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Fig. 1: With TransforLearn, learners can gain an understanding of the Transformer structure and the process of machine translation.
Input view (A) provides an interface for the text to be translated. Translation view (B) displays the model’s translation results
and current translation progress, helping users in task-driven exploration. Architecture view (C) provides an overview of the
visualized model structure and data flow, with sub-views (C1-C4) that support the close exploration of computational processes.
Once enabled, the detailed view (C3) displays the attention mechanism view (D), layer normalization view (E), and feed-forward
network view (F). These views not only show the data flow and operational details but also support multiple interactions.

Abstract—The widespread adoption of Transformers in deep learning, serving as the core framework for numerous large-scale
language models, has sparked significant interest in understanding their underlying mechanisms. However, beginners face difficulties
in comprehending and learning Transformers due to its complex structure and abstract data representation. We present TransforLearn,
the first interactive visual tutorial designed for deep learning beginners and non-experts to comprehensively learn about Transformers.
TransforLearn supports interactions for architecture-driven exploration and task-driven exploration, providing insight into different
levels of model details and their working processes. It accommodates interactive views of each layer’s operation and mathematical
formula, helping users to understand the data flow of long text sequences. By altering the current decoder-based recursive prediction
results and combining the downstream task abstractions, users can deeply explore model processes. Our user study revealed that
the interactions of TransforLearn are positively received. We observe that TransforLearn facilitates users’ accomplishment of study
tasks and a grasp of key concepts in Transformer effectively.

Index Terms—Deep learning, Transformer, Visual tutorial, Explorable explanations

1 INTRODUCTION

Deep learning models are now commonplace in various industries and
are being applied to increasingly more complex problems. Trans-
former, a kind of deep learning model, has become one of the hot
spots in research and has become the preferred method for many tasks.
For example, to generate a piece of poetry, the Generative Pre-trained
Transformer (GPT) [37] is used to solve the text generation problem,
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and to classify images, the Vision Transformer (ViT) [13] is used. Due
to such wide applicability, there has been an immense interest in learn-
ing about deep learning. However, these deep learning models often
involve complex structures and esoteric mathematical formulas, which
create barriers for beginners. In recent years, visual and interactive
methods have shown to be effective in explaining the working mecha-
nisms and concepts of complex models [29,43,57] for seasoned model
builders. This is encouraging for interactive visual approaches target-
ing broader audiences and this paper takes steps towards this goal.

Transformer has emerged as a prominent and widely-used tool in
natural language processing (NLP) due to its exceptional performance,
first proposed by Google in 2017 [45] to tackle neural machine trans-
lation tasks. Transformer effectively resolves the issues of slow pro-
cessing speeds and sequence length limitation that traditional neural
network models, such as Recurrent Neural Networks (RNNs) [42] and
Convolutional Neural Networks (CNNs) [35]. Due to their capabilities
in handling long sequence data, comprehending the changes within
Transformers is difficult. Meanwhile, it is particularly challenging to
understand the intricate operations of modules and transformations of
data dimensions for beginners. To better support learning, beginners



should have more extensive and active participation with Transformer.
Most existing Transformer tutorial methods, however, rely on graphics
and text for sequential narration rather than free exploration, such as
the examples from Peter Bloem [6] and Samira Abnar [1]. These meth-
ods fall short of offering an immersive learning experience for novices.
Consequently, there is a pressing need for comprehensive, interactive,
and visually engaging tutorial tools tailored for Transformers to bridge
this educational gap.

Contribution. We propose TransforLearn for beginners as a tuto-
rial tool for Transformers. TransforLearn uses a visual approach to
provide learners with a better learning experience through interactive
exploration. Our major contributions can be listed as:

• TransforLearn, the first interactive visual explanation sys-
tem as a tutorial for Transformers. TransforLearn provides
a hierarchical overview of the model architecture. It combines
interactive displays of data flow transformations and mathemati-
cal formulas, seamlessly integrating the model’s top-level archi-
tecture with downstream numerical features. TransforLearn aids
users in gaining a comprehensive understanding of the model ar-
chitecture and its intricate execution processes.

• Novel interactive exploration approaches to facilitate train-
ing on Transformer models. We support architecture-driven
exploration guided by the structure and task-driven explo-
ration based on the iteration of downstream tasks. These dis-
tinct interactive modes are designed to assist beginners in com-
prehending the intricacies of Transformer.

• Evaluating the effectiveness of our work. A user study con-
firms that TransforLearn provides users with an immersive learn-
ing experience. After using the system, users generally exhibited
better performance when completing Transformer-related tasks.

With TransforLearn, we contribute to the growing literature on
employing interactive visualization techniques to improve the inter-
pretability [14, 16] of AI methods and establish a stronger role for
visualization in enhancing the AI literacy [30] of broader audiences.

2 BACKGROUND ON TRANSFORMERS

This section offers an introduction to Transformer, establishing the
foundation for our work. With the rapid development of NLP, Trans-
formers serve as key kernels supporting the most popular large lan-
guage models. OpenAI introduced the GPT in 2018 [37], which ex-
clusively utilizes the Transformer decoder for language modeling and
generation. During the same period, Google introduced BERT [12], a
groundbreaking model reliant solely on the Transformer encoder for
pre-training and fine-tuning. Additionally, various enhanced or ex-
tended versions, including XLNet [56] and GPT-2/3 [8, 38], as well
as Instruct GPT [36], have further enriched the landscape.

Structurally, the Transformer belongs to the encoder-decoder de-
sign. The encoder block features a multi-head self-attention mecha-
nism and a positional feed-forward network, while the decoder block
includes a multi-head cross-attention mechanism. These elements are
linked by a combination of two operations: residual connection [17]
and layer normalization [28]. In machine translation tasks, the input
text is expressed by embedding and positional encoding to obtain nu-
merical representations of word embedding.

3 RELATED WORK

We reviewed related work about visual interpretation for deep learn-
ing models, with a specific focus on the Transformer model. We also
looked at existing visual tutorial tools for deep learning models.

