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• We introduce a direct neighbor search for curve-based vector field processing and propose a method to achieve it. 

• We applied our new search strategy to support two tasks on a few 3D curve-based datasets to demonstrate its effectiveness.

• We address the non-uniform spatial coverage problem often seen in the existing neighbor search approaches (e.g., KNN) by proposing a direct neighbor search for curve-based 

representation that focuses on uniform spatial distribution of neighboring segments. We demonstrate their effectiveness through the visualization of the saliency metric and vector field 

reconstruction.

• However, our definition of direct neighbors is rather heuristic and not precise. In addition, our search region construction may not handle some extreme configurations (e.g., two nearby 

streamlines that are orthogonal to each other while one has sharp changes at places where they are the closest to each other). We plan to address these limitations and extend the direct 

neighbor search for pathlines.

Figure 3: Feature emphasis based on the saliency of the individual segments for the Solar Plume dataset (left) and crayfish(right). For KNN, 

K = 10; for RNN,r = 1.5%; for our CSN, r = 1.5%, m = 12, and K = 1. Our CSN (middle) better highlights places with vortical behaviors.

Table1: The absolute MAE error values of the reconstructed 

vector fields using RNN, KNN, and PSN, respectively. 

Figure 4: Comparison of reconstructed errors with RNN, KNN, and our PSN 

on the four datasets. To facilitate comparison, we normalize the errors

Figure 2: Illustration of PSN (a-c) and CSN (d-e) construction.

• Vector fields and their analysis are crucial for many applications involving various dynamical 

systems. To reduce the storage cost of large-scale simulated vector field data, curve-based 

representation can be needed.

• However, curve-based representation poses challenges to the subsequent analysis tasks, because 

(1) they do not cover the entire domain and (2) they have varying densities in space. This uneven 

distribution of integral curves may affect tasks that prefer a near-uniform spatial distribution of 

neighboring curve segments. Figure 1 shows the impact of the uneven distribution of neighbors to a 

vector field reconstruction task, indicating the need of evenly distributed neighbors.

• In addition, some tasks may require direct neighbors (there should be no other neighbors between 

a selected neighbor and the query point).

• Existing neighbor search strategies, e.g., KNN and RNN, cannot satisfy the above requirements.

Figure 1: Illustration of a scenario 

of neighbors (green dots) around 

a query point (red dot) that have 

a relatively uniform spatial 

distribution (left) and a scenario 

whose neighbors do not (right). 

We use these neighbors to 

reconstruct the vector value at 

the query point. The difference 

(or error) between  the 

reconstructed vector to the 

original vector is 15.79 for the left 

and 21.05 for the right.

We partition a curve (e.g., a streamline) into a set of segments based on the individual integration points. By default, two consecutive points form a segment. After this decomposition, we 

consider two different scenarios of neighbor search below.

• Point-Center Direct Neighbor Search(PCN)
We search the neighboring segments of a given query point p. To identify uniformly distributed neighbors, we construct a 

sphere, Sp centered at the query point p with a radius r. Each point on Sp can be expressed as (𝑥, 𝑦, 𝑧) =
(𝑟 cos θ sinϕ, 𝑟 sin θ sinϕ, 𝑟 cosϕ) (θ ∈ [0, 2π),  ϕ ∈ [0, π]) (Figure 2a). We then partition θ and φ into h and v sub-ranges 

uniformly, creating h*v sub-volumes within Sp. These sub-volumes, also referred to as search sections, form the Point-center 

Segment Neighborhood (PSN) (Figure 2b). The curve segments falling within Sp (referred to as the candidate segments) will 

intersect with one or more of these search sections. Each candidate segment is assigned to a search section Si,j 𝑖 ∈
{1, . . , ℎ}, 𝑗 ∈ {1,… , 𝑣} if it has at least one point falling in Si,j. Within each Si,j, we identify the segment that is the closest to p

based on their Euclidean distance as a direct neighbor. To counter the same segment crossing multiple search sections and 

the multiple candidates within a search section having a similar distance to p, we allow up to K nearest neighbors in each 

section. By default, K=1 (Figure 2c).

• Curve-Center Direct Neighbor Search(CCN)
We search the neighboring segments of a given segment c. To achieve that, we construct a 3D domain, Sc  that consists of a 

cylinder T with c as its axis and with radius r and two hemispheres Hb and Ht with radius r attaching the two base faces of T

(Figure 2d). We refer to this region as a Curve-center segment neighborhood (CSN). Sc  encloses completely or partially a 

few (candidate) curve segments, from which the direct neighbors to c will be identified. To account for the uneven distribution of 

the segments surrounding c, we partition the cylinder T into 2m search sections uniformly using m cut planes across the 

cylinder axis. Two adjacent cut planes form a search section. These search sections are illustrated in Figure 2e, which shows

their configuration in the x'y' plane of the cylinder T. From this, the direct neighbor of each search section is identified as the 

segment with the smallest distance to c. For the two hemispheres of Sc , we simply identify up to K nearest segments to c.

• Saliency Measurement

To aid the exploration of the curve-based data, we adapt 

the saliency metric for a point [1] to a curve segment c as 

below

where n is the number of neighboring segments around c

and dsim(c, gi) measures the orientation difference 

between c and one of its neighbors gi.
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If all neighbors have a similar orientation to c, 𝑠𝐜 is close to 

0; otherwise, 𝑠𝐜 will be large. In other words, 𝑠𝐜 puts 

emphasis to segments whose neighbors behave differently 

from them, which is usually seen in features such as vortex 

cores and flow separation. Figure 3 compares the 

visualization of the obtained 𝑠𝐜 using neighbors identified 

by KNN, RNN and our CSN. We see that 𝑠𝐜 computed with 

the neighbors of our CSN correctly highlights places with 

vortical behavior, while the others either miss important 

features or occlude important structure.

• Vector Field Reconstruction

We apply KNN, RNN, and our PSN, to identify neighboring segments 

of each grid point to reconstruct vector fields from four streamline 

datasets [2], respectively. We use 𝑒 = 𝑀𝐴𝐸𝑣𝑥
2 +𝑀𝐴𝐸𝑣𝑦

2 +𝑀𝐴𝐸𝑣𝑧
2

that combines the mean average errors (MAE) of the x, y, and z 

components of the reconstructed velocity vectors at the individual grid 

points to quantify the reconstruction errors. From this comparison, we 

see that our PSN outperforms the KNN and RNN in terms of the 

reconstruction error. KNN is the fastest approach, while our method 

has comparable computation time to KNN in some cases. Both our 

method and KNN are faster than RNN. This is because both KNN and 

PSN usually find a much smaller number of neighboring segments for 

each grid point than RNN. PSN is slower than KNN due to the search 

region construction and distance calculation.
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