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Fig. 1: Our lossless compressed segmentation volumes encode bricks in a multi-resolution fashion followed by entropy coding.
Our technique achieves strong compression ratios and provides fast decompression and adaptive level-of-detail. The images show
interactive renderings of data sets up to 927 GB uncompressed size (raw) at 1920×1080 resolution computed using ray marching
with shadows. The raymarching step size is set to match the size of a voxel. Transfer functions (mapping labels to color and opacity)
and clipping can be changed interactively.

Abstract— Voxel-based segmentation volumes often store a large number of labels and voxels, and the resulting amount of data
can make storage, transfer, and interactive visualization difficult. We present a lossless compression technique which addresses
these challenges. It processes individual small bricks of a segmentation volume and compactly encodes the labelled regions and
their boundaries by an iterative refinement scheme. The result for each brick is a list of labels, and a sequence of operations to
reconstruct the brick which is further compressed using rANS-entropy coding. As the relative frequencies of operations are very similar
across bricks, the entropy coding can use global frequency tables for an entire data set which enables efficient and effective parallel
(de)compression. Our technique achieves high throughput (up to gigabytes per second both for compression and decompression) and
strong compression ratios of about 1% to 3% of the original data set size while being applicable to GPU-based rendering. We evaluate
our method for various data sets from different fields and demonstrate GPU-based volume visualization with on-the-fly decompression,
level-of-detail rendering (with optional on-demand streaming of detail coefficients to the GPU), and a caching strategy for decompressed
bricks for further performance improvement.

Index Terms—Segmentation volumes, lossless compression, volume rendering.

1 INTRODUCTION

In many applications such as in materials science [49], connec-
tomics [12], or computational biology [7], voxel-based segmentation
volumes represent how individual regions of interest occupy space in
the observed volume by assigning a label to each voxel. These volumes
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can, for example, be obtained from segmenting scalar or multivariate
volume data in a preprocessing step [38], but they can also be the
primary output from simulations [7]. Segmentation volumes are of
fundamental importance when complex structures in large volumes
are studied by visual exploration [1]. However, as with large volume
data in general the storage requirements can be challenging, e.g. when
time-series or large ensembles of simulations are computed and stored,
or when interactive visualization requires a large portion of a data set to
reside in GPU memory for efficient rendering. Compression techniques
can alleviate this problem. In fact a large variety of techniques for
volumes storing quantitative data exists [5], but such techniques are not
directly applicable or beneficial to segmentation volumes as they are
meant to represent scalar/vectorial signals. In practice, segmentation
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volumes are often sliced followed by general-purpose image compres-
sion techniques. However, this approach is not suited for on-the-fly
decompression during visualization and typically less effective than
tailored techniques. These, in contrast, exploit the characteristics of seg-
mentation volumes. Compresso [36], for example, encodes the bound-
aries of segmented regions followed by the Lempel–Ziv–Markov chain
compression algorithm (LZMA). With this combination it achieves
high compression ratios, but lacks high decompression speed and the
possibility to decompress individual parts of the volume both of which
are important for interactive visualization.

In this paper we propose a novel lossless compression technique
for segmented volumes. Our method achieves high compression and
decompression speed, strong compression ratios, and is lightweight
and well-suited for GPU-based decompression on-the-fly. Our com-
pression scheme is based on a per-brick multi-resolution representation
of the segmentation volume which exploits the presence of homoge-
neous label neighborhoods and effectively encodes the boundaries in
between. The output of this step is a list of labels and a sequence of
operations with which the brick can be reconstructed. For further com-
pression, we store the sequence of operations using a fast asymmetric
numeral systems entropy coding scheme (rANS [17]). In summary, our
contributions are:

• a lossless compression technique for segmented volumes with
strong compression ratios, little memory overhead, and fast exe-
cution times,

• a multi-resolution representation for level-of-detail and a suffi-
ciently fine granularity for accessing compressed data,

• a parallel, GPU-friendly decompression and caching strategy for
interactive visualizations of compressed segmentation volumes,
also supporting on-demand streaming of detail information.

We will first overview related work on compression for volume
rendering. In Sec. 3 we explain our mulitresolution encoding and
decoding scheme for segmented volumes and the subsequent entropy
coding. Thereafter we detail the decompression in the context of
interactive visualization and GPU-rendering (Sec. 4). We evaluate
our method on multiple data sets and report compression rates and
rendering performance (Sec. 5).

2 RELATED WORK

Volume and image compression have been an active area of research
for decades [24, 42]. In this overview, we focus on works in the scope
of compression of voxel data and segmentation volumes for rendering
and scientific visualization.

Compression of Quantitative Volume Data Rodríguez et al. [5]
and Beyer et al. [10] provide comprehensive overviews of compression
for scalar volumes. As the input data is often noisy, many existing
techniques for scalar volumes perform lossy compression, e.g. using
wavelets [25] or neural compression [32, 47]. As a GPU implementa-
tion of the OpenVDB data structure, NanoVDB supports quantization
based compression [40]. Lossless techniques exist as well, ranging
from run-length encoding [4, 43] [34], wavelet transforms [21], or
Huffman [19] and other entropy coders [31]. In principle, some of
these techniques can be applied for segmentation volumes, but since
they are tailored to quantitative data they perform suboptimally. Still,
individual building blocks can be shared, for example, efficient GPU-
based implementations for entropy and range coders exist [48]; we also
make use of rANS-coding [17] in our method. Many volume com-
pression techniques make use of hierarchical representations: Sparse
voxel octrees [29] and its extension to sparse voxel directed acyclic
graphs (SVDAGs) [27] are widely used for efficient lossless volume
compression in rendering [13, 33, 46]. SVDAGs reuse sub-trees of an
initially constructed octree; extensions of the original scheme for binary
data can be use to compress arbitrary attributes, making it suitable for
a wider range of applications [16]. Dado et al. [15] use compressed
palettes of voxel attributes that are accessed with an indexing scheme
over the graph edges. Mados et al. [35] allow replacing homogeneous
subregions in DAGs with arbitrary constant values and use variable

bit length encoding on voxel attributes stored in leaf nodes. Note that
these methods are optimized for scalar volume data, and they rely on
sparsity in the input data to achieve compact representation, a property
that segmentation volumes are typically lacking.