3.1 Visualization for understanding deep learning models

The interpretability and transparency of deep learning models remain
a persistent issue [4]. An increasing number of researchers and prac-
titioners are actively exploring methods to comprehend, compare, and
enhance deep learning models [32, 49]. In recent years, the contri-
bution of visualization to deep learning interpretability has garnered
widespread acclaim [40, 59].

The most direct purpose of understanding deep learning models is
to know how the models make decisions and what they learn. For
example, LSTMVis [44] uses parallel coordinate plots to visually in-
terpret the hidden features of long short-term memory networks. CN-
NVis [28] represents a deep CNN as a directed acyclic graph and use
hybrid visualization techniques to reveal data streams as well as inter-
actions between neurons. Recent efforts have also been concentrated
on unified interpretations of specific domains, with DeepNLPVis [25]
using a unified information-based measure [15] for NLP models, and
M2Lens [50] for multimodal sentiment analysis.

Another key use of interactive visualization systems in model in-
terpretation is model improvement and debugging. In order to im-
prove the training efficiency, DeepTracker [27] combines a hierarchi-
cal indexing mechanism and novel cube-style visualizations to explore
CNN training logs. DQNViz [48] demonstrates the training details of
deep Q networks and conducts comprehensive analysis in the surro-
gate model’s experience space. Wongsuphasawat et al. [53] use data
flow diagrams to express the calculation process of machine learning
algorithms and support users to construct algorithms independently.
Meanwhile, for optimizing data sets, ShortcutLens [20] offers insights
into the coverage and semantic understanding of instances with Short-
cuts problems [31]. Hohman et al. [18] outlined three common target
users for visual analytics in deep learning: model developers, model
users, and non-experts. However, most above systems focus on pro-
viding new perspectives and methods for experts and are not suitable
as tutorial education tools.

3.2 Visual interpretation of Transformers

Transformer [45] has become a favorite in NLP [58], resulting in a
variety of derived models [26]. Significant efforts have been put into
visualizing these architectures, predominantly focusing on interpreta-
tion and tutorial-based explanations [7].

Interpretation emphasizes embedding and attention mechanisms
through both static visualizations [10] and interactive tools [46, 47].
Attviz [62] is a representative online tool that explores the correla-
tion between self-attention scores and real data, illustrating attention
matrix statistics from sequence and overall perspectives. Attention
flows [11] adopts a ring-shaped design structure to support the min-
ing of attention weights within layers, between layers, and between
attention heads. Dodrio [51] summarizes the role of different atten-
tion heads, focusing on the influence of attention weights in syntactic
structure and semantic information. Recently, Shao et al. [41] propose
VEQA to explore the decision flow of a complex transformer-based
model for the open-domain question-answering task. However, most
of the work mentioned above is aimed at model developers or experts
and focuses on model analysis, which is not suitable for beginners.

Several tutorial visualizations are developed recently. Jay Alam-
mar’s blogs [2, 3] analyze how the BERT model works, serving as
introductory tutorials. Combined with the Transformer principle [45]
and the interpretation of the implementation code, Harvard NLP pro-
vides an online tutorial [33]. Video introductions of models, such as
the highly viewed Transformer Neural Networks [9] on YouTube, are
becoming increasingly popular. Although the above popular tutorials
clearly describe the structure and working mechanism, they lack inter-
action and exploration with the actual data flow or task, which is a gap
that our work aims to fill.

3.3 Visual tutorial tools for deep learning models

The popularity of deep learning must have attracted the attention of
numerous non-experts. Visual tutorial tools serve as the main way
to develop the intuition about hyper-parameter changes and structural
adjustments of deep learning models for non-experts. Early visual tu-
torial tools were mostly text-based, with visuals aiding key concept ex-
planations. For example, Chris Olah’s series of interactive blogs [34]
combine text descriptions with graphical diagrams to explain many
fundamental concepts and mathematics in deep learning.

To link unfamiliar layer operations with complex model structures,
interactive visualization tools have emerged in later work. Typically,



TensorFlow Playground [43] allows users to dynamically adjust set-
tings such as the number of hidden layers, the number of neurons,
and activation functions in Multilayer Perceptron (MLP), which fully
demonstrates the advantages of interactive visualization tools. GAN
Lab [23] integrates model architecture, sample distribution, and pre-
dictive performance into a system to examine multiple aspects of GAN
performances. Wang et al. [52] proposed that it is very challenging for
beginners to organically associate the underlying mathematical knowl-
edge with the top-level model structure. In response to this difficulty,
they propose CNN Explainer to help users understand the dynamic
changes of data flow in the underlying components. To our best knowl-
edge, our work is the first interactive visual tutorial for Transformer.

4 PRELIMINARY STUDY FOR REQUIREMENT ANALYSIS

We report the results from the interviews we conducted with domain
experts and student groups to extract the challenges encountered dur-
ing the learning process and compile them as design requirements.

4.1 Interviews and surveys

To understand learning challenges and inform our designs, we inter-
viewed experienced deep-learning lecturers at a university and con-
ducted a survey with their students.

Initially, we gathered feedback from two university lecturers (T1
and T2) about teaching methods and desired improvements, who both
teach NLP and emphasize Transformers in their curriculum. In 30-
minute interviews, both revealed a common teaching strategy: manu-
ally break down Transformer into multiple steps and discuss them in
a sequence of slides. They also expressed their desired features for a
learning tool: (1) enabling hands-on experience to enhance students’
understanding, (2) developing interactive resources that permit the ex-
ploration of both the overall Transformer architecture and its individ-
ual components, and (3) clarifying data transformations and making
complex mathematical operations more engaging for beginners.

We also recruited students who had studied Transformers to partici-
pate in an online survey. We received 25 (7 female, 18 male) responses.
This group included 10 Ph.D. students, 10 M.S. students, and 5 under-
graduates, all from Computer Science and Data Science disciplines.
The survey asked about the key challenges in learning and applying
Transformers from various aspects, and what features would be help-
ful in an interactive tool for beginners. We offered options based on
the lecturers’ feedback but also allowed students to add their own opin-
ions. The summary of their responses can be found in Fig. 2.

