mean shift clustering plugin (Fig. 3e)
and click subscribe to be presented with a list of suitable parameters,
including the just defned one. After subscribing, the connection is
indicated by the italic font of the Sigma label.

a

e

d

b

c

Fig. 3: Parameter sharing by connecting two actions of the same type
in the GUI. Both, the Mean-Shift plugin and Scatterplot plugin use a
DecimalAction to steer their computation and view respectively.

4.5 Actions
To support sharing of parameters as described above, but also to make
it easy to capture the state of a plugin, confgure the GUI and unify the
look and feel between plugins, we have devised and implemented a
number of building blocks we call actions on top of the standard Qt
GUI widgets. These include simple actions for decimal and integral
values as well as strings but also more complex elements such as
colors, color maps, file-pickers, etc.. In addition to those stan-
dard GUI elements we implemented a number of custom actions target-
ing typical VA applications. These include a general-purpose selection
action, that supports different modalities (brushing, rectangle, lasso,
etc.) and Boolean combinations (replace, add, remove), and a di-
mension picker action that provides a consistent way to select one or
multiple dimensions of a data set, e.g., to limit the input to a dimen-
sionality reduction plugin. Although we believe that we provide large
coverage of commonly required tasks with the built-in actions, we also
provide an API for plugin developers to create custom actions.

By using our actions API, sharing of parameters as described in
Sec. 4.4 is automatically available through the GUI. In addition, actions
can also be attached to data objects, to expose their functionality to
other plugins. A data producer plugin can, e.g., attach an action to
trigger a calculation within the plugin. Other plugins can query these
attached actions and provide the corresponding GUI elements within
their scope. We showcase this in our Hierarchical Stochastic Neighbor
Embedding (HSNE) [37] analytics plugin. The plugin creates a hierar-
chical embedding structure that can be refned interactively. We attach
an action for triggering the refnement to the produced embedding data
set. When viewing the embedding in a scatterplot, the scatterplot view
plugin exposes the refne action and other attached actions through
the context menu. The user can then trigger the refnement directly
from the scatterplot visualization, even though the actual calculation is
carried out by the HSNE plugin.

Besides serving as GUI building blocks, we have also implemented
support for serialization in the action system. Each action can be
serialized into a QVariant object, including its complete current state,
consisting of whether it is active, visible, writable, and the parameter
itself. All actions that belong to a plugin form a hierarchy that can
again be serialized into a QVariant object and from there into a JSON

https://en.wikipedia.org/wiki/Publish-subscribe_pattern
https://doc.qt.io/qt-6/qvariant.html

a

c

b

a

b

Fig. 4: Example of the plugin GUI confguration editor which allows
application designers to edit the properties of the plugin actions hierarchy
from within the application.

object in memory or fle on disk. As such, a plugin that has consistently
been implemented with the actions API supports saving and loading of
the state out-of-the-box. Currently, we use this to create presets of a
plugin’s confguration and to save the complete state of the application
to a project fle. In the future, we intend to extend this to a complete
provenance mechanism.

An example of a simple decimal action is the implementation of
the Sigma parameter discussed above and shown in Fig. 3d. The GUI
for this parameter consists of the label, a spinbox, and a slider. Rather
than manually creating the GUI elements, the desired elements can be
specifed when creating the action. An example of a customization
that we integrated in the decimal action is to show a spinbox or slider
individually or both, as in this example. The action then creates the
GUI elements on-the-fy and also makes sure they are synchronized by
creating them as linked views on the parameter itself. The underlined
label indicates that the parameter is publishable and/or ready to sub-
scribe, while the italics font indicates that it is already linked. Clicking
the label opens a GUI interface for setting up parameter linking.

4.6 Projects and Workspaces
To save the entire state of the application and fully restore it at a later
point in time ManiVault uses projects (R5). Projects extend the serial-
ization of actions, described in Sec. 4.5, to the core framework, captur-
ing settings and the layout of the CMV system. In addition, a project
contains a complete snapshot of the data hierarchy. We implemented
projects as self-contained, compressed archives that are a combination
of human-readable JSON fles and binary fles. Two JSON fles are
used to save the entire state of the application. A workspace.json
contains the CMV layout and actions state and a project.json saves
the data hierarchy and additional project metadata. The actual data sets
are saved as raw binary blobs, with unique identifers referenced in
project.json, to minimize load and save times. As such, a project is
completely self-contained and can be easily distributed to share fndings
or simply used to come back to an analysis at a later point in time.

We split the description of the project into project.json and
workspace.json to add an additional feature, i.e., the defnition of
user-defned workspaces. As described above, the workspace contains
the complete spatial arrangement of views (layout confguration) and
their complete state. A workspace is used to set up a complete tailor-
made CMV VA application, including customized GUI elements, but
without preset data, as a project would. To enable easy tailoring of
layouts and cross-plugin connections directly in the application, even
without programming, we designed the Studio Mode for ManiVault.

4.7 Studio Mode
For the confguration of actions, workspaces, and complete projects,

A plugin editor, shown in Fig. 4, enables fne-grained control over
the user interface. It lists an overview of all actions that are currently
available for opened plugins (Fig. 4a). Therein each action can be
enabled or disabled as a whole , but also customized with respect to
its visibility or whether it can be published , connected , or
disconnected . Additionally, the editor lets a user confgure general
options like the name of a plugin instance, shown in its title bar, or
whether the GUI of the plugin may be moved or closed (Fig. 4b).

The plugin editor is an essential tool for application designers, to cre-
ate a completely customized user experience for a specifc application.
At the same time, it provides the possibility for advanced users of the
system to create presets of views. Besides saving a complete project,
users can adjust the interface of an individual plugin to their needs and
save the resulting confguration as a template for future instances of
that plugin. Using the serialization described above, these templates
can be saved to disk, providing persistent access across sessions.

For a user-defnable fexible layout of the application, we incorporate
the Qt advanced docking system [22] into ManiVault. The system
allows users and application designers to re-arrange the entire layout
according to their needs and preferences.

5 MANIVAULT IMPLEMENTATION

The ManiVault core is implemented in C++ and the Qt [60] cross-
platform application development framework. ManiVault provides
a plugin API for data types, view, analytics, transformation, and
writer/loader modules. For each of these types we provide template
implementations to lower the entry barrier for developers. In addition,
we have already implemented a number of plugins for various use cases,
including some of the core functionality of ManiVault such as the basic
data types, and the data hierarchy and data properties view plugins.