Segmentation Volume Compression Segmentation volumes
represent a piece-wise constant, integer-valued function and thus have
very different characteristics than the aforementioned volumes. Con-
sequently, specialized compression techniques have been developed.
Neuroglancer [20] splits segmentation volumes into bricks, and each
brick is represented by a palette of the contained labels plus one index
into the palette for every voxel. While the approach is fast and well-
suited for direct rendering, it does not achieve competitive compression
rates. Compresso [36] also uses a brick-wise encoding and determines
a set of (binary) templates to represent region boundaries which is then
used for encoding. The final strong compression rate is only reached
by using a global LZMA compression; however, this makes it unsuit-
able for GPU-based rendering and decoding of individual bricks. Our
method also compresses individual bricks, however, we avoid a com-
pression of the entire data stream and can inherently decode bricks up
to a desired level-of-detail. The Mixture Graph [3] is a representation
of segmentation volumes designed for efficient rendering. It offers
a multi-resolution tree hierarchy containing packed label histograms
for precise color filtering. They use graph compression of histogram
factorizations to reduce the memory for their representation. While
this technique offers a multi-resolution representation, our technique
results in an order of magnitude smaller compressed size and faster
(de)compression.

Large-Scale Segmentation Volume Visualization Direct ren-
dering of large volume data usually relies on out-of-core methods and
streaming [9, 11]. Caching and memory virtualization are used to hide
the latency of CPU-to-GPU streaming and to allow direct access of
relevant data for the renderer [23]. In our exemplary implementation,
we also use caching of decompressed volume bricks. This cache, in
particular its implementation on GPUs, is inspired by the Shading Atlas
Streaming [39] which proposes a texture cache for rendering on un-
tethered virtual reality devices. Rendering of segmentation volumes is
often carried out alongside general volume rendering pipelines [8, 14]
or within volume segmentation pipelines [2, 6] as well as in systems
used for the analysis and information visualization of label region at-
tributes [45, 49]. Agus et al. [1] use dimensionality reduction and topo-
logical analysis for guided transfer function design for segmentation
volumes. For large volume rendering, Beyer et al. [11] combine proba-
bilistic with exact representations within a hierarchical data structure
for fast culling and querying of segmentation data. Surface extraction
and rendering can also serve as an alternative to volume-based render-
ing of segmentation data [28, 30, 41]. In our work, we focus on direct
GPU-based rendering of large segmentation volumes. We show that
large volumes can be visualized interactively even on modest hardware
thanks to strong compression rates and fast decompression, but we also
demonstrate CPU-to-GPU streaming of the finest levels of detail for
data exceeding the available GPU memory.

3 COMPRESSED SEGMENTATION VOLUMES

In this section we will describe our compressed segmentation volumes
(CSVs). In order to achieve fast and parallel (de)compression with suffi-
ciently fine granularity, our (de)compression operates on volume bricks
(Sec. 3.1) which are encoded in a multi-resolution fashion (Sec. 3.2),
followed by entropy coding (Sec. 3.3).

3.1 Segmentation Volume Bricks
We assume that the input segmentation volumes store a label (an in-
teger value) per voxel and compress individual bricks of the volume
separately. We further assume that these bricks all have the same size
of b3 labels with b = 2N , N ∈ N, i.e. input data might be padded to
multiples of b in each dimension.

Our encoding of each brick begins with building a resolution pyra-
mid of log2b+1 levels. We denote the finest level storing b3 labels as
L0, and successively compute the coarser levels Ll , 0 < l ≤ N = log2b.
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Fig. 2: A 2D example of the multi-resolution encoding of a brick (different labels shown as colors). First the resolution pyramid with levels
LN ,LN−1, ... is built and its grid nodes (starting from the root node, largest/left) are processed coarse-to-fine and along the Morton Z-curve within
a level. The traversal order for this brick is shown on the bottom. The result of the encoding is a palette of labels (possibly with duplicates) and a
sequence of operations, one for each node. These operations (Pa, Rp, R{x,y,z}, P0, and Pδ ) define how labels are assigned to nodes, e.g. by reading
a label from the palette or reusing the label of its parent or neighbors.

In each step the resolution is halved along each axis, i.e. Ll stores
(b/2l)3 labels, and each voxel in Ll overlaps 23 voxels in Ll−1. For
the label of a voxel in Ll we assign the most frequent label in the cor-
responding 8 voxels in Ll−1. As this resolution pyramid essentially
forms an octree, we will refer to voxels in the pyramid as nodes when
describing the encoding and decoding (see Fig. 2). We generate the
pyramid explicitly for a brick during encoding which requires about
14% additional temporary memory. The encoded representation im-
plicitly contains the multi-resolution representation; decoding does not
require more memory than necessary to store the (b/2l)3 labels of the
desired level-of-detail.

3.2 Brick Encoding
The key to a good compression is to compactly encode the assignment
of labels to voxels. Our encoding can leverage local homogeneity,
e.g. by copying labels from parent or neighbor nodes, and only rarely
reading new labels from a separate list which we call the palette.

Our encoding, and likewise later the decoding, begins with the
coarsest level LN , which represents the root node of the octree. The
label of this node is the first label stored in the palette; we denote the
index of the last used palette entry as ip which is initialized to zero.
The respective child nodes in LN−1,LN−2, ... then need to be processed
in a defined order, for which we use a Morton Z-curve in each level;
a concatenation of the Z-curves yields the enumeration of all octree
nodes (Fig. 2). The core idea of our encoding is that the label of the
next node in this order often can be determined by a simple operation,
such as assigning the same label as the parent node, or reading the next
label stored in the palette; the result of a brick encoding then becomes
a sequence of operations and the associated palette. In the following,
we introduce and discuss the individual operations we have chosen.
The selection is a result of investigating typical configurations in the
resolution pyramids and compression experiments; it comprises the
following operations:

• Parent reuse Rp: assign the label of the (coarser) parent node to
the next node. Note that the processing order of nodes guarantees
that the parent node’s label is known. For parent nodes we chose
the most frequent label among its children, consequently this
operation is often applicable.