Fig. 2: The difficulties of learning Transformers (A) and the require-
ments for the visual tutorial design (B) resulting from the student sur-
veys. Different color histograms map different aspects, among which
red is about model structure, blue is about data flow, green is the dif-
ficulties in specific tasks, and yellow is the user requirements. The
number next to the histogram indicates the number of students who
selected the option.

4.2 Challenges for learning Transformer

Through interviews with lecturers and student surveys, we identified
challenges in learning Transformers. In the following, we distill the
fundamental learning needs of students in learning this concept.

C1 Complex model structures with multiple layer operations. T1
suggests that traditional teaching methods such as PowerPoint,
which emphasizes theoretical knowledge, can oversimplify and
neglect contextual details when explaining complex model struc-
tures and multi-layer operations. Moreover, students reportedly

struggle to grasp the intricacies of certain aspects of the Trans-
former structure (Fig. 2A), such as the Encoder-Decoder interac-
tion and attention matrix calculations.

C2 Data flow and transformation. T2 observed students’ reluc-
tance to learn mathematical formulas and limited grasp of long
sequence representations in the data flow. Feedback from student
surveys mirrored this (Fig. 2A), indicating a partial grasp of the
data transformation and segmentation within learning materials.

C3 The gap between grasping model structure and its practical
use in downstream tasks. According to surveys, after complet-
ing a course on Transformers or utilizing online learning materi-
als, most beginners find themselves perplexed when attempting
to apply the learned concepts to their own projects. T1 found
that several of these learning materials tend to emphasize theory
more than practical implementation.

C4 The necessity of guidance and feedback. Survey results show
that students commonly use traditional Transformer tutorials,
such as blogs and videos. Yet, T2 highlights their overwhelming
information density and lack of interactivity, posing challenges
for effective learning, particularly for beginners.

4.3 Design goals for TransforLearn

Based on the learning challenges identified (Sec. 4.2) and desired fea-
tures illustrated in student surveys (Fig. 2B), we present the following
design objectives for TransforLearn. Our target users are beginners
with a foundational understanding of deep learning who are eager to
gain a comprehensive understanding of Transformers. Additionally,
we envision TransforLearn serving as a valuable teaching aid during
lectures.

G1 A visual summary of the model architecture and data flow.
TransforLearn needs to demonstrate the implementation and
module interaction from the high-level model architecture to the
underlying mathematical mechanism (C1). As suggested by T1,
the system must ensure coherence in presenting contextual de-
tails to aid beginners in navigating the modules without becom-
ing disoriented.

G2 An interactive interface for layer operations and mathemati-
cal formulas. For beginners, it is important to understand layer
operations in detail and grasp the data flow in real-time. There-
fore, we need to provide interactive interfaces for each level of
operations and mathematical formulas, allowing users to under-
stand how the model works (C1) and gain insights into data trans-
formations in different dimensions (C2).

G3 Exploration mode between module levels based on down-
stream tasks. To more effectively align the abstract model with
specific tasks (C3), it is necessary to provide an interactive mode
that empowers users to acquire fresh perspectives on the model’s
structure and data manipulations, based on their engagement
with downstream tasks.

G4 Self-directed and immersive learning experiences. To over-
come beginners’ reluctance to mathematical formulas and pre-
vent them from getting lost in these details (C4), we need a logi-
cally connected and visually guided tutorial that enables users to
actively explore the detailed module of Transformers.

5 TRANSFORLEARN: INTERACTIVE VISUAL TUTORIAL FOR

THE TRANSFORMER MODEL

The implementation of TransforLearn is built on the foundational
Transformer model [45]. We visualize the forward propagation pro-
cess of the training model: converting an input text to be translated
into translation results. The workflow of TransforLearn is shown in
Fig. 3. As illustrated in Sec. 4.1, to better assist beginners in over-
coming the hurdle of aligning model input and output with task re-
quirements, we propose two exploration modes: architecture-driven
exploration and task-driven exploration. Users can grasp the over-
all architecture and data flow (G1) by architecture-driven exploration



(Sec. 5.1). Based on the knowledge of the architecture overview, users
can explore the inner layers and study the formula parameters through
certain interactions (G2). Based on task-driven exploration (Sec. 5.2),
users can change the decoding time step in real time to derive further
insights (G3, G4). In Sec. 5.3, we discuss the interaction between the
two modes.

Color schemes. In our visualization of the real data flow, we map
red to lower values and blue to higher values. The corresponding color
scheme for parameter information is mapped from yellow to green,
with yellow indicating lower numerical values and green indicating
higher numerical values. In order to provide smooth transitions be-
tween the colors, we use white as a neutral color. All of these color
schemes are presented in the form of a heat map.

5.1 Architecture-driven Exploration

The system presents an overview of the Transformer architecture and
detailed modules during architecture-driven exploration (Fig. 3). In
this section, we will simulate the user’s exploration approach to intro-
duce views. The system supports drill-down when the model compo-
nents contain multiple operations.

5.1.1 Input: Change input text

The input view displays the model’s input text. Users can input the
English text they want to be translated within the designated input box
and submit it to the system back-end by pressing Enter.

5.1.2 Tokenize: Divide the text into tokens

The tokenize view (Fig. 1C1) shows the process of converting text
into a sequence of word elements, consisting of word segmentation
and token. The view employs a horizontal tree diagram structure to
visually depict the process of text segmentation, with each word split-
ting corresponding to the token individually. Hovering will trigger the
text description of the relevant module to help beginners have a more
intuitive understanding of the concept.

5.1.3 Embedding: Generate word embeddings

After tokenization, word tokens are indexed to the word embeddings
in Fig. 1C2. TransforLearn supports the drill-down by clicking on the
heat matrix to explore the correspondence of indexing and the compu-
tational process of positional encoding (G2).

Explaining the correspondence of indexing. Each word element
corresponds to an embedding vector, and multiple word element em-
bedding vectors form an embedding matrix. We visualize the process
of obtaining the embedding representation of a word element by map-
ping the index values to the relative positions of the embedding matrix.
Users can view the corresponding relationship by hovering. Also, we
use a textual description of the shape of each matrix and use colors to
characterize each element value in the embedding vector.