The data hierarchy view (Fig. 5a) functions as the central access
point to any data loaded or created in ManiVault. It displays the data
hierarchy in a searchable tree widget where derived data, such as a
clustering, are added as children to the original data. A data set can be
loaded into a viewer plugin by simply dragging it from the hierarchy
onto the view (Fig. 5c). Alternatively, the user can also interact with
each data set through a context menu providing access to all compatible
data consumer plugins. For a fast setup of plugins that expect more than
a single input, users can select multiple data sets in the hierarchy and
open them through the same menu. The info panel shows additional
information like an analytics progress bar, status messages from plugins
or data group affliation. If a data set is associated with an analytics
plugin, selecting the hierarchy entry will open the analytics settings in
the properties view.

The data properties view (Fig. 5b) provides information for a data
set selected in the data hierarchy. For a loaded data set this can be
additional metadata created by the loader, e.g., the extents of an image
data set. More importantly, the data properties view also functions
as the user interface for analytics and transformation plugins. These

ManiVault can be put into Studio Mode. This mode of operation allows
Fig. 5: Data hierarchy (a) and data properties view (b) in ManiVault.application designers to create complete tailor-made applications and
Data sets can easily be shown in views via drag and drop (c). data viewers from within the GUI of ManiVault itself.

(a) Scatterplot (b) Parallel Coordinates (c) Cluster Heatmap (d) Image View (e) Spectral View

Fig. 6: A selection of viewer plugins in ManiVault.

plugins are instantiated through the context menu of a data set, which
then functions as their input; their output data sets are then created as
children of the input. Selecting an output data set provides access to the
parameters of the analytics or transformation plugin. Fig. 5b shows the
data properties view of an embedding data set, created with our t-SNE
plugin. From here, the user can at any time interact with the t-SNE
algorithm, e.g., to pause the calculation, change parameters or compute
more iterations.

The data hierarchy and data properties views are integral parts of
the system. More specifc functionality is implemented in a number of
further plugins. Dimensionality reduction, integral to high-dimensional
data analysis, is provided by Principal Component Analysis (PCA),
t-distributed Stochastic Neighbor Embedding (t-SNE) [63], and Hier-
archical Stochastic Neighbor Embedding (HSNE) [37] plugins. The
t-SNE and HSNE plugins wrap the high-performance HDI library [36]
and as such scale to millions of data points using its GPU-based imple-
mentations [38]. For clustering, we provide an interactive mean-shift
clustering plugin, based on real-time kernel density estimation [31].

For visualization, we provide a number of plugins for common
plots, including a scatterplot (Fig. 6a), parallel coordinates plot
(Fig. 6b), and cluster heatmap (Fig. 6c). If performance is not a
major concern, developers can use web views in combination with Qt’s
webchannel API for communicating between the C++ back-end and
web-technology-based front-end. This allows for easily integrating
the vast amount of available visualizations in languages like D3 [7]
and Vega-lite [50]. Our heatmap and parallel coordinates plot are
based on this technology. While the webchannel introduces some
overhead, such plugins are generally limited by the performance of the
JavaScript rendering libraries. If the scalability of a visualization is
of high priority, developers can implement custom high-performance
views, e.g., using OpenGL. We have done so with our scatterplot and
image view (Sec. 5.1) plugins. The scatterplot enables visualization
and interaction with millions of points in real-time. In the default
point rendering mode, the different visual channels (point size, color,
opacity, etc.) are fully confgurable either using fxed values or based
on any ftting data available. Additionally, we implemented a density
representation, to provide more visual scalability.

Finally, for data loading and writing, we currently provide support
for basic formats in the form of a comma-separated value (CSV) load-
er/writer and a binary loader/writer.

5.1 High-Dimensional Imaging
Besides traditional abstract high-dimensional data analytics, we target
a number of applications related to high-dimensional imaging (e.g., the
workfow presented in Sec. 6.2). As such, we developed a number of
plugins targeting such image data.

Central to these efforts is the image data type plugin. The image
data type extends the point data type by the extent of the image. Con-
sequently, the image data type is compatible with all data consumer
plugins that take point data as input; e.g., this allows to calculate a
t-SNE using the pixels of a high-dimensional image as input.

We implemented a sophisticated image view plugin (Fig. 6d). In-
spired by widely used image editors, we opted for a layer-based ap-
proach. Users can simply drag multiple data sets into the view, where
they are added as layers. From here, users can defne the transparency,

as well as the position of each layer, e.g., to stack multiple properties of
a single data set as semi-transparent layers or arrange complementing
data sets next to each other. These interactions are possible through
standard navigation tools for zooming and panning, while selection is
implemented using the action described in Sec. 4.5. The actual visual-
ization of the image is fully confgurable: One or two attributes can be
displayed by using 1D and 2D color mapping, and three attributes by
directly mapping them to the three channels of RGB, HSL, or CIELAB
color spaces.

Next to the image viewer, we also provide a spectral view plugin
(Fig. 6e), specifcally for hyperspectral images. The viewer is based
on a simple D3 line plot and shows spectra of individual pixels or, in
the case of groups (e.g., selections or clusters), a mean spectrum and a
variation as a band around it.

To load image data into ManiVault, we currently provide two options.
The frst one is a versatile general image loader plugin. Hyperspec-
tral image data is commonly available as a stack of grayscale images,
where each image represents a specifc wavelength, also interpreted as
a dimension of a high-dimensional space. Our image loader detects
such stack in a folder containing common image formats (including
.png, .jpg, .tiff), and also allows direct loading of other common image
formats (grayscale, RGB, ARGB). Dimensions can be interactively
included or excluded from the data set in the loading menu. We also
support re-sampling of the data before loading and the creation of image
pyramids to enable analysis at varying levels of detail, depending on
the features of interest or time available for the analysis. Specifc to hy-
perspectral images, we also provide an ENVI loader plugin compatible
with L3Harris’ geospatial analysis software ENVI [67].