• Palette Advance Pa: increase ip, read the label at the new index
from the palette, and assign it to the next node.

• Neighbor Reuse Rx, Ry, Rz: these operations are used to reference
nodes adjacent to the next node and assign their label. Note that
we reference nodes outside the 23 block of sibling nodes only
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Fig. 3: The operations R{x,y,z} assign the same label to the currently
processed node as found in an adjacent nodes. They define the axis
along which this neighbor is found, the direction always points outside
the current 23 block of voxels (22 in this 2D-example) with the same
parent node.

(see Fig. 3). This operation can refine boundaries by “pulling in”
the label from neighboring regions. Thus the operations R{x,y,z}
only define along which axis we reference while the direction is
implicit. If the referenced node has a later Z-index, however, it is
not yet decoded. In this case, we reinterpret a neighbor reuse as a
reference to the neighbor’s parent whose label is known. Neighbor
nodes in other bricks are not referenced. Fig. 2 illustrates such an
operation used to define the shape of the yellow region.

• Palette Back References P0, Pδ : When reuse-operations are
not applicable, palette advance operations (which require storing
another label) can be avoided by back-referencing a previously
used palette entry. Pδ references the palette entry at index ip−
δ − 1 (δ ∈ [0,15] is stored as 4-bit value), and the special case
operation P0 indexes the last used palette entry ip; the respective
entry is assigned to the next node.

The children and children’s children of nodes on finer levels often
represent the interior of homogeneous regions and thus carry the same
label. To not store redundant operations, we output one additional stop
bit for every node to indicate whether or not further operations follow
for the respective nodes in finer levels.

Discussion In our experiments we considered additional opera-
tions, such as reusing diagonal neighbors or grandparents, but found
that small operation sets typically yield better results. We also consid-
ered resolving references R{x,y,z} to not yet decoded neighbors, but this
leads to possibly long chains of dependencies. Given that referenced
neighbors always have a different parent than the processed node and



Algorithm 1 Decoding a brick up to a target level-of-detail t.
Input brick operation stream and palette, target LOD t
Output array out containing decompressed brick in LOD t

1: ip← 0 ▷ palette read index
2: out[0 . . .23(N−t)]←{∅ . . .∅} ▷ initialize output array
3: out[0] = palette[ip]

4: for l ∈ [N . . .(t +1)] do ▷ coarse to fine
5: for all already decoded node (spacing 2l−t ) in Z-order do
6: i← index of the node in out
7: if out[lastChildO f (i)] ̸=∅ then continue ▷ constant area
8: parent← out[i] ▷ store parent for next 8 nodes

9: for all child node (spacing 2l−t−1) in Z-order do
10: j← index of the child node in out
11: (op, stop)← readNextOperationAndStopBit()

12: switch(op)
13: case Rp : out[ j]← parent
14: case R{x,y,z} : out[ j]← neighbor value
15: case Pa : out[ j]← palette[++ ip]
16: case P0 : out[ j]← palette[ip]
17: case Pδ : out[ j]← palette[ip−δ ]

18: if stop then
19: fill j’s entire sub-block with 23(l−t−1) labels in out

that those parents often carry the correct label this does not noticeably
impact the compression. Lastly, note that palettes can still contain
duplicates, e.g. when a label has previously been used in the decoding
of a brick, but cannot be referenced with Pδ .

Our encoding operates along the Morton Z-curve, and only P0 and
Pδ refer to previous nodes along the curve. However, the traversal
order determines which neighbor references by R{x,y,z} have already
been en/decoded. As an alternative we tried Hilbert curves which led
to almost identical compression rates. While each (non-boundary)
node can still reference 3 neighbors on the current level on average,
their number and the directions to valid references depend on the
position along the Hilbert curve (in contrast to Morton Z-curves). The
more costly evaluation of the Hilbert curve and the additional cost
for referencing result in 2 to 3 times longer compression times. The
supplemental material contains a discussion in more detail.

3.3 Entropy Coding of Operation Sequences

The representation of a brick as a sequence of operations already re-
duces storage, but each operation occupies at least 4 bits (7 different
operations plus stop bit; in case of Pδ , 4 additional bits for δ ). As
the frequencies of operations are highly imbalanced (see Fig. 8) we
apply an entropy coding to further reduce storage. We found that using
range asymmetric numeral systems (rANS) [17] is a good compromise
between Huffman coding (fast, but suboptimal because of the fixed
number of bits per symbol) and arithmetic coding (slower). We directly
use the sequence of 4-bit nibbles as data stream. Interestingly, the
frequencies of these nibbles are extremely similar across the bricks
of an entire segmentation volume (see Sec. 5.1 for details). This en-
ables us to quickly determine static, well-suited frequency tables for
a data set, and also later efficiently perform the rANS-decompression
and execution of operations in one go and in parallel for the volume’s
bricks. Note that we create two frequency tables per data set: one
for the interior nodes (levels Ln..L1), and one for leaf nodes (level L0)
whose stop bits are always 0. Of course parallel (de)compression is
also possible with individual frequency tables per brick or adaptive
frequencies, but this requires additional storage for the tables or results
in worse compression ratios when frequencies need to adapt to the data
stream first.

Algorithm 2 Encoding a brick into a palette and sequence of operations.
Input original brick voxels from volume
Output brick operation stream and palette

1: pyramid← brick’s multi-resolution pyramid to encode
2: palette←label of pyramid’s root node

3: for l ∈ [N . . .1] do
4: for all node on level l (spacing 2l) in Z-order do
5: i← index of the current node
6: if pyramid[i].constantChildren then continue
7: parent← pyramid[i].label ▷ parent for next 8 nodes

8: for all child node (spacing 2l−1) in Z-order do
9: j← index of current child node

10: L← pyramid[ j].label
11: stop← pyramid[ j].constantChildren

12: op← bestOperation(parent, pyramid, palette,L)

13: if op = Pa then palette.push(L)
14: if op = Pδ then output δ

15: output (op, stop)

3.4 Encoding and Decoding Implementation
In this section we discuss important algorithmic details and begin with
the decoding of a brick from a given palette and sequence of operations
and stop bits.