Integrating positional encoding into embedding. The in-depth
view of positional encoding shows the data flow: word embeddings,
the positional encoding process, and the final embeddings. We show
the process from the perspective of the overall matrix and the local
cells (G1, G2). When users hover over an element value, the system
directs attention to the operation of the cell, as depicted in Fig. 4.

5.1.4 Encoders and decoders

After the text is transformed into the final embedding matrix, it en-
ters the architecture consisting of six encoder or decoder blocks. Six
blocks are presented in a top-down flowchart. Each encoder or decoder
block shares an identical internal structure. The flowchart illustrating
the detailed structure is displayed on the side (Fig. 1C3). The attention
operation is presented with focused clarity. The principle of residual
concatenation is easy to understand, so only a combination of text and
operators is used to show it. The presentation of layer normalization
abstracts the data flow. The feed-forward network is described textu-
ally, highlighting its main components. The flowchart also serves as
an interface for the user to interactively explore the details of the data
flow and implementation process of each module (G2). Users can click
and slide the view area to access the first-level unfolding views.

Explaining self-attention mechanism. This view outlines the pro-
cess of data transformation within the multi-head attention mechanism.
As shown in Fig. 1D, we utilize heatmap matrices to visualize the data
distribution of the input, multi-head attention matrix, and output. The
matrix dimensions and corresponding information are represented by
the text. Additional views are employed to elucidate the intermedi-
ary processes of the attention mechanism. As illustrated in Fig. 5,
users can access the corresponding explainable view by clicking on
the prompted module (G2).

• Emphasizing the attention head projection. This view
(Fig. 5B) emphasizes the process of generating Q,K and V
through linear algebraic operations. Q,K and V matrices are
learned through the training process and consist of weight ma-
trices and noise, visually represented in the yellow-green color
scheme. The input and output data are represented using red and
blue color scales, respectively. Upon clicking on any element in
the Q,K and V matrices, the system highlights the other related
matrix elements, providing users with a clear and intuitive under-
standing of the calculation process for high-dimensional data.

• Breaking down the attention operation. To provide a clear
and structured description of the implementation process, we ex-
plain the phases involved, namely matrix multiplication, scaling
and masking, and softmax operation (Fig. 5C). Each operation
supports an animation in which a single unit moves with the cal-
culation steps. Automated processes help users understand the
computing process and reduce the cost of user understanding.
Additionally, users can click on the specific module for detailed
explanations. Within each stage, users can delve into the numer-
ical transformation process by clicking on an element in each
matrix.

• Representing the concatenation and linear projection.
Fig. 5D displays the process of subspace concatenation and lin-
ear projection in a linear algebraic manner. To enhance the intu-
itive understanding of the subspace stitching method, users can
hover the mouse over a specific part of the concatenation result
to reveal the corresponding subspace matrix.

Detailing the layer nor-
malization. This part il-
lustrates how layer normal-
ization alters the numerical
distribution of input data.
The view is presented in an
overview (Fig. 1E) and detailed way using matrix operations (G1,G2).
Users can obtain detailed information on each element by hovering.

Decomposing the feed-forward network. The composition and
computation of the feed-forward network are illustrated clearly in
Fig. 1F. Independent single embedding vectors enter two linear trans-
formations to obtain the output (G2). Each embedding vector operates
independently and in parallel, affording users the flexibility to switch
between different vectors by hovering over them. To provide a more
detailed understanding of the activation function, users can dynami-
cally demonstrate the ReLU operations by moving the mouse over the
embedding vector and collaborating with cells.

5.1.5 Output: Generate output probabilities

Result preprocessing. By
clicking on the "Linear
& Softmax" module in
Fig. 1C4, users can access
the computation for the
current decoder time step.
This view includes a linear
projection, a softmax func-
tion, and the predicted out-
put. The linear projection
is similar to the visual rep-
resentation described ear-



Fig. 3: The workflow of TransforLearn. We introduce the system from two aspects: architecture-driven exploration and task-driven explo-
ration. In the architecture-driven exploration, the system provides an overview of the Transformer architecture and presents the detailed
modules. There is a hierarchical relationship between the overview and the detailed modules: blue tabbed views are the topmost structures
of the Transformer; orange tabbed views are the first-level unfolding state, and green tabbed views show the second-level detailed operations.
Users can drill down from architecture overview to module detailed views by specific interactions. In the task-driven exploration, users will
have a deeper understanding of the data flow transformation and model structure with the help of actual downstream tasks (machine translation
in this system). By changing the decoding time step, users can discover the changes in data flow and final output results within the module.

Fig. 4: A drill-down view of the positional encoding process for em-
bedding. The focused tool tip displays the formula and parameter val-
ues for calculation upon selecting an element.

lier. The line is a metaphor for how linear transformations are pro-
jected. Users can click on the softmax button to view the calculation
formula and the resulting probability of the current token. The sys-
tem uses text to interpret information about the predicted words of the
current decoding time step.

Prediction and Probabilities. The translation view presents four
pieces of information: the complete translation output, the translated
result and predicted result obtained at the current decoding time step
and the cumulative probability. Users modify the decoding time step in
the dialog box to view the transformation of decoder input, translated
result, and cumulative probability.

5.1.6 Design alternatives

In this section, we delve into the visualization of one-dimensional vec-
tors and two-dimensional matrices within the system, while also ex-
ploring the merits and drawbacks associated with the utilization of
color pixel blocks alongside other design alternatives. As a visual tu-
torial, the system design should restore the underlying features of the

model to the greatest extent and be easy for beginners to understand.
For one-dimensional vector visualization, commonly used tech-

niques include height, polyline, and color mapping. Despite its in-
tuitiveness, height mapping has low information density. Polylines
illustrate element trends well but can add visual clutter and decrease
information density. Colors, however, can represent a large number
of vector elements in a confined space, vividly displaying data dimen-
sions. Given embedding’s complexity, we chose color mapping for
efficient information conveyance.