6 APPLICATION EXAMPLES

ManiVault has already been used for several projects across four uni-
versities and several partners. Popa et al. [44] and Li et al. [33] describe
the design of complete VA systems for analysis of cultural heritage and
biological data, respectively. Vieth et al. [64] and Thijssen et al. [62]
developed VA approaches for dimensionality reduction and explaining
projections as ManiVault plugins. Here, we walk through exemplary
usage scenarios for our framework from the perspective of our three tar-
get user groups (Sec. 3.2): software developers (Sec. 6.1), practitioners
(Sec. 6.2) and application designers (Sec. 6.3).

6.1 Writing ManiVault Plugins – Developer Perspective
ManiVault provides developers of VA modules with a comprehen-
sive API for data set access, the event notifcation system, and
the other core managers (Sec. 4.1). Extending the functional-
ity of ManiVault through new plugins thus comes with minimal
overhead. Example code for each plugin type is available at
github.com/ManiVaultStudio/ExamplePlugins.

Here, we present two examples of the necessary steps for creating
basic plugins (R1). First, we create an analytics plugin based on the
high-performance t-SNE library HDI [36]. In addition, we discuss
the implementation of a parallel coordinates plot (PCP) plugin using
an existing D3 implementation. Together with the existing image
viewer and scatterplot, these plugins combine into a complete GUI-
based application shown in Fig. 7 that is usable by domain expert users
without programming knowledge.

https://doc.qt.io/qt-6/qtwebchannel-javascript.html
https://doc.qt.io/qt-6/qtwebchannel-javascript.html
https://www.github.com/ManiVaultStudio/ExamplePlugins

b
a

Fig. 7: The Spidr analysis and parallel coordinates plot as imple-
mented with the plugin setups from Figs. 8 and 9.

To implement the analytics plugin, we follow the steps laid out
in Fig. 8. In step 1, we create the output data set by deriving a
new data set from the input data, for which the plugin is opened in
ManiVault. In this case, we will create a two-dimensional t-SNE em-
bedding containing x- and y-coordinates for all of the points in the
input data set. As such, the output data set will be a points data set
that has the same number of points and two dimensions. Next, we
add a settings action to the created data set and defne GUI elements
using ManiVault’s action system. The actions are added to the out-
put data and listed in the data properties view as shown in Fig. 7a
(step 2). We create TriggerActions which add pushbuttons to the
GUI, to start, pause, and resume the calculations and a number of
categorical OptionActions and numerical DecimalActions, e.g., to
expose t-SNE parameters like the distance metric (OptionAction) or
perplexity (DecimalAction) (R4). Finally, in step 3, calls and reac-
tions to library functions need to be defned. Here, we notify the core
and thereby other plugins about updated output data, in particular, as
the t-SNE optimization iteratively progresses, we notify the core after
every iteration, such that the viewer plugins can show the progress live.
The result is a lightweight wrapper with no notable performance over-
head. Comparing the performance to running the HDI library using its
own Python wrapper showed no performance regression (Supplemental
Material S1), even when including progressive updates in ManiVault.

To implement the PCP viewer plugin, we need to set up a view
widget that shows the PCP chart in addition to settings, like with
the analytics plugin. Here, the settings are displayed in the same
windows as the view widget (Fig. 7b). Since we build a JavaScript-
driven plot, we derive this widget from ManiVault::WebWidget and
introduce all HTML and JavaScript resources that are used for the PCP
through a Qt resource fle, pcp.qrc (step 1, Fig. 9). Step 2 is to
simply set the existing pcp.html fle in the existing viewWidget. All
JavaScript resources are automatically included through the HTML
fle. At this point, the viewer is only able to show the content of the
provided HTML page. To establish interactions to and from the C++
side, we set up a ManiVault::WebCommunicationObject, which
uses a QWebChannel. Within this communication object, we defne

void AnalyticsPlugin::init() {
// 1. Derive output from input data set
setOutputDataset(_core->createDerivedDataset("outData"));
// 2. Add settings actions to output data set
outDataset->addAction(_settings->getSettings());
// 3. Connect GUI interactions (e.g. button press)
// and library callbacks (e.g. progress or finish)
connect(_settings->getStart(), press, this, runTask);
connect(_lib, finishedTask, this, updateCore);

}

Fig. 8: Bare bone analytics plugin setup for wrapping a C++ library.
Notifying of output data change (step 4) can be called progressively
during the calculation of or on fnishing a task.

[ViewWidget.cpp]
ViewWidget::ViewWidget() : WebWidget() {
// 1. Init resources and communication bridge
Q_INIT_RESOURCE(pcp);
init(_comObj);

}

[ViewPlugin.cpp]
void ViewPlugin::init() {
// 2. Init web widget (set HTML contents)
viewWidget->setPage(":res/pcp.html", "qrc:/res/");
layout->addWidget(viewWidget);

}

[CommunicationObject.h]
class ComObj : public WebCommunicationObject {
// 3. Init signals for communication from cpp to js
signals:
void setData(QVariantList& data);

// 5. Init slots for communication from js to cpp
public slots:
void updateSelection(QVariantList& selection);

}

[qwebchannel.tools.js]
// 4. Register signals sent by the view widget
bridge.setData.connect(function(){initPlot(arguments[0])})

Fig. 9: Bare bone viewer plugin setup for wrapping a JavaScript library.
Some boilerplate code is left out for brevity; complete implementation is
available alongside other example plugins online.

signals and slots for communication. E.g., the setData signal (step
3) is used to send the data, provided as a QVariantList object, to
a receiver on the JavaScript side. This receiver, i.e., the initPlot
function is connected in step 4 to receive the signal. Vice versa, slots
defned in the communication object can be called directly in JavaScript
code, e.g., here we defne an updateSelection slot, that can be called
from the JavaScript side with a list of selected items. The plugin then
handles any related computations in the corresponding C++ function.

6.2 Data Exploration – Practitioner Perspective

Practitioners in various disciplines work with high-dimensional data
sets. Here, we consider the exemplary case of exploring remote sensing
data using ManiVault. Similar to other application areas, visual explo-
ration of geospatial data is considered important but challenging [18].
While specifc considerations and fnal insights will differ from domain
to domain, we can follow the task abstraction by Lam et al. [30] to
create a partial workfow that will be representative of many felds (R2).