Decoding The decoding begins with the coarsest level LN and can
be performed up to a desired target level-of-detail Lt , t = N..0. This
eventually results in a block of 23(N−t) labels. Prior to decoding, the
memory for this 3D-array output is allocated and the decoding is then
performed in-place: While processing a level Ll , l = N..t, its labels
are stored with a spacing of 2t−l in the output array; all entries are
filled when the decoding is complete. Fig. 4 shows a 2D-example with
three intermediate decoding steps. Algorithm 1 details the decoding
procedure of a single brick. After initialization (lines 1-3) it processes
one level-of-detail after another, beginning with the coarsest level LN
(line 4). Line 5 loops over the 23(N−l) nodes on level l in the Morton
Z-curve order. If a label has already been assigned to all of its child
nodes (line 7), this is because a stop bit has been set on a coarser
level (lines 18-19) and no further decoding for this node’s children is
required1. Otherwise, the node’s label is temporarily stored in parent
(line 8), and its eight child nodes are decoded by reading the next 4-bit
tuple of operation and stop bit (line 11). The operation determines
the label of the next child node (lines 12-17). If the stop bit is set,
the entire sub-block of 23(l−t−1) labels is set (lines 18-19). Note that
we overwrite the previously decoded coarser LODs until we reach t,
but at the expense of higher memory consumption overwriting is not
mandatory per se.

Encoding Similar to decoding, all bricks can be encoded in par-
allel; the pseudo-code is given by Algorithm 2. The encoding of a
brick begins with computing the resolution pyramid (pyramid) which
requires about 14% additional temporary storage for the brick (line 1),
similarly to a 3D mipmap [50]. The pyramid contains each node’s refer-
ence label, and if the node’s subtree is constant, the stop bit is set (line
11). If there is an ambiguity when determining the most frequent child
label for a pyramid node, we chose the one occurring first within the
child node array. The encoding is performed analogous to the decoding,

1This test is performed redundantly down to leaf nodes. However, homo-
geneous regions are typically not large, i.e. stop bits are typically set at finer
levels and the overhead remains small. Still the use of stop bits avoids storing
superfluous operations for many nodes.



Fig. 4: This example shows three decoding steps LN , ...,LN−2 of a brick
(in 2D). The grids (top) show the in-place decoding and are sized to
store the brick at target LOD t =N−3, i.e. 23(N−t) labels (64= 22(N−t)

in 2D). The nodes of the resolution pyramid and the Z-curve order is
shown on the bottom. Nodes highlighted in red have a stop bit set and
assign their label to all their child nodes; for these no further decoding
operations are required.

but of course it determines which operation is suitable to yield the label
of each child node (line 12). For this, bestOperation tests for the first
possible operation in a fixed order which we found a good fit to their
typical frequencies: Rp, Rx, Ry, Rz, P0, Pδ , Pa. Sticking to this fixed
order also additionally skews the operations’ frequencies favorably for
entropy coding. For any Pδ we directly output δ as an additional 4-bit
entry to the encoding stream (line 14).

Note that when compressing a segmentation volume, we typically
feed the output nibbles of a brick directly into the entropy coder. For
this, prior to the actual encoding, we perform a quick prepass over a
subset of bricks (in our examples every 512th brick, or every 4096th

for large data sets) to determine the two frequency tables of nibbles
for both interior and leaf nodes. Using two frequency tables has no
performance impact on the rANS-encoding, and the additional storage
is negligible.

4 VISUALIZATION OF COMPRESSED SEGMENTATION VOLUMES

In this section we describe how compressed segmentation volumes
(CSVs) can be used with raymarching for volume visualization. We
assume that transfer functions (TFs) are used which map labels to color
and opacity; note that the design of TFs is orthogonal to our work.
Our exemplary raymarcher works similar to other bricked volume
visualizations and efficiently supports empty-space skipping of bricks
that are invisible due to the TF. Bricks are decompressed with the
required level-of-detail (LOD) on demand and then stored in a cache
in order to facilitate fast accesses during raymarching and to exploit
temporal coherency in the camera movement (and thus in visible bricks
and LODs). For an overview of basic raymarching and volume shading
techniques we refer the reader to Jönsson et al. [26]. We detail the
technical details of our implementation in Sections 4.1 and 4.2 (see
also Fig. 5). The next paragraphs provide a high level summary of the
most important aspects.

Raymarching We perform straightforward raymarching using one
ray per pixel (Fig. 6). Invisible bricks are skipped (see below). For
visible bricks intersected by a ray we determine their required LOD.
For our tests, we choose the LOD based on the distance of a brick’s
center to the camera such that one voxel maps to approximately one
pixel on the screen. If the desired LOD is not available in the cache,
it is requested and it will be decompressed for the next frame (purple,
Fig. 6). We allow this lag of one frame as the resulting artifacts are
typically small when the frame rate is reasonably high. This also allows
us to focus our tests on the compression scheme as the core of our
method, but of course more elaborate schemes to access the desired
LOD within the same frame can be used (e.g. akin to [22]). Note
that rendering can always fall back to the coarsest LOD of a brick if
it has not yet been decompressed, as this level is stored as the first
palette entry and thus directly accessible. Bricks are flagged upon
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Fig. 5: An overview of our renderer: Using raymarching we read
voxel-data from bricks stored in a cache. For intersected bricks that
are not present in the cache, or not at the required level of detail, we
generate a request. These bricks are assigned and decompressed to a
free cache location, and can be accessed in the next frame. If possible,
the compressed data completely resides in GPU memory. If a CSV is
too large, the finest levels of detail are streamed from CPU memory to
the GPU on demand.
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Fig. 6: Our raymarching is kept simple to focus the evaluation on the
decompression performance: We march along one ray per pixel (plus
one shadow ray) and perform empty-space skipping on a brick level.
When the raymarcher tries to access a brick that is not present in the
cache, or present but at the wrong level of detail, the brick is requested
for the next frame. Bricks that are not accessed in the current frame are
simply evicted from the cache.

sampling during raymarching so that bricks that become invisible can
be deallocated (red, Fig. 6) in the next frame. To that end, we reset a
buffer of one integer per brick to an invisible flag before each frame and
let all ray marching threads write requested LODs in parallel. Since a
requested LOD depends on the brick’s center only, these are identical
between threads and no race conditions occur. For hit voxels above
a user-defined opacity threshold we send an additional shadow ray.
Optionally we can approximate ambient occlusion by accumulation
shadow rays over time (see Fig. 1, left).