The attention mechanism, involving two-dimensional matrix com-
putation, can be visualized using color-coded pixel lattice matrices.
Each matrix element is represented as an independent pixel, convey-
ing the matrix’s actual layout and meaning. An alternative approach is
a chordal graph, like Dodrio [51], where attention’s semantics are pre-
sented through nodes and relationship edges. But this design increases
visual complexity with a large number of elements, creating structural
layout challenges.

5.2 Task-driven Exploration

In this section, we will introduce the interaction process of the system
in the task-driven exploration (G3), as illustrated in Fig. 3. In the
translation task, the model processes input English text and output the
corresponding Chinese text. The process of handling the output result
in the decoder end is non-parallel, generating individual words one by
one to ensure the correct order of translation. The interactive design
of this section fully considers the importance of non-parallelism in the
decoder end. We interpret "translation progress" as the "decoding time
step," and non-parallelized processing can be achieved by modifying
the decoding time step. Specifically, when we input the sentence "Why
are you so happy?", the Transformer will give the answer "你为什么
如此高兴？". Users can change the decoding time step from "为什
么" to "如此", and discover the changes and translation results related
to the decoder.

Explore data flow changes. Data flow changes mainly involve in-
put and output, data dimension, and data range (Fig. 6A). When users



Fig. 5: Explanation of the data transformation process in the multi-head attention mechanism (A) handling the input "I have an idea". The part
selected by the red square is the processing of "have an idea" emphasized by multiple attention heads. The attention head view (B) shows how
to generate Q,K and V in each head. Textual explanation (F) focuses on the text description selected by the box. The attention operation view
(C) breaks down the process of computing the attention matrix. Users can turn to Mask operation (G) to explore its principle. The concatenation
and linear view (D) show how the multi-head attention results are combined to generate the final result.

Fig. 6: Task-driven exploration: users can click on the icon in the Translation view (Fig. 1B) to change the decoder time step. (A) shows that
the decoder time step changes the data dimension and range. (B) shows the recursive prediction process based on the decoder.

increase or decrease the current decoding time step, the system will ei-
ther add or remove the input word and the corresponding output result.
Users can perceive the differences in the color distribution and infer
changes in the data range.

Analyze structural features. From Fig. 6B, we can see that the
predicted word of this iteration enters the next time step as input. The
prediction and cumulative possibilities in Fig. 1B show the current
translation progress and predicted possibility. Meanwhile, when users
explore the downstream tasks, we find that the iterative input of the
decoder end, multiple block operations, and diverse attention heads
may cause confusion for beginners in terms of concepts. Therefore,
controlling the current decoding time step can help users focus on a
specific module, block, or head that they are interested in.

5.3 Interaction between two exploration modes

The combination of architecture-driven exploration and task-driven ex-
ploration modes serves as a pathway from abstract understanding to
practical implementation. Users are encouraged to freely switch be-
tween the two proposed modes. In cases where beginners find ab-
stract visual metaphors confusing, TransforLearn prompts them to
switch to the task-driven exploration mode and begin with real-world
data. The task-driven exploration mode provides insights into data
flow transformations and structural relationships from the perspective
of specific task processing, thereby motivating beginners to return to

the architecture-driven exploration mode. This iterative switching be-
tween modes aims to foster a comprehensive understanding of Trans-
former, ensuring that beginners can navigate both the abstract and prac-
tical aspects of the model effectively.

6 USAGE SCENARIO

We illustrate usage scenarios informed by the interactions we had with
the lecturers and students as well as their exploration of TransforLearn.
We invited a student eager to learn about Transformers and observed
his interactions. Here, we provide a scenario of “Self-study guidance
for a beginner” (Fig. 5) based on his experience with the system, and
put an additional hypothetical scenario of “Teaching aid for lectures”
in the supplementary materials due to the page limit.

Rex, a senior undergraduate student, is eager to learn and leverage
the Transformer model to sequence data predictions in sports. Despite
grasping the model structure basics from blogs and videos, he still
struggles with detailed structure understanding and translating theoret-
ical knowledge into practical tasks. Therefore, he has taken an interest
in TransforLearn, hoping to get guidelines from it.

Rex first follows the task-driven exploration mode and inputs the
sentence "I have an idea". The resulting visualization of sequence vec-
tors and textual descriptions (Fig. 1C2) allows him to understand the
transformation of participles into long data sequences. This stimulates
him to think about how to adapt his high-dimensional time-series data



into Transformer.
Rex’s primary purpose in utilizing Transformer is to extract features

from sequence data. He has prior knowledge that the attention mecha-
nism was crucial for feature extraction, but he remains uncertain about
what the model precisely learns under this abstract concept. Follow-
ing the architecture-driven exploration mode, he clicks on the multi-
head self-attention module in the last encoder block (Fig. 5A), which
provided visual insights into the data flow transformation and multi-
head structure. However, he still has doubts regarding the concept
and generation process of the Q,K, and V matrices. To gain further
clarity, Rex clicks on a specific head button based on the text prompt.
In Fig. 5B, combined with the color mapping in Fig. 5E, he discov-
ers that the generation of matrices relied on trained weights and bi-
ases in the yellow to green color scheme. He says, "The text descrip-
tion next to the matrix in Fig. 5F further helps me grasp the matrices
concepts." Additionally, when observing the attention score matrices,
Rex notices that most heads exhibit stronger color patterns on “have
an idea” (Fig. 5A). In particular, the 2nd, 5th and 8th heads of the
last encoder block all have significant color changes. He comments
that "Different head has its own focus when processing information."
These findings lead Rex to switch back to the architecture-driven ex-
ploration mode, where he could further explore the role of attention
mechanisms. Rex next ponders the use of decoders for prediction. Al-
though initially confused by the interference of post-order information,
he understands their handling thanks to the lower triangular matrix in
the mask operation (Fig. 5G).

7 EVALUATION

We identified four key features that are crucial for the design of a visual
tutorial tool for Transformers, as depicted in Tab. 1. In Sec. 3.2, we list
several novel visualization systems involving Transformers. As Tab. 1
demonstrates, these systems often lack an explanation of the overall
model architecture and the underlying mathematics, as they tend to
focus on specific aspects of the models.