We want to explore a hyperspectral image data set, the HYDICE
image of the National Mall [32], showing 307 by 1280 pixels, each
attached to 191 spectral bands covering the 0.4 µm to 2.4 µm region of
the light spectrum refected by the objects in view. Each band can be
interpreted as an image channel. A major objective when exploring
hyperspectral images is the identifcation of surface cover classes. It is
typical to manually defne class labels for a small subset of pixels that
afterwards are used in semi-supervised automated classifcation for the
rest of the data. Connecting any derived features from the spectrum
back to the spatial image layout is essential during these analysis steps.
More specifcally, our goals are now to (I) explore the data, connected to
the task of discovering and describing observations, and to (II) explain
these observations by identifying main causes. These steps will yield
well-justifed classes that can be used in downstream analysis.

First, in ManiVault, we load the HYDICE data set using an image
loader plugin. To inspect the loaded image we can open it in an im-
age viewer plugin, which provides single-channel and false-coloring
visualizations based on any three channels. We additionally open a
spectral view plugin which shows the full spectrum of a single pixel or
the averaged spectrum of a selection that we defne in the image viewer,
resulting in the setup of Fig. 10a. Then, to easily discover a hierarchical
class structure, we use the HSNE analytics plugin to create a hierar-
chical embedding of the data employing angular distance: we open

https://doc.qt.io/qt-6/qwebchannel.html
https://qwebchannel.tools.js

a b c

Top-level HSNE
embedding

Average spectra
of selected

image region

Manual selection
Selected cluster

Fig. 10: A typical exploration workfow with ManiVault: A user can open and re-arrange views on the fy, derive new data sets using analytics
plugins and connect parameters between plugins. Linked colormaps of the scatterplot and image viewer are shown in Fig. 1.

the analysis through a context-menu of the data set entry in the data
hierarchy, select the cosine distance metric, start the embedding and
display it in a scatterplot as seen in Fig. 10b. Next, we manually outline
three clusters that are apparent in the top-level HSNE embedding as
shown in Fig. 1 (center top). To inspect their spectra, we drag and drop
the new cluster data set from the data hierarchy into the spectral viewer,
Fig. 1 (right). Additionally, we might inspect the cluster sizes in the
data properties. Clicking on a specifc cluster displayed in the data
properties will select corresponding data points in the embedding and
highlight corresponding pixels in the image (Fig. 10c). Thus, we can
quickly relate the cluster spectra to image positions and defne the main
pixel classes water, vegetation, and buildings. We want to focus on a
single cluster — the one corresponding to buildings. Therefore, we
refne the cluster of interest to a lower HSNE hierarchy level through a
context menu opened by clicking inside the embedding — the HSNE
plugin added an action to the data set that is displayed there as well as
in the data properties window. To establish a visual connection between
the spatial data layout and embedding, we drag the new embedding
data set to the image viewer, which automatically infers the proper
image dimensions for the data subset from its parent in the data hier-
archy and converts it into an additional image layer. Further, we can
link the colormaps of this image layer and the embedding through the
parameter-sharing system by publishing one and connecting the other
to it (R3). Zooming into a spatial area of interest, Fig. 1 (left), we can
discriminate between several building structures like houses and streets,
and even create sub-classes of roofs that immediately stand out thanks
to the embedding-based recoloring.

The above procedure intertwined the accomplishment of goals (I)
and (II). ManiVault made it easy to connect various views on the data,
i.e., a spatial layout, high-dimensional pixel attributes, and derived
features in the form of embedding positions. We quickly discriminated
between classes in the data and identifed differing spectral characteris-
tics as their cause. A video that walks through the full procedure can
be found as supplemental material.

6.3 Sharing Analysis Setups – Designer Perspective

ManiVault’s workspace and project features can be used to save and
continue an analysis session but also enable dissemination of results
and complete workfows. To showcase this, we re-implemented the
Cytosplore Viewer application [15] dedicated to sharing the results of
Bakken et al. [5] in ManiVault, shown in Fig. 11. Instead of having
to write an entire stand-alone application to share an interactive en-
vironment alongside data to explore related insights in, we can use a
ManiVault project to bundle both views and data (R5).

The viewer application depicts RNA sequencing data on brain cells
from three vertebrate species. The viewer aims to highlight differences

the GUI (R4). We start with loading all data sets and setting up a single
scatterplot plugin. We link scatterplot parameters like its colormap to a
global settings panel that lets users confgure all three scatterplots, like
in the original application. Its settings can be saved as a preset which
we use for the other two scatterplot instances. Similarly, we populate
the cluster hierarchy view and table viewer with data. Figure 11 shows a
confguration in which a user-selected entry in the table view defnes the
data attributes (here a gene’s expression) used to recolor the scatterplot
data points (here tissue samples).

ManiVault’s Studio Mode allows us to lock this setup of views and
parameter connections. This is achieved by simply publishing the
current view layout, loaded data, and parameter linkage through the
"File" menu tab. We can now share the viewer with other parties.

7 DISCUSSION AND CONCLUSION

This paper describes the design considerations for and implementa-
tion of ManiVault, an extensible visual analytics framework for high-
dimensional data. Due to its modular architecture and data-centric de-
sign, the software enables fexible exploration and analysis workfows.
We presented various plugins that provide visualization and analytics
functionalities to the system. To build upon these, we showed how ex-
isting libraries can be easily incorporated into the system. ManiVault’s
action and event systems allow users to adjust plugins and their inter-
play, enabling the creation of fully customized applications.

Currently, the system provides data plugins that cover a wide range
of applications. New data types like multivariate graph data [26] can be
introduced into the system as new data plugins without changes to the
application’s core. We plan to extend the current serialization mech-
anism, used for saving the state of the system, to handle information
about interaction history and other kinds of provenance [45]. Finally,
we would like to include analytics plugins that run code in interpreted
languages like Python or R, to easily integrate the vast amount of data
science tools available in those languages.

We believe that ManiVault has great potential in aiding with the
creation and use of visual analytics applications for visualization devel-
opers, practitioners, and application designers.

in the expression of genes and cell types that are shared across the
species as described in the original paper. The main elements of the
viewer application are three scatterplots showing t-SNE embeddings of
the gene data of each species, a hierarchical cluster viewer showing cell
types, and a table view showing statistical properties of the expression
data. To create the viewer, we confgure ManiVault’s GUI from within

Fig. 11: Screenshot of a re-implementation of a Cytosplore Viewer for
comparative cellular analysis of motor cortex in human, marmoset, and
mouse [5]. The viewer shows embeddings of cells from the three species
in combination with a shared cluster hierarchy and the option to calculate
differential gene expression. See Suppl. S2 for a larger fgure version.

SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at https://osf.io/
9k6jw/, released under a CC BY SA 4.0 license. In particular, they
include (1) benchmark results, S1, and a larger version of Fig. 11, S2,
(2) Excel fles containing the data presented in S1, (3) Python scripts
to run the nptsne benchmark from S1, (4) two videos showcasing
ManiVault and (5) a full version of this paper.

ACKNOWLEDGMENTS

Author contributions: Alexander Vieth: Writing and Plugin Develop-
ment; Thomas Kroes: Lead Developer (Core and Plugins) & Architect;
Julian Thijssen: Developer & Architect of initial core, Plugin Devel-
oper; Baldur van Lew: Build Infrastructure; Jeroen Eggermont and
Soumyadeep Basu: Viewer & Plugin Development; Elmar Eisemann,
Anna Vilanova, Thomas Höllt, and Boudewijn Lelieveldt: project con-
ception, manuscript writing, general supervision.

This work received fnancial support from the NWO TTW
project 3DOMICS (NWO: 17126), the NWO Gravitation project
BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology
(NWO: 024.004.012), and the NIH Brain Initiative Cell Atlas Network
(UM1MH130981).

REFERENCES

[1] C. Ahlberg. Spotfre: An information exploration environment. ACM
SIGMOD Record, 25(4):25–29, 1996. tibco.com, archived webpage. doi:
10.1145/245882.245893

[2] C. Ahlberg and B. Shneiderman. Visual information seeking: Tight coupling
of dynamic query flters with starfeld displays. In Proc. CHI, pp. 313–317.
ACM, New York, 1994. doi: 10.1145/191666.191775

[3] J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large-
data visualization. In C. D. Hansen and C. R. Johnson, eds., Visualization
Handbook, pp. 717–731. Butterworth-Heinemann, Burlington, MA, USA,
2005. doi: 10.1016/B978-012387582-2/50038-1

[4] S. K. Badam, N. Elmqvist, and J.-D. Fekete. Steering the craft: Ui elements
and visualizations for supporting progressive visual analytics. Computer
Graphics Forum, 36(3):491–502, 2017. doi: 10.1111/cgf.13205

[5] T. E. Bakken, N. L. Jorstad, and Q. Hu et al. Comparative cellular analysis of
motor cortex in human, marmoset and mouse. Nature, 598(7879):111–119,
2021. doi: 10.1038/s41586-021-03465-8

[6] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and
H. Vo. VisTrails: Enabling interactive multiple-view visualizations. In Proc.
VIS, pp. 135–142. IEEE, New York, 2005. doi: 10.1109/VISUAL.2005.
1532788

[7] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011. doi: 10.1109/TVCG.2011.185

[8] M. Brehmer and T. Munzner. A multi-level typology of abstract visualiza-
tion tasks. IEEE Transactions on Visualization and Computer Graphics,
19(12):2376–2385, 2013. doi: 10.1109/TVCG.2013.124

[9] A. Buja, J. McDonald, J. Michalak, and W. Stuetzle. Interactive data
visualization using focusing and linking. In Proc. VIS, pp. 156–163. IEEE,
New York, 1991. doi: 10.1109/VISUAL.1991.175794

[10] X. Chen, W. Zeng, Y. Lin, H. M. AI-maneea, J. Roberts, and R. Chang.
Composition and confguration patterns in multiple-view visualizations.
IEEE Transactions on Visualization and Computer Graphics, 27(2):1514–
1524, 2021. doi: 10.1109/TVCG.2020.3030338

[11] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, et al. VisIt: An End-
User Tool for Visualizing and Analyzing Very Large Data. Chapman and
Hall/CRC, 2012. doi: 10.1201/b12985-29

[12] K. A. Cook and J. J. Thomas. Illuminating the Path: The Research and
Development Agenda for Visual Analytics. Pacifc Northwest National
Lab.(PNNL), Richland, WA (United States), 2005. osti.gov/biblio/912515.

[13] Q. Cui, M. Ward, E. Rundensteiner, and J. Yang. Measuring data ab-
straction quality in multiresolution visualizations. IEEE Transactions on
Visualization and Computer Graphics, 12(5):709–716, 2006. doi: 10.1109/
TVCG.2006.161

[14] W. Cui. Visual analytics: A comprehensive overview. IEEE Access,
7:81555–81573, 2019. doi: 10.1109/ACCESS.2019.2923736

[15] J. Eggermont, B. van Lew, N. Pezzotti, A. Mahfouz, A. Vilanova, T. Höllt,
and B. Lelieveldt. Cytosplore Viewer. viewer.cytosplore.org, archived
webpage.

[16] J.-D. Fekete. The InfoVis Toolkit. In Proc. INFOVIS, pp. 167–174. IEEE,
New York, 2004. doi: 10.1109/INFVIS.2004.64

[17] R. Fuchs and H. Hauser. Visualization of multi-variate scientifc data.
Computer Graphics Forum, 28(6):1670–1690, 2009. doi: 10.1111/j.1467
-8659.2009.01429.x

[18] M. Gahegan. Visual exploration and explanation in geography analysis
with light. In H. J. Miller and J. Han, eds., Geographic Data Mining and
Knowledge Discovery, chap. 11, pp. 291–324. CRC Press, 2nd ed., 2009.
doi: 10.1201/9781420073980-11

[19] A. Ghosh, M. Nashaat, J. Miller, S. Quader, and C. Marston. A compre-
hensive review of tools for exploratory analysis of tabular industrial datasets.
Visual Informatics, 2(4):235–253, 2018. doi: 10.1016/j.visinf.2018.12.004

[20] J. Heer, S. K. Card, and J. A. Landay. Prefuse: A toolkit for interactive
information visualization. In Proc. CHI, pp. 421–430. ACM, New York,
2005. doi: 10.1145/1054972.1055031

[21] T. Höllt, N. Pezzotti, V. van Unen, F. Koning, E. Eisemann, B. Lelieveldt,
and A. Vilanova. Cytosplore: Interactive immune cell phenotyping for large
single-cell datasets. Computer Graphics Forum, 35(3):171–180, 2016. doi:
10.1111/cgf.12893

[22] githubuser0xFFFF. Advanced docking system for Qt. github.com/Qt-
Advanced-Docking-System, archived webpage.