Empty-Space Skipping Recall that for every compressed brick
we store the palette of labels; this palette has orders of magnitude fewer
entries than there are voxels in the brick. If none of the palette entries
is mapped to an opacity greater than 0, then the entire brick can be
skipped during raymarching and also does not need to be decompressed
as long as the TF does not change its visibility.

Decompression and Caching The decompression is executed
in parallel for all required bricks and their LODs directly on the GPU,
and the result is put into a cache in GPU memory. The CSVs typically
also reside in GPU memory, but in order to be able to render very large
CSVs we optionally keep the compressed data for decoding the finest
level(s) of detail in main memory and transfer it to the GPU on demand.
Note that the fine LODs consume a significant portion of the data, but
are only required for regions of the CSV which are visible and close to
the camera.
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Fig. 7: Our cache is organized as base elements of 23 voxels which are combined to form larger blocks. In this example, bricks of LOD 1
correspond to 1 base element (23 voxels), LOD 0-bricks to 8 base elements (43 voxels). To quickly assign free locations to bricks during
decompression, we use one stack Sl per LOD where one stack element points to the first base element where a block of the respective size can be
stored. The locations of bricks evicted from the cache are pushed onto these stacks. Note that the coarsest LOD (here level 2) is never stored in
the cache as it is available as the first entry of a brick’s palette.

4.1 Brick Caching and Decoding

Our cache is loosely inspired by Shading Atlas Streaming [39] (SAS),
which has been designed to stream 2D texture tiles from a powerful
host to a tethered VR device. We adapt a subset of SAS to cache
decompressed CSV bricks on a single GPU. In particular, we adopt the
handling of free cache elements with one stack per LOD from SAS,
and their usage of atomic counters to assign bricks to stack elements.
However, as our LOD scheme does not create anisotropic bricks, we
omit the superblock and column concepts from SAS. Instead, we simply
map contiguous base elements to bricks.

For this our cache maintains a pool of base elements of 23 voxels
which are allocated and combined to form blocks of sizes 23l , l = 1..N
which can then store one decompressed brick of the respective size
(Fig. 7). Bricks at the coarsest resolution l = 0 do not need to be
decompressed. As in SAS, the index of the first base element of an
already formed but currently unused block is stored on stacks Sl (one
stack per block size) in order to quickly retrieve free blocks when
decompressing bricks. If a stack Sl runs empty, the cache allocates new
blocks of size 23l by atomically advancing a shared cache top pointer
by l. After a block has been assigned to a level l, it cannot be used for
other levels later. If no free base elements are available, we resort to a
rebuild of the cache as proposed by SAS to remove fragmentation. Note
that for reasonably sized cache pools this happens extremely seldom.

The use of the cache during visualization is as follows: After ren-
dering a frame, the required bricks and their LODs for the next frame
are known. They will then be decompressed and stored into the cache
(assign cache in Fig. 5). For this, we first test whether a requested
brick is visible for the current TF, and if visible, we mark this brick
by assigning an ascending index (one sequence per block size 2l as
proposed by SAS) to it. By this, we also count how many bricks of
which LOD need to be decompressed. Bricks already in the cache that
became invisible because of the TF or not being hit by a ray are evicted
from the cache and their blocks are pushed onto the respective stack Sl
(Fig. 7).

Next we determine for each Sl if it contains enough free blocks to
fulfill all requests of level l. If this is not the case, the cache allocates the
new blocks required to decompress all requested bricks. As mentioned
before, if not enough blocks can be allocated, the cache is rebuild,
i.e. all blocks and stacks are cleared and all visible bricks of the CSV
are newly decompressed. Lastly, the actual decompression of each
requested brick (decompress bricks in Fig. 5) is carried out in parallel.

The architecture of our cache follows that of SAS with the following
differences: 1) we test bricks for empty space using their palettes
before requesting free locations, 2) we avoid superblocks by providing
contiguous base elements using the method from above, and 3) during
assignment of locations we decompress the bricks.

4.2 Detail Separation

If possible we store the CSVs in GPU memory. For too large CSVs
we split the compressed data: the palette and data for the coarse levels
of detail are kept on the GPU, and data for further decompressing
fine detail levels is stored in CPU memory. While the latter needs a
comparatively large amount of memory, bricks with high (or full) detail
are often only required for close up views. The CORTEX data set (see
Fig. 1), for example, has a resolution of 6144×9216×4096 voxels, i.e.
even at high rendering resolutions only the front most bricks might be
needed with high detail. On the other hand, coarser levels are frequently
accessed, also during decompressing finer levels.

To this end, we stream the detail levels for bricks to the GPU only
when required (Fig. 5, bottom). For this, the cache assignment stage
(Section 4.1) determines for every brick if detail levels need to be
accessed for decompression. In this case, the brick index is added to a
request buffer which is transferred to CPU memory after the assignment.
A buffer containing the requested detail levels is generated in parallel to
rendering the next frame and asynchronously uploaded to GPU memory.
We implemented two options to handle this resulting additional lag of
one frame: first we can simply decompress a brick only up to the finest
available level in GPU memory, or second, we predictively upload
detail information for bricks close to the camera. Once a brick has
been decompressed and stored in the cache, the data for fine details
is not required anymore and can be discarded. Note that in practice,
even for the largest data sets tested we were able to store all but the
data for decompressing level L0 in GPU memory. For our compression
of CORTEX, the total memory consumption for L0 is 9.2 GB while
all other levels take up only 4.3 GB. In our experiments we use an 8
MB buffer to upload requested detail level data to the GPU which was
sufficient in most of the frames. If more detail data is requested (or the
buffer would be smaller) the upload is distributed across several frames
trading LOD adaptation for responsivity/interactivity.