We categorized existing tutorials into three primary types: blogs,
videos, and code explanations, and examined illustrative instances
from each category (Tab. 1). Due to the limitations of their medium,
i.e., one-way communication leading to a passive learning style, these
three forms do not offer immersive learning experiences. Furthermore,
how to combine abstract concepts with concrete tasks, such as machine
translation, is a source of confusion for many learners.

Table 1: Supporting key features (G1, G2, G3 and G4) of tutorial tools
Performances of tutorial tools on key features. Blogs are primarily fea-
ture blogs by Jay Alammar [2,3]. The representative work of the video
is Transformer Neural Networks [9]. The work of code interpretation
is The Annotated Transformer [33]. Other Vis System mainly includes
Attviz [62], Attention flows [11], and Dodrio [51].

Work
Feature Model

Overview
Detailed

Computation
Task

Alignment
Engaging
Interface

Blog ✓ ✓ ✗ ✗

Video ✓ ✓ ✗ ✗

Code ✗ ✗ ✓ ✗

Other Vis System ✗ ✗ ✓ ✓

TransforLearn ✓ ✓ ✓ ✓

To evaluate the effectiveness and usability of our work, we further
conducted an in-person study and interviews with potential learners.

7.1 Experiment Setup

7.1.1 Participants

TransforLearn targets users possessing a foundational understanding
of deep learning and NLP tasks, aiming to master Transformers. We
enlisted 18 student participants (9 female, 9 male; 6 undergraduates,
12 postgraduates) from a university’s computer science department. A
comprehensive questionnaire was administered to assess their knowl-
edge of related concepts using a five-point Likert scale. Results

Table 2: Objective questions. The first column of the table is the dif-
ficulty levels, which are classified as easy, medium and hard. The
second column is the targets of questions corresponding to our design
goals. The third column is a brief description of the questions. FFN
refers to Feed-forward Network, Add & LN refers to Residual connec-
tion and layer normalization, and PE refers to Position encoding.

Level Goal Question

easy G1 Q1: Components and data flow of feed-forward network.
easy G3 Q2: Identify key words from attention matrix.
easy G3 Q3: Final output in translation task and its derivation.

medium G1 Q4: Differences between cross- and self-attention.
medium G2 Q5: Add & LN significance and implementation.
medium G1 Q6: Parallelism in Transformer.

hard G2 Q7: Reasons for scaling before softmax.
hard G2 Q8: Process of calculating PE & variation with position.

showed that most of them had acquired machine learning and visual-
ization fundamentals. All displayed an eagerness to learn about Trans-
former with TransforLearn.

16 participants with no prior Transformer experience and an aver-
age score below 3 are considered beginners in deep learning due to
their limited knowledge in this field. We further divided them ran-
domly into two groups of 8 participants each, B1-8 (Group B) and T1-
8 (Group T), to learn Transformer through the "blog" and "Transfor-
Learn" respectively. As discussed in Sec. 3.3, the blogs by Jay Alam-
mar [3] and the one provided by Harvard [33] have earned a reputation
for their authority and popularity. This is reflected in their substan-
tial video views—Alammar’s blog has even accrued up to 160,000
views—and their consistent ranking within the top 10 on search en-
gines. The remaining two participants’ scores with an average score
higher than 3 were referred to as E1-2 (Group E), where E stands for
"expert". Despite not being the primary users of TransforLearn, we
allowed them to partake in exploration similar to Group T, to gain di-
verse insights into TransforLearn’s strengths and weaknesses.

7.1.2 Procedure

We conducted individual, in-person studies with participants in an
offline environment. Participants used their personal computers and
browsers to master the Transformer via blog (Group B) or the Trans-
forLearn (Group T and Group E) and subsequently provided feedback.
We mainly compare Group B and Group T, with Group E following
the same procedure as Group T. With informed consent, we captured
audio and screen recordings for later analysis.

The study consisted of three sessions, starting with a 5-minute in-
troduction wherein participants were acquainted with the fundamen-
tals of the Transformer. For Group T, we additionally provided a 5-
minute tutorial outlining the various views and workflow of Transfor-
Learn instead of giving participants time to explore. Subsequently,
all participants answered a series of objective questions upon conclud-
ing their exploration, encouraged to "think aloud" and ask questions.
To assess beginners’ learning efficiency, we unobtrusively timed their
responses, encouraging thoughtful problem-solving without creating
any time pressure. After the objective test, Group B finished their ses-
sion, while Group T further explored TransforLearn, answered an exit
questionnaire, and participated in a final interview for detailed feed-
back. The study duration was around 30 minutes for Group B and 50
minutes for Group T, with each participant receiving a $10 reward.

7.1.3 Test questions and measurement

During the evaluation process, users adopt TransforLearn to solve
the machine translation task. In addition to employing two question-
naires that utilized a five-point Likert scale—one at the study’s on-
set to profile users, and another at its conclusion to assess subjective
feelings—we also devised a series of objective questions varying in
difficulty from our design goals Tab. 21. Given the complexity and

1Please refer to Supplementary Materials for all subjective or objective ques-
tions, participants’ responses, and evaluation criteria for objective questions.



inherent probabilistic uncertainty of neural networks, it is challenging
to pose questions with unique, definitive answers akin to those used
in past algorithm visualization evaluations [19]. We gathered common
Transformer-related recruitment interview questions from technology
companies via the internet and selected eight questions of varying diffi-
culty levels, corresponding to G1-G3, to evaluate whether the predeter-
mined design goals of TransforLearn had been achieved. We assigned
scores of 1-5 based on the scoring system and documented the users’
answers. The scoring system follows the Structure of the Observed
Learning Outcome (SOLO) taxonomy [5], a model that describes the
increasing complexity of learners’ understanding. The scoring system
mainly adopts the first three levels in SOLO, namely pre-structural,
uni-structural and multi-structural, and maps them linearly to the Lik-
ert scale. The question sequence is designed to progressively increase
in difficulty, enabling users to enhance their familiarity with the sys-
tem as they proceed. Statistical results analysis by unpaired T-test was
performed to facilitate objective measurement. Furthermore, we con-
ducted a comprehensive analysis of the detailed answer texts to extract
additional information.