[23] D. Jönsson, P. Steneteg, E. Sundén, R. Englund, S. Kottravel, M. Falk,
A. Ynnerman, I. Hotz, and T. Ropinski. Inviwo - a visualization system with
usage abstraction levels. IEEE Transactions on Visualization and Computer
Graphics, 26(11):3241–3254, 2020. doi: 10.1109/TVCG.2019.2920639

[24] J. Kehrer and H. Hauser. Visualization and visual analysis of multifaceted
scientifc data: A survey. IEEE Transactions on Visualization and Computer
Graphics, 19(3):495–513, 2013. doi: 10.1109/TVCG.2012.110

[25] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
G. Melançon. Visual analytics: Defnition, process, and challenges. In
A. Kerren, J. T. Stasko, J.-D. Fekete, and C. North, eds., Information
Visualization: Human-Centered Issues and Perspectives, Lecture Notes in
Computer Science, pp. 154–175. Springer, Berlin, Heidelberg, 2008. doi:
10.1007/978-3-540-70956-5_7

[26] A. Kerren, H. C. Purchase, and M. O. Ward, eds. Multivariate Network
Visualization, vol. 8380 of Lecture Notes in Computer Science. Springer
International Publishing, Cham, Switzerland, 2014. doi: 10.1007/978-3
-319-06793-3

[27] Kitware. Trame. kitware.github.io/trame, archived webpage.
[28] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,

J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al. Jupyter
notebooks-a publishing format for reproducible computational workfows.
jupyter.org, archived webpage, github.com/voila-dashboards/voila, 2016.

[29] R. Krueger, J. Beyer, W.-D. Jang, N. W. Kim, A. Sokolov, P. K. Sorger,
and H. Pfster. Facetto: Combining unsupervised and supervised learning
for hierarchical phenotype analysis in multi-channel image data. IEEE
Transactions on Visualization and Computer Graphics, 26(1):227–237,
2020. doi: 10.1109/tvcg.2019.2934547

[30] H. Lam, M. Tory, and T. Munzner. Bridging from goals to tasks with design
study analysis reports. IEEE Transactions on Visualization and Computer
Graphics, 24(1):435–445, 2018. doi: 10.1109/TVCG.2017.2744319

[31] O. D. Lampe and H. Hauser. Interactive visualization of streaming data
with kernel density estimation. In Proc. PacifcVis. IEEE, New York, 2011.
doi: 10.1109/pacifcvis.2011.5742387

[32] D. A. Landgrebe. HYDICE image of washington dc mall. engineer-
ing.purdue.edu, archived webpage.

[33] C. Li, J. Thijssen, T. Abdelaal, T. Höllt, and B. Lelieveldt. Spacewalker:
Interactive gradient exploration for spatial transcriptomics data. bioRxiv,
2023. doi: 10.1101/2023.03.20.532934

[34] Y. Ma, T. Xie, J. Li, and R. Maciejewski. Explaining vulnerabilities to
adversarial machine learning through visual analytics. IEEE Transactions
on Visualization and Computer Graphics, 26(1):1075–1085, 2020. doi: 10.
1109/TVCG.2019.2934631

[35] K. Matkovic, W. Freiler, D. Gracanin, and H. Hauser. ComVis: A coordi-
nated multiple views system for prototyping new visualization technology.
In Proc. IV, pp. 215–220. IEEE, New York, 2008. doi: 10.1109/IV.2008.87

[36] N. Pezzotti. High dimensional inspector. github.com/Nicola17/High-
Dimensional-Inspector, 2018. doi: 10.5281/zenodo.1303855

[37] N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, and A. Vilanova. Hierar-
chical stochastic neighbor embedding. Computer Graphics Forum, 35(3):21

https://osf.io/9k6jw/
https://osf.io/9k6jw/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.tibco.com/products/tibco-spotfire
https://web.archive.org/web/20230328072936/https://www.tibco.com/products/tibco-spotfire
https://doi.org/10.1145/245882.245893
https://doi.org/10.1145/245882.245893
https://doi.org/10.1145/191666.191775
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1038/s41586-021-03465-8
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/VISUAL.2005.1532788
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/VISUAL.1991.175794
https://doi.org/10.1109/TVCG.2020.3030338
https://doi.org/10.1201/b12985-29
https://www.osti.gov/biblio/912515
https://doi.org/10.1109/TVCG.2006.161
https://doi.org/10.1109/TVCG.2006.161
https://doi.org/10.1109/ACCESS.2019.2923736
https://viewer.cytosplore.org/
https://web.archive.org/web/20230328074120/https://viewer.cytosplore.org/
https://web.archive.org/web/20230328074120/https://viewer.cytosplore.org/
https://doi.org/10.1109/INFVIS.2004.64
https://doi.org/10.1111/j.1467-8659.2009.01429.x
https://doi.org/10.1111/j.1467-8659.2009.01429.x
https://doi.org/10.1201/9781420073980-11
https://doi.org/10.1016/j.visinf.2018.12.004
https://doi.org/10.1145/1054972.1055031
https://doi.org/10.1111/cgf.12893
https://doi.org/10.1111/cgf.12893
https://github.com/githubuser0xFFFF/
https://github.com/githubuser0xFFFF/Qt-Advanced-Docking-System/
https://github.com/githubuser0xFFFF/Qt-Advanced-Docking-System/
https://web.archive.org/web/20230328075959/https://github.com/githubuser0xFFFF/Qt-Advanced-Docking-System/
https://doi.org/10.1109/TVCG.2019.2920639
https://doi.org/10.1109/TVCG.2012.110
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-319-06793-3
https://doi.org/10.1007/978-3-319-06793-3
https://kitware.github.io/trame/
https://web.archive.org/web/20230324134037/https://kitware.github.io/trame/
https://jupyter.org/
https://web.archive.org/web/20230327204631/https://jupyter.org/
https://github.com/voila-dashboards/voila/
https://doi.org/10.1109/tvcg.2019.2934547
https://doi.org/10.1109/TVCG.2017.2744319
https://doi.org/10.1109/pacificvis.2011.5742387
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://web.archive.org/web/20230328074006/https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://doi.org/10.1101/2023.03.20.532934
https://doi.org/10.1109/TVCG.2019.2934631
https://doi.org/10.1109/TVCG.2019.2934631
https://doi.org/10.1109/IV.2008.87
https://github.com/Nicola17/High-Dimensional-Inspector
https://github.com/Nicola17/High-Dimensional-Inspector
https://doi.org/10.5281/zenodo.1303855

– 30, 2016. doi: 10.1111/cgf.12878
[38] N. Pezzotti, J. Thijssen, A. Mordvintsev, T. Höllt, B. V. Lew, B. P.