4.3 Possible Optimizations

Here we briefly mention possible improvements for future work. There
are plenty of performance optimizations known for large-volume visual-
ization which can be combined with CSVs. For example, empty space
skipping could use an octree where leaf nodes represent CSV-bricks
to efficiently detect larger invisible regions during raymarching. It is
also obvious that the caching strategy can be refined, e.g. by predict-
ing bricks becoming visible within the next frames when they move
towards the view frustum. Noteworthy is also that there is a large
body of work on occlusion culling, either view-dependent or computed
globally [18], which can be used to reduce cache usage and increase
rendering performance.



Table 1: Compression rates and CPU compression times of different data sets and brick sizes, without and with using rANS-entropy coding.
The third column shows the figures for our default: using rANS with two global frequency tables, one for LN ..L1 and one for L0. Timings are
measured excluding data set input/output operations. For larger brick sizes we use 8 instead of 16 threads (marked by ()+ after the timing value).

no rANS rANS, one frequency table rANS, two frequency tables
b CR Time (s) GB/s CR Time (s) GB/s CR Time (s) GB/s

C
E

L
L

S 16 6.958% 2.008 1.992 3.980% 2.104 1.901 3.561% 2.090 1.914
32 6.581% 1.859+ 2.152 3.460% 1.913 2.022 3.016% 1.957 2.043
64 6.428% 2.000+ 2.000 3.250% 2.189+ 1.827 2.805% 2.161+ 1.851

F
IB

E
R 16 3.220% 3.579 1.591 1.950% 3.812 1.494 1.737% 3.887 1.465

32 2.597% 3.017 1.887 1.257% 3.148 1.809 1.017% 3.744 1.521
64 2.502% 3.457+ 1.647 1.147% 3.601+ 1.581 0.899% 3.219+ 1.769

C
O

R
T

E
X 16 3.684% 284.475 3.261 2.035% 360.136 2.575 1.882% 362.248 2.561

32 3.357% 294.042+ 3.155 1.699% 328.956+ 2.820 1.533% 320.558 2.894
64 3.307% 321.660+ 2.884 1.631% 351.806+ 2.637 1.459% 347.999+ 2.666

data set characteristics

1000×1000×1000 voxels
1,067,198 labels
4.0 GB uncompressed

1579×1092×1651 voxels
31,877 labels
5.7GB uncompressed

6144×9216×4096 voxels
15,030,572 labels
927.7GB uncompressed

5 RESULTS

In this section we evaluate our CSVs, compare our compression to
previous work (Section 5.1, and discuss the rendering performance in
Section 5.2). We will make the source code of our compression tech-
nique available. For the evaluation we use the following segmentation
volumes (see Fig. 1) taken from simulations and measurements:

• CELLS: A Cellular Potts Model cancer growth simulation [44]
with a resolution of 1000× 1000× 1000 voxels and 1,067,198
labels (1067 labels/million voxels). As each individual biological
cell in such simulations has its own label, this data set has by far
the most labels per voxel in our evaluation.

• FIBER: A fiber segmentation of an X-ray scan of a glass fiber
reinforced polymer [37] with 1579× 1092× 1651 voxels and
31877 labels (11 labels/million voxels). Due to the low number
of labels, this data set has been provided with 16 bit per voxel
as opposed to the other 32 bit data sets in this evaluation. The
segmentation volume contains highly anisotropic label regions
and inhomogeneously shaped empty space that leads to a partial
visibility for many bricks during rendering.

• CORTEX: A segmentation of an electron microscopy scan
of a mouse cortex [38] with 6144× 9216× 4096 voxels and
15,030,572 labels (65 labels/million voxels). This is the largest
data set is in our evaluation with an uncompressed size of almost
928 GB and label regions of strongly varying size and shape.
The resulting CSV requires storing detail level data for L0 on the
CPU. If a brick is required in full detail and L0 has not yet been
uploaded to GPU memory, the decompression temporarily uses
L1 (see Section 4.2).

5.1 Compression Performance
In this section we evaluate the compression rate for a variety of settings
and compare our method to previous work. We measure time and
throughput for the compression and define the reported compression
rate (CR) as the ratio of compressed size to input size, i.e. smaller
values mean better compression.

Parameters for CSV-compression We measure all timings on
an AMD Ryzen 7 5800x 8-core CPU with 64 GB of RAM. Data sets
that do not fit into RAM at once, e.g. the CORTEX, can trivially be pro-
cessed in an out-of-core fashion as the (de)compression is performed
for individual bricks. Note that we used a naive parallelization through-
out our experiments: T threads simply compress T bricks in parallel,
followed by a synchronization and concatenation of the output. In
particular for larger brick sizes, this results in less optimal utilization as
the processing times between threads diverge. We leave more elaborate
schemes, e.g. using work queues, as well as a GPU implementation for
future work.

Table 1 summarizes the results for the data sets and shows results for
different brick sizes b as well as compression with and without rANS
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Fig. 8: Mean relative frequencies of operations for the CELLS, FIBER,
and CORTEX data sets. We also show the standard deviation σ . Note
that we did not compute it from the bricks’ operation counts directly, as
some bricks can be encoded with very few operations and would lead
to large σ without informative value. Instead we compute the relative
frequencies 2048 times for 100 randomly chosen bricks (b = 16), and
obtain the standard deviation from these frequencies.

entropy coding; we use 16 threads for smaller and 8 threads for larger
brick sizes. The results show that larger brick sizes (with proportionally
fewer edge voxels) lead to better compression rates. This is mainly
because neighbor references R{x,y,z} cannot be used across the bricks’
borders. Depending on the data set, large homogeneous regions that
span multiple bricks are more compactly encoded by with fewer large
bricks. The rANS coding improves the overall CRs by about 40%
compared to storing 4 bit nibbles directly. As mentioned before, for the
compression with rANS we compute two global frequency tables per
data set—one for nodes in L0 where the stop bit is always 0, and one for
all other nodes—during an encoding prepass using every 512th brick,
except for CORTEX where we use every 4096th brick (Section 3.2).
In our experiments, CRs only varied very subtly when increasing or
decreasing the subsampling. We observe compression speeds of 1.5 to
3 GB/s for all data sets; compression with b = 32 consistently achieves
the highest throughput, despite the lower utilization of CPU cores.
rANS coding only slightly impact the throughput by about 2.5% on
average.