7.2 Results and Analysis

7.2.1 Objective experiment results

We performed unpaired t-tests to compare the significance of the dif-
ference in the accuracy and the completion time of objective questions
between the two groups. As Fig. 7A illustrated, TransforLearn im-
proves mean accuracy in most cases except for Q5 (3.750/3.250 for
Group B/T), with different significance levels (p < 0.005 for Q1-3 and
Q7-8, p < 0.05 for Q6). As for completion time (Fig. 7B), Group T
spent less time significantly in Q1/6/7/8 (p< 0.005) and Q2 (p< 0.01).
Additionally, we calculated the learning efficiency index [39] using

the following formula EGroupX ,i =
ScoreGroupX ,i

TimeGroupX ,i
∗ 100. Fig. 7C presents

EGroupX ,i of all participants, highlighting the superior performance of
Group T over Group B. Analyzing both the statistical results and the
process of finding answers between the two groups, we verify the ef-
fectiveness of TransforLearn and report here key findings.

TransforLearn generally improves users’ understanding of ar-
chitecture and tasks more than blogs. TransforLearn encompasses
the entire architecture from a breadth perspective, whereas blogs omit
feed-forward networks. Consequently, in Q1, Group T significantly
outperformed Group B (p = 2.24e−6). Participants T1, T3-4, and T6
accurately identified the feed-forward neural network composition as
"Linear + ReLU + Linear," with a data dimension of "512-2048-512."
Conversely, Group B provided vague responses such as "Input layer
+ Hidden layer + Output layer" and "dimension first increases, then
decreases." In terms of depth, the more challenging questions (Q7 and
Q8) yielded less clear answers. Group T managed to deduce the ques-
tion’s intent based on the system interface’s information changes and
attempted a response, whereas Group B was completely confused due
to the blog’s lack of explanation. Moreover, when confronted with Q2,
Group T observed attention matrices and pinpointed significant words
via heat-maps, highlighting our system’s ability to better correlate the
model with the task. Group B, however, almost failed due to the lim-
itation of presentation in blogs. From the results of Q1-2 and Q7-8,
we confirmed that TransforLearn meets the design goals and thus im-
proves user understanding.

TransforLearn brings more activity, autonomy, and divergent
thinking through an interactive interface. Group T, who engaged
with TransforLearn, thought aloud and actively posed questions while
problem-solving. In addressing Q7, T3, despite lacking a compre-
hensive mathematical understanding, remarked, "Although I’m un-
sure about the attention matrix’s need for

√
dk scaling, I observed

smaller attention values post-scaling. Given my basic understanding
of Softmax, it may prevent gradient disappearance." Although Group
B scored slightly higher on Q5, it doesn’t necessarily suggest blog su-
periority. Their success on Q5, where the blog gave a clear answer
about "meaning", stemmed from reliance on the blog content rather
than independent thought, limited by the blogger’s writing style. Con-
versely, Group T described the implementation based on their obser-

Fig. 7: Data insights of objective experiment results. The boxplots
depicted in green are for Group B and those in yellow represent Group
T’s results. The x-axis signifies the eight experiment questions. The
y-axis in (A) signifies the scores ranging from 1 to 5 (higher is better).
The y-axis in (B) signifies the answer time ranging from 100 to 500
(seconds). Mean, standard deviation, and T-test p-value (indicated by
*, **, *** for p < .05, .01, and .005, respectively) are also presented.
(C) compares the Learning Efficiency Index between two Groups.

vations, although their answers concerning "meaning" were skewed or
incomplete as they were solely based on personal understanding. This
is also the reason why Group T spent significantly more time on this
question than Group B (p = 0.022). Q5 and Q7 responses underscore
the advantages of an interactive interface in enhancing user activity.

A broader coverage and enhanced interaction support effi-
ciency in learning. The T-test results indicate that Group T surpasses
Group B not only in accuracy but also in time spent for Q1-2 and
Q7-8. Among them, Group B’s process of answering Q1 warrants
further discussion. The blog mentioned feed-forward networks but
lacked a detailed introduction, leading Group B to believe they had
learned the concept falsely. They spent considerable time rechecking
the blog, only to realize they had to guess the answer based on prior
knowledge. We suspect that the blog’s dense information hindered
users from identifying key points, which was not an issue with visual
and interactive TransforLearn. Additionally, a significant difference
in elapsed time emerged between the two groups for Q6 (p = 0.004),
despite no significant difference in accuracy. Follow-up interviews re-
vealed that Group B focused on the attention mechanism highlighted
in the blog but struggled to understand the model holistically. In con-
trast, Group T quickly answered Q6 after gaining a comprehensive un-
derstanding after architecture-driven exploration. Comparing the time
spent on Q1-2 and Q6-8 shows that TransforLearn doesn’t overwhelm
beginners with complex systems and extensive exploration. Instead,
the dual exploration modes help users gain knowledge more efficiently
and confidently.

7.2.2 Subjective experiment results

Based on the analysis of the exit questionnaire and the interviews, we
evaluated participants’ subjective feedback on TransforLearn and de-



Fig. 8: Results from the subjective questionnaires. The stack bars in-
dicate feedback scores and the rightmost column shows Mean±ST D.

rived valuable insights. Notably, two participants from Group T hold
the view that the interface provides substantial guidance, while the
flow chart and hierarchical structure are deemed clear and logical. For
details, please refer to Supplementary Materials.

Usability and effectiveness. As depicted in Fig. 8, TransforLearn
received high ratings in both usability and effectiveness. Participants
expressed willingness to continue exploring the Transformer with
TransforLearn and recommended it to other beginners. Half of the
participants noted that TransforLearn’s ability to provide operation de-
tails absent from blog posts was particularly beneficial. Furthermore,
E1 and T2-4 mentioned that the combination of architecture-driven
and task-driven exploration methods facilitated deeper understanding.