Lelieveldt, E. Eisemann, and A. Vilanova. GPGPU linear complexity
t-SNE optimization. IEEE Transactions on Visualization and Computer
Graphics, 26(1):1172–1181, 2020. doi: 10.1109/tvcg.2019.2934307

[39] M. Pi, H. Yeon, H. Son, and Y. Jang. Visual cause analytics for traffc
congestion. IEEE Transactions on Visualization and Computer Graphics,
27(3):2186–2201, 2021. doi: 10.1109/TVCG.2019.2940580

[40] H. Piringer, W. Berger, and H. Hauser. Quantifying and comparing features
in high-dimensional datasets. In Proc. IV, pp. 240–245. IEEE, New York,
2008. doi: 10.1109/IV.2008.17

[41] H. Piringer, C. Tominski, P. Muigg, and W. Berger. A multi-threading
architecture to support interactive visual exploration. IEEE Transactions
on Visualization and Computer Graphics, 15(6):1113–1120, 2009. doi: 10.
1109/TVCG.2009.110

[42] C. Plaisant, D. Carr, and B. Shneiderman. Image-browser taxonomy
and guidelines for designers. IEEE Software, 12(2):21–32, 1995. doi: 10.
1109/52.368260

[43] Plotly Technologies Inc. Dash. dash.plotly.com, archived webpage.
[44] A. Popa, F. Gabrieli, T. Kroes, A. Krekeler, M. Alfeld, B. Lelieveldt,

E. Eisemann, and T. Höllt. Visual analysis of ris data for endmember
selection. In Proc. GCH. The Eurographics Association, Eindhoven, NL,
2022. doi: 10.2312/gch.20221233

[45] E. D. Ragan, A. Endert, J. Sanyal, and J. Chen. Characterizing provenance
in visualization and data analysis: An organizational framework of prove-
nance types and purpose. IEEE Transactions on Visualization and Computer
Graphics, 22(1):31–40, 2016. doi: 10.1109/TVCG.2015.2467551

[46] D. Ren, T. Höllerer, and X. Yuan. iVisDesigner: Expressive interactive
design of information visualizations. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2092–2101, 2014. doi: 10.1109/TVCG.
2014.2346291

[47] J. C. Roberts. State of the art: Coordinated & multiple views in exploratory
visualization. In Proc. CMV, pp. 61–71. IEEE, New York, 2007. doi: 10.
1109/CMV.2007.20

[48] N. Sakamoto and K. Koyamada. KVS: A simple and effective framework
for scientifc visualization. Journal of Advanced Simulation in Science and
Engineering, 2(1):76–95, 2015. doi: 10.15748/jasse.2.76

[49] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum, 33(3):351–360, 2014. doi: 10.
1111/cgf.12391

[50] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2017. doi: 10.1109/TVCG.2016.
2599030

[51] W. Schroeder, K. Martin, and B. Lorensen. The visualization toolkit.
Kitware, 4th ed., 2006. gitlab.kitware.com/vtk/textbook, archived pdf.

[52] Slicer Community. 3D Slicer. slicer.org, archived webpage.
[53] J. Sorger, T. Ortner, H. Piringer, G. Hesina, and E. Gröller. A taxonomy

of integration techniques for spatial and non-spatial visualizations. In
Proc. VMV. The Eurographics Association, Eindhoven, NL, 2015. doi: 10.
2312/vmv.20151258

[54] D. Stalling, M. Westerhoff, and H.-C. Hege. amira: A highly interactive
system for visual data analysis. In C. D. Hansen and C. R. Johnson, eds.,
Visualization Handbook, pp. 749–767. Butterworth-Heinemann, Burlington,
2005. doi: 10.1016/B978-012387582-2/50040-X

[55] C. D. Stolper, A. Perer, and D. Gotz. Progressive visual analytics: User-
driven visual exploration of in-progress analytics. IEEE Transactions on
Visualization and Computer Graphics, 20(12):1653–1662, 2014. doi: 10.
1109/TVCG.2014.2346574

[56] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,
and visualization of multidimensional relational databases. IEEE Transac-
tions on Visualization and Computer Graphics, 8(1):52–65, 2002. doi: 10.
1109/2945.981851

[57] D. Sun, R. Huang, Y. Chen, Y. Wang, J. Zeng, M. Yuan, T.-C. Pong, and
H. Qu. PlanningVis: A visual analytics approach to production planning
in smart factories. IEEE Transactions on Visualization and Computer
Graphics, 26(1):579–589, 2020. doi: 10.1109/TVCG.2019.2934275

[58] D. F. Swayne, D. T. Lang, A. Buja, and D. Cook. GGobi: Evolving
from XGobi into an extensible framework for interactive data visualization.
Computational Statistics & Data Analysis, 43(4):423–444, 2003. doi: 10.
1016/S0167-9473(02)00286-4

[59] Tableau Software, LLC. Tableau. tableau.com, archived webpage.
[60] The Qt Company. Qt. qt.io, archived webpage.

[61] Thermo Fisher Scientifc. Amira. thermofsher.com, archived webpage.
[62] J. Thijssen, Z. Tian, and A. Telea. Scaling Up the Explanation of Multidi-

mensional Projections. In M. Angelini and M. El-Assady, eds., Proc. Eu-
roVA. The Eurographics Association, 2023. doi: 10.2312/eurova.20231098

[63] L. van der Maaten and G. Hinton. Visualizing data using t-
SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.
jmlr.org/vandermaaten08a.