Comparison to other Methods We compare the compression
rate (CR) and time to the following methods (Tab. 2):

• hdf5: Segmented volumes are often provided in hdf5/Hierarchical
Data Format [38] which uses a brick-wise gzip-compression
(LZ77 with Huffman coding); the brick size typically is 1283.

• png: Another common way is to slice volumes and store image
stacks in Portable Network Graphics (PNG)-format where labels
are split into 8-bit RGBA channels [3]. For our comparison, we



Table 2: Compression rates of different techniques: hdf5 uses gzip on bricks of 1283 voxels, for png we sliced the volume and used zlib with
the highest compression level. For Compresso we used the default parameters with a window size of (8,8,1). For Neuroglancer we set the
block size to (8,8,8). Our technique (with b = 64) is benchmarked without and with rANS using two frequency tables to assess the overhead of
entropy coding. Timings are reported for single-threaded execution; the timings for our method running with 16 threads are shown in parentheses.
Note that the full CORTEX data set did not fit into memory and the available implementations of Compresso and Neuroglancer did not handle
out-of-core compression. To this end, we chose a representative 10243 subvolume of CORTEX which matches the overall average number of
labels per voxel and whose hdf5-compression ratio is the same as for the entire CORTEX data.

data set size/#labels hdf5 png Compresso Compresso+LZMA Neuroglancer ours (no rANS) ours (rANS)

CELLS 4.0GB 7.221% 10.812% 8.337% 2.753% 13.622% 6.428% 2.805%
1M labels 23s 493s 35s 135s 11s 15s (3s) 16s (3s)

FIBER 5.7GB 3.051% 3.665% 26.700% 5.861% 3.658% 2.502% 0.899%
32K labels 53s 380s 130s 619s 12s 19s (6s) 20s (6s)

CORTEX∗ 4.3GB 2.459% 2.406% 8.515% 1.267% 3.999% 3.564% 1.590%
45K labels 18s 138s 35s 138s 5s 10s (3s) 11s (3s)
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Fig. 9: Log-scale histogram of compression rates per brick with b = 64.
We observe that even the worst case bricks still have compression rates
of 3.794% (CELLS), 2.360% (FIBER), and 4.436% (CORTEX). Note
that the peak near zero for CORTEX and FIBER is due to completely
homogeneous bricks represented as a single Pa entry.

slice the volumes along their z-axes and compress each 2D slice
with the highest zlib compression level 9.

• Compresso [36]: This method has been designed for segmentation
volumes and its CR often outperforms other techniques. We
compare to the improved Compresso version 3.2.

• Neuroglancer [20]: A web-based volume viewer with a GPU-
friendly compression format that stores a palette for each brick
which is then indexed by the voxels.

We can make the following observations: Compared to hdf5 our
CSVs achieve better compression although we use smaller brick sizes.
Without LZMA, Compresso consistently yields worse CRs than our
method without rANS. Compresso with LZMA achieves roughly sim-
ilar CRs as our method for CELLS and CORTEX. The result for the
FIBER-volume is significantly worse than all other methods, which pre-
sumably is due to the strong anisotropy of the features and bad matching
of representative windows used for compression in Compresso. As an
experiment we also used a global LZMA compression (as Compresso
does) with the output of our brick encoding. By this we achieve slightly
better CRs than Compresso (e.g. 2.579% for ours and 2.753% for
Compresso on CELLS). Note, however, that Compresso itself as well
as using a single LZMA stream make level-of-detail rendering and
brick-wise decompression impossible. This is why Compresso and
image stack approaches are not directly applicable for volume render-
ing. hdf5-volumes, in contrast, can be decompressed per brick, but
also have no elaborate level-of-detail mechanism. Neuroglancer [20] is
meant for direct volume rendering and can also be trivially extended
to store multiple levels-of-detail. However, already without LODs the
compression rates are worse than with all other techniques.

As we can see, our CSV are competitive with the CRs of the state-
of-the-art compression methods for segmentation volumes, and at the
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Fig. 10: Histogram of the number of duplicate label entries in brick
palettes for CELLS. On average a brick for b = 16 has only 0.8 dupli-
cate entries. Choosing b = 32 results in 37449 bricks which contain
58 duplicates on average. This number remains relatively low also
thanks to the Pδ -operations. The FIBER and CORTEX data sets have
significantly fewer different labels per brick and duplicates are rare.

same time they can be directly used with volume rendering due to
supporting brick-wise decompression and adaptive level-of-detail.

Tab. 2 shows single-threaded compression time for all methods as
multi-threading implementations were not available for all methods.
While the simple Neuroglancer-method encodes about twice as fast
as our CSVs, its CR is significantly worse. Note that our CSVs are
8−30× faster than Compresso with LZMA while they achieve similar
CRs (and significantly better CR for FIBER). Our rANS encoding
introduces only little overhead.

Encoding Operation Frequencies Fig. 8 shows the relative fre-
quencies of the encoding operations; note that they vary slightly, but
not fundamentally, over the data sets. We further observe that 95% of
the used operations reference other nodes (Rp,R{x,y,z}), and only 0.08%
(FIBER) to 0.7% (CELLS) of nodes use the costly Pa operation, adding
an entry to the palette. Recall that the frequencies of operations are also
influenced by the order in which they are tested during encoding. For
example, R{x,y,z} would be more evenly distributed if tested in random
order (which would harm compression).

As mentioned before we obtain the frequencies for encoding by sub-
sampling bricks in a prepass. The cost for the prepass depends linearly
on the number of sampled bricks and thus yields a significant speedup.
The compression rate with sub-sampled frequencies compared to a
full pass over all bricks differs only on the fifth decimal digit, i.e. the
frequencies vary only minimally over the bricks of the data set we tested.
In applications where a prepass is not practical, static (predetermined)
frequency tables would still result in good compression ratios and they
could still be tailored, for example, to a specific application (Cellular
Potts Model, electron microscopy etc.).