Validating the knowledge for experts. Group E, as expected,
performed exceptionally on objective questions, displaying enriched
thinking and knowledge verification. When E1 addressed Q2, he no-
ticed the relationship between multi-head and single-head attention in
dimensions. He entered the sentence "Why are you so happy?" and
questioned whether the "8" in the single-head attention dimension (8,
64) referred to sequence length or the number of heads. Through task-
driven exploration and translation iteration adjustments, E1 confirmed
it represented sequence length. He commented that "It used to be my
initial misconceptions when I started to learn Transformer. Transfor-
Learn’s rich interaction easily helps beginners verify that the single-
head space resembles a subspace learning process." When E2 tackled
Q8, she considered using TransforLearn to verify the embedding re-
sults of two identical words in a sentence to enhance the understand-
ing of positional encoding. E2 input "Why do you think you are right?"
and observed that the two instances of "you" initially shared the same
embeddings, which became distinct following positional encoding.

Different appropriate learning resources for different needs. Al-
though group T performed well in our learning tasks, TransforLearn
may not cater to all learning needs, as remarked by E2. 1) Casual
learners seeking a general overview of Transformer can utilize Trans-
forLearn, but may quickly browse blogs and videos for convenience.
2) Those aiming for detailed knowledge and application of Transform-
ers will find our tool aligned with their needs, as outlined in Fig. 2B.
3) For advanced learners desiring a deep theoretical understanding or
further interpretation, TransforLearn aids visual validation, but deeper
study will require academic papers or specific XAI tools.

Need for more instructions, animations, and comparisons. The
majority of the suggestions received emphasized the desire for more
diverse and comprehensive visualizations. T3, who correctly guessed
the answer to Q7, suggested that "If it provides a visualization of the
follow-up results without scaling the attention and compares it with
results with scaling, I would have been more confident in my guess."
Moving forward, we will consider implementing more comparative
visualizations of crucial mechanisms, such as comparisons between
attention heads, layers, and pre- and post-finetuning, to facilitate rapid
knowledge testing and verification for users.

8 DISCUSSION

Alleviating visual interference from color mapping. To minimize
color fluctuations resulting from information overload in pixel bar

charts, it’s crucial to select an appropriate color palette. The cho-
sen color scheme should span various domains to effectively highlight
data features. Additionally, alternatives like using shapes or textures
can enhance the visualization of underlying patterns in the data [61].
The pixel bar chart employs straightforward color usage to maintain a
low cognitive load. Moreover, interactive elements are integrated, en-
abling users to customize the visualization as needed. In forthcoming
research, our focus is on investigating visualization techniques that not
only present actual data with minimal cognitive load but also reduce
visual distractions.

Trade-off between the presentation of operation details and se-
mantic understanding of decision processes. TransforLearn has lim-
ited capabilities in connecting model parameters with textual informa-
tion and semantically understanding model decisions process, influ-
enced by target audience and task objectives, as well as model archi-
tecture and data types. Visual analytics systems targeting deep learn-
ing experts typically do not display detailed architectures, operations,
and parameters. Instead, they focus on enhancing information den-
sity by transforming parameters like embeddings and attentions into
semantically understandable data, such as word importance and se-
mantic score [54, 55, 60]. Moreover, due to the high perceptibility of
images and relatively simple model architecture, works such as CNN
Explainer [52] effectively demonstrate model details while conveying
the semantic process of handling images by presenting an activation
map. To help non-experts comprehend Transformers, we inevitably
sacrifice some ability to tightly integrate input text with model deci-
sions, for instance, by displaying raw embeddings rather than summa-
rizing and connecting them to words via interpretability methods. We
plan to explore richer visualization forms to address this issue.

Generalizing to other Transformer variants, tasks, and modal-
ities. TransforLearn has proven effective in the learning process.
We can easily expand the Architecture Overview to include differ-
ent architecture-level variants, such as Encoder-only models (e.g.,
BERT) and Decoder-only models (e.g., GPT). Similarly, we can mod-
ify the Module Detailed View to accommodate other module-level vari-
ants [26], such as changes to attention mechanisms, multi-head mech-
anisms, and positional encoding, among others. This generalization
process also supports various tasks within the NLP domain. For Trans-
former variants employed in other modalities, supplementary compo-
nents may be necessary depending on the input data type, including
the addition of visualizations for images, speech, and audio.

In-depth and longitudinal evaluation of benefits. Our user study,
which combines qualitative and quantitative analysis, serves as an ini-
tial step in showcasing the educational benefits of TransforLearn. To
further assess its usability and implement subsequent improvements,
we need to broaden the evaluation’s scope and duration, encompassing
a wider array of users. Drawing from Gan Lab’s valuable experience in
long-term evaluation [21, 22], we plan to deploy TransforLearn on the
web shortly and gather interaction logs from various user types [24]
This will enable us to conduct a more in-depth analysis of their under-
standing and engagement levels.

9 CONCLUSION

In conclusion, we present TransforLearn, an innovative interactive vi-
sual tutorial tool for deep learning beginners and non-experts to un-
derstand the complex structure and abstract data representation of the
Transformer model. TransforLearn adopts two exploration modes to
provide multi-level structure displays and help users understand the
working process of the downstream task. Our expert panel and metic-
ulously devised controlled user study ascertain that TransforLearn is
conducive to effective, immersive, and self-guided learning.
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A SUPPLEMENTAL MATERIALS

We provide the following supplementary materials:

• Supplementary Material for TransforLearn Evaluation. In
this material, we submit 3 specific supporting documents: Pre-
liminary Study for Requirement Analysis, Evaluation Supple-
mentary Material for TransforLearn, and Usage Scenario Sup-
plementary Material for TransforLearn. Among them, Prelim-
inary Study for Requirement Analysis describes the process of
learning challenge and needs analysis, mainly recording the con-
tent and results of the questionnaire. Evaluation Supplementary
Material for TransforLearn provides a detailed description of the
evaluation process and the questions we set. Additionally, we
have included the results of our user research to facilitate read-
ers’ understanding. In Usage Scenario Supplementary Material
for TransforLearn, we record interviews with teachers and sup-
plement hypothetical classes as teaching aids.

• Video Material for TransforLearn. We provide a video intro-
duction to our work on TransforLearn. In the video, readers can
gain a better understanding of TransforLearn and our efforts.
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