Direct Neighbor Search for Curve-based Vector Field Processing

Nguyen K Phan*
University of Houston

ABSTRACT

We introduce a direct neighbor search for curve-based vector field
processing and propose a method to achieve it. We applied our
new search strategy to support two tasks on a few 3D curve-based
datasets to demonstrate its effectiveness.

Keywords: curve-based vector field, neighbor search

1 INTRODUCTION AND BACKGROUND

Vector fields and their analysis are crucial for many applications
involving various dynamical systems. To reduce the storage cost of
large-scale simulated vector field data, intermediate representations
are usually needed. As the foundation for many other representations,
the curve-based representation via sets of integral curves is usually
adopted. However, curve-based representation poses challenges to
the subsequent analysis tasks. This is because the integral curves
do not cover the entire domain and may have varying densities
due to the non-homogeneous characteristics of general flows. This
uneven distribution of integral curves may affect tasks (e.g., vector
field reconstruction and the definition of a differential operator for
curve segments) that prefer a near-uniform spatial distribution of
neighboring curve segments.

In the example shown in Fig. 1, two sets of neighbor segments
(represented by their respective middle points) are selected from a
candidate set of neighbors found within a sphere centered at a query
point (red dot) from a streamline data set. The selected neighbors
are colored in green, while the excluded ones are in gray. We see
that the selected neighbors in the left case have a more uniform
spatial distribution than those in the right (which are clustered in
the upper right region). With these two sets of neighbors, we use a
simple inverse distance-based interpolation strategy to reconstruct
the velocity vector at the query point, respectively. Our results show
that the error for the left case when compared with the ground truth
vector at the query point, is 15.79, while for the right one it is 21.05.
This indicates the need for a neighbor search strategy that can return
neighboring segments around a query point (or a query curve) that
have an as-uniform-as-possible distribution.

In addition to spatial uniformity, the selected neighbors should be
direct, that is, there should be no other neighbors between a selected
neighbor and the query point, as the non-direct neighbors represent
redundant information given the spatial coherency of vector fields.
Unfortunately, current standard neighbor search strategies, including
k-nearest neighbors (KNN) and the radius-based nearest-neighbors
(RNN) [1], do not take into account the uneven spatial distribution
of the input curves, nor do they return neighbors directly adjacent to
the query point (or curve).

To address this challenge, we introduce a direct neighbor search
framework for the individual curve segments. Our framework makes
use of some spatial partitioning strategies to select an optimal set of
direct neighbor segments for a given curve segment or a query point
that also maintains uniform spatial coverage. We apply our frame-
work to support two tasks on a number of integral curve datasets [2]
to demonstrate its effectiveness.

*e-mail: nguyenpkk95 @ gmail.com
Te-mail: gchen22@central.uh.edu

Guoning Chen’
University of Houston

®
e w ¢ ° e % °
) ®
$® e N LI
e © e ©
° o
Ue ®e
°® ®
o LY - °o¢
z o Z ®
] v
L VQ o< ~~

© Query point
Figure 1: Illustration of a scenario of neighbors (green dots) around
a query point (red dot) that have a relatively uniform spatial distribu-
tion (left) and a scenario whose neighbors do not (right).

© Selected neighbors & Excluded neighbors

2 METHOD

3D Curve Decomposition: We first partition each 3D curve (e.g.,
a streamline) into a set of curve segments. Given a 3D curve with
N line segments, we consider every L line segment forming a curve
segment. By default, L = 1. With this decomposition, we next
describe the direct neighbor search for two situations (1) search
neighbor segments around a point and (2) search neighbors around
a curve segment.

@ Query point
© Candidate
neighbors
O Selected
neighbors
) ste section i+2
RN section i+1
\\\ Hit \
aepee 7' 1
/ & project to y section i
/ z p2

X'

Center segment

— GlobalXYZ ® Projected center segment

- X’y’Z’ coordinates
defined by the
center segment

Projected candidate

— Cut planes

e)

Search sections

Figure 2: Illustration of PSN (a-c) and CSN (d-e) construction.

Point-Center Direct Neighbor Search: There are curve-based
data processing and exploration tasks that require to find the neigh-
boring segments of a (query) point, such as the structure-aware
line selection and opacity specification [1]. To search for direct
neighboring segments with a more uniform spatial distribution,
we construct a sphere Sp centered at the query point p with a ra-
dius r. Each point on the boundary of Sp can be expressed as
(x,,7) = (rcos @sing,rsin@sing,rcosd) (0 € [0,27), ¢ € [0, 7))
(Fig. 2a). We then partition 6 and ¢ into & and v sub-ranges uni-
formly, creating & * v sub-volumes within S,. These sub-volumes,
also referred to as search sections, form the Point-center Segment
Neighborhood (PSN) (Figure 2b). The curve segments falling within
Sp (referred to as the candidate segments) will intersect with one or
more of these search sections. Each candidate segment is assigned
to a search section S; ; (i € {1,..,h}, j € {1,...,v}) if it has at least