In our tests, we observed data sets with bricks which showed notice-
able worse compression ratio than the average – however, the CR still
remained below 5%, which is less than the simple paletting as used by
Neuroglancer (Fig. 9). We found that such bricks contain segmentation
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Fig. 11: A stress test for the decompression with the CELLS data set: a
cold start, fast moving camera, and bricks becoming visible. We show
the times for raymarching, decompression, and cache assignment at
1920×1080 resolution. The bottom row shows the individual frames
(note how the coarsest LOD is used in frame 0 as no bricks are stored
in the fresh cache). Changing brick LODs and changes in visibility also
create decompression workload in subsequent frames.

or simulation errors resulting in many disconnected label regions which
inevitably lead to palette duplicates. Fig. 10 shows histograms for
duplicate palette entries for CELLS (FIBER and CORTEX exhibit almost
no duplicates). Smaller brick sizes lead to fewer duplicates which is
to be expected; larger bricks often span differently labelled regions
and the required palette index of a node during encoding might not be
adjacent and out of range for Pδ operations.

5.2 Rendering Performance
We evaluate our raymarcher with the same hardware configuration as
above using an NVIDIA RTX 3070 Ti with 8 GB of video memory.
We use a cache size for decompressed bricks of 1 GB for CELLS and
FIBER; for these we can easily store the full CSV in video memory. For
CORTEX we set the cache size to 2 GB and separate the detail levels
L0 which consumes 9.2GB of CPU memory for all bricks. Recall that
this detail is streamed to the GPU on-demand; the levels Ll , l > 0 are
kept in GPU memory and require 4.3 GB. Table 3 shows rendering
performance with minimum, average, and maximum milliseconds (ms)
per frame rendered at a resolution of 1920× 1080, and also lists the
decompression throughput on the GPU. Table 4 shows rendering perfor-
mance using different brick sizes for CELLS and FIBER. Smaller brick
sizes generally lead to slightly faster render times. If not stated other-
wise, we use b = 32 as a compromise between rendering performance
and compression, except for CORTEX where we use b = 64 for better
compression and to minimize GPU memory usage. As expected, the
on-demand streaming of detail levels L0 from CPU to GPU memory
results in a slight reduction of rendering performance, but its influence
is only notably evident for the maximum frame times. The maximum
frame time for the large CORTEX data set (172 ms) is due to a full
cache rebuild (also see the supplemental video). The average render
times as well as the maximum times for CELLS and FIBER are only
slightly affected by detail streaming. This is because in both cases all
decompressed bricks easily fit into the cache. For FIBER usually up
to 600 MB of the cache are used at any point, while CELLS requires
less than 200 MB of the cache for decoded bricks. With CORTEX, we
experience the cache quickly filling up to its 2 GB limit in close camera

Table 3: Average, minimum, and maximum total rendering times per
frame in milliseconds (ms) for a fly-around at 1920×1080 resolution,
and GPU-decompression performance in GB/s for our data sets. The
render times include one shadow ray per pixel. First column: rendering
with CSVs completely stored in GPU-memory; second column: CSV
split such that L0 is stored in CPU-memory.

CSV on GPU L0 on CPU decoding
min / avg / max min / avg / max in GB/s

CELLS 5 / 17 / 29 5 / 20 / 39 9.9
FIBER 7 / 18 / 23 7 / 22 / 30 10.4

CORTEX – 7 / 40 / 172 9.3

Table 4: Average and maximum frame times in milliseconds with
varying brick sizes b for a fly through over CELLS and FIBER. CORTEX
cannot be rendered with b < 64 on our GPU with 8 GB memory.

CSV on GPU L0 on CPU
b 16 32 64 16 32 64

CELLS 6 / 12 17 / 29 23 / 37 9 / 15 20 / 39 24 / 43
FIBER 10 / 13 18 / 23 33 / 39 12 / 15 22 / 30 35 / 39

views when using transfer functions that lead to many visible bricks
in the finest LOD. We leave more efficient caching schemes for future
work.

Fig. 11 shows the total frame times as well as the portions spent for
raymarching, decoding, and cache assignment for a synthetic test using
CELLS designed to put stress on the decompression by fast camera
movement and change in the visibility of bricks. The short sequence
consists of 15 frames where the cache is empty in the beginning. Conse-
quently frame 0 is rendered using the coarsest LOD only and significant
decompression load is generated for frame 1. Even the initial decom-
pression of all bricks visible in frame 0 results in a total frame time
below 25 ms. Note that similar cases in practice only occur once at the
beginning of rendering a sequence or when the camera view changes
(almost) completely. The subsequent frames in the experiment still
require further decompression due to bricks becoming visible and se-
lection of LODs, but yield roughly equal total frame times below 5ms.
Also note that the cache assignment stage, which among others checks
a brick’s visibility by applying the transfer function to the palette, only
accounts for a negligible overhead.

6 CONCLUSIONS

We presented a novel lossless compression technique for voxel-based
segmentation volumes which achieves compression ratios comparable
to, or better than the state-of-the-art. At the same time, its brick-
wise compression provides sufficient granularity for efficient volume
visualization, and the multi-resolution encoding inherently enables
decompression with adaptive level-of-detail. We have demonstrated
volume visualization using raymarching and caching of decompressed
bricks for data sets with more than 900 GB on modest hardware at
real-time frame rates. We have also outlined possible venues for future
work to further improve the performance by increasing the utilization of
CPU cores, improved empty-space skipping, predictive decompression,
or caching. Even without these optimizations our method achieves
high throughput for the compression and real-time visualization of very
large segmentation volumes.

SUPPLEMENTAL MATERIALS

Please see (1) the accompanying video showcasing our technique
and (2) the source code of our compression method released under
a CC BY-NC 4.0 license. We also provide an (3) in-depth comparison
of using Morton over Hilbert curves in the compression.
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