[64] A. Vieth, A. Vilanova, B. Lelieveldt, E. Eisemann, and T. Höllt. Incorporat-
ing texture information into dimensionality reduction for high-dimensional
images. In Proc. PacifcVis, pp. 11–20. IEEE, New York, 2022. doi: 10.
1109/PacifcVis53943.2022.00010

[65] Visplore GmbH. Visplore. visplore.com, archived webpage.
[66] M. Ward. XmdvTool: Integrating multiple methods for visualizing

multivariate data. In Proc. VIS, pp. 326–333. IEEE, New York, 1994.
davis.wpi.edu/ xmdv, archived webpage. doi: 10.1109/VISUAL.1994.
346302

[67] J. D. Wolfe and S. R. Black. Hyperspectral analytics in envi target detection
and spectral mapping methods. Technical report, Harris Corporation, 2018.
l3harrisgeospatial.com/Whitepaper.pdf, archived pdf.

[68] P. C. Wong and R. D. Bergeron. 30 years of multidimensional multivariate
visualization. In Scientifc Visualization, Overviews, Methodologies, and
Techniques, p. 3–33. IEEE, New York, 1997.

[69] J. Wu, D. Liu, Z. Guo, Q. Xu, and Y. Wu. TacticFlow: Visual analytics of
ever-changing tactics in racket sports. IEEE Transactions on Visualization
and Computer Graphics, 28(1):835–845, 2022. doi: 10.1109/TVCG.2021.
3114832

[70] M. A. Yalçın, N. Elmqvist, and B. B. Bederson. Keshif: Rapid and
expressive tabular data exploration for novices. IEEE Transactions on
Visualization and Computer Graphics, 24(8):2339–2352, 2018. doi: 10.
1109/TVCG.2017.2723393

[71] J. Yang, M. O. Ward, and E. A. Rundensteiner. Interactive hierarchical
displays: A general framework for visualization and exploration of large
multivariate data sets. Computers & Graphics, 27(2):265–283, 2003. doi:
10.1016/S0097-8493(02)00283-2

[72] J. Yang, M. O. Ward, E. A. Rundensteiner, and S. Huang. Visual hierar-
chical dimension reduction for exploration of high dimensional datasets. In
Proc. VisSym. The Eurographics Association, Eindhoven, NL, 2003. doi:
10.2312/VisSym/VisSym03/019-028

[73] J. Zong, D. Barnwal, R. Neogy, and A. Satyanarayan. Lyra 2: Designing
interactive visualizations by demonstration. IEEE Transactions on Visual-
ization and Computer Graphics, 27(2):304–314, 2021. doi: 10.1109/TVCG
.2020.3030367

https://doi.org/10.1111/cgf.12878
https://doi.org/10.1109/tvcg.2019.2934307
https://doi.org/10.1109/TVCG.2019.2940580
https://doi.org/10.1109/IV.2008.17
https://doi.org/10.1109/TVCG.2009.110
https://doi.org/10.1109/TVCG.2009.110
https://doi.org/10.1109/52.368260
https://doi.org/10.1109/52.368260
https://dash.plotly.com
https://web.archive.org/web/20230328073033/https://dash.plotly.com/
https://doi.org/10.2312/gch.20221233
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.15748/jasse.2.76
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://gitlab.kitware.com/vtk/textbook
https://web.archive.org/web/20230328124130/https://gitlab.kitware.com/vtk/textbook/raw/master/VTKBook/VTKTextBook.pdf
https://www.slicer.org/
https://web.archive.org/web/20230327212031/https://www.slicer.org/
https://doi.org/10.2312/vmv.20151258
https://doi.org/10.2312/vmv.20151258
https://doi.org/10.1016/B978-012387582-2/50040-X
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/TVCG.2019.2934275
https://doi.org/10.1016/S0167-9473(02)00286-4
https://doi.org/10.1016/S0167-9473(02)00286-4
https://www.tableau.com/
https://web.archive.org/web/20230327051153/https://www.tableau.com/
https://www.qt.io/
https://web.archive.org/web/20230327120156/https://www.qt.io/
https://www.thermofisher.com/nl/en/home/electron-microscopy/products/software-em-3d-vis/amira-software.html
https://web.archive.org/web/20230328072745/https://www.thermofisher.com/us/en/home/electron-microscopy/products/software-em-3d-vis/amira-software.html
https://doi.org/10.2312/eurova.20231098
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/PacificVis53943.2022.00010
https://doi.org/10.1109/PacificVis53943.2022.00010
https://visplore.com/
https://web.archive.org/web/20230328074906/https://visplore.com/
https://davis.wpi.edu/~xmdv/
https://web.archive.org/web/20230701091130/https://davis.wpi.edu/~xmdv/
https://doi.org/10.1109/VISUAL.1994.346302
https://doi.org/10.1109/VISUAL.1994.346302
https://www.l3harrisgeospatial.com/Portals/0/pdfs/Confirmation/L3HG_Hyperspectral_Whitepaper.pdf
https://web.archive.org/web/20230327182751/https://www.l3harrisgeospatial.com/Portals/0/pdfs/Confirmation/L3HG_Hyperspectral_Whitepaper.pdf
https://doi.org/10.1109/TVCG.2021.3114832
https://doi.org/10.1109/TVCG.2021.3114832
https://doi.org/10.1109/TVCG.2017.2723393
https://doi.org/10.1109/TVCG.2017.2723393
https://doi.org/10.1016/S0097-8493(02)00283-2
https://doi.org/10.1016/S0097-8493(02)00283-2
https://doi.org/10.2312/VisSym/VisSym03/019-028
https://doi.org/10.2312/VisSym/VisSym03/019-028
https://doi.org/10.1109/TVCG.2020.3030367
https://doi.org/10.1109/TVCG.2020.3030367

	Introduction
	Related Work
	Visual Analysis and Analytics Systems
	Visualization Design Environments

	Design Considerations
	General Setting
	Target Users
	System Requirements

	ManiVault Architecture
	Core Application
	Plugin Types
	Data Handling
	Plugin Communication
	Core Events
	Shared Parameters

	Actions
	Projects and Workspaces
	Studio Mode

	ManiVault Implementation
	High-Dimensional Imaging

	Application Examples
	Writing ManiVault Plugins – Developer Perspective
	Data Exploration – Practitioner Perspective
	Sharing Analysis Setups – Designer Perspective

	Discussion and Conclusion