— 000400

Figure 3: Feature emphasis based on the saliency of the individual
segments for the Solar Plume dataset.For KNN, K = 10; for RNN,
r = 1.5%; for our CSN, r = 1.5%, m = 12, and K = 1. Our CSN
(middle) better highlights places with vortical behaviors.

one point falling in §; ;. Within each S; ;, we identify the segment
that is the closest to p based on their Euclidean distance as a direct
neighbor. To counter the same segment crossing multiple search
sections and the multiple candidates within a search section having
a similar distance to p, we allow up to K nearest neighbors in each
section. By default, K = 1.

Curve-Center Direct Neighbor Search: For tasks that need to
compute the dissimilarity of neighbor curves, identifying the neigh-
boring segments of a given center segment c is required. To locate
direct neighbors around ¢ with near-uniform spatial coverage, we
construct a 3D domain S, that consists of a cylinder 7 with ¢ as
its axis and with radius r and two hemispheres (or caps) H and H;
with radius r attaching the two base faces of the cylinder (Fig. 2d).
We refer to this region as a Curve-center segment neighborhood
(CSN). S¢ encloses completely or partially a few (candidate) curve
segments, from which the direct neighbors to ¢ will be identified. To
account for the uneven distribution of the segments surrounding c,
we partition the cylinder 7' into 2m search sections uniformly using
m cut planes across the cylinder axis. Two adjacent cut planes form
a search section. These search sections are illustrated in Fig. 2e,
which shows their configuration in the X'y’ plane of the cylinder 7'.
From this, the direct neighbor of each search section is identified as
the segment with the smallest distance to ¢. For the two hemispheres
of S¢, we simply identify up to K nearest segments to c.

3 RESULTS AND DISCUSSION

We apply our direct neighbor search strategy to two tasks to assess
its effectiveness.

Saliency measurement: To aid the exploration of the curve-based
data, we adapt the saliency metric for a point from [1] to a curve
segment ¢, which we define below

1
se=1 —exp <_nzdsim(c’gi)> (1)

where n is the number of neighboring segments around ¢ and
dyim(c, g;) measures the orientation difference between ¢ and one of
its neighbors g;. For simplicity, dgin (¢, g;) = ﬁ . %;H'

With this saliency measure, if all neighbors have a similar orienta-
tion to ¢, s¢ is close to 0; otherwise, s, will be large. In other words,
s¢ puts emphasis to segments whose neighbors behave differently
from them, which is usually seen in features such as vortex cores
and flow separation. Note that s, is not to be used for the automatic
detection of these features; we are utilizing s¢ to visually reveal
potential areas in the vector field that may contain these features.

Figure 3 shows that the streamlines that have high saliency values
(in the circle) based on both KNN and RNN are less interesting.
These streamlines also occlude important inner features (see the
RNN result). This is because RNN considers the more neighbors for
each segment than needed, which leads to the highest concentration
of saliency color value and emphasizes the largest portions of the
vector field (highlighting more than necessary). The result with
KNN in general put less emphasis on the locations with features
than the results of RNN and CSN. KNN also misses two vortices
(pointed out by arrows). In contrast, the saliency computed using
our CSN properly highlights places with strong rotational behavior,
while de-emphasizing other places with little interesting behavior.

Vector field reconstruction: We apply KNN, RNN, and our PSN,
to identify neighboring segments of each grid point to reconstruct
vector fields from four streamline datasets [2] computed from (1)
the simulation of flow behind a cuboid cylinder, (2) Bernard, (3)
Solar Plume, and (4) Crayfish, respectively. We performed pa-
rameter optimization and selected the respective parameters that
minimize the error for each neighbor search strategy. To compare
the performance of the three neighbor search strategies, we use

e= \/ MAE?, +MAE?Z, + MAEZ that combines the mean average

vz
errors (MAE) of the x, y, and z components of the reconstructed
velocity vectors at the individual grid points to quantify the recon-
struction errors.
Table 1: The absolute MAE error values of the reconstructed vector
fields using RNN, KNN, and PSN, respectively.

Dataset RNN KNN PSN

Cylinder 0.101483 26s 0.101036 11s 0.092892 12s
Bernard 0.420877 2s 0417736 | 4s 0.417552 | 2s
Crayfish 0.039921 88s 0.039363 16s 0.038615 | 51s
Plume 0.410805 109s 0.410167 | 20s 0.40148 33s

Table 1 provides some statistics of the vector field reconstruction
results with the three neighbor search strategies. From this compari-
son, we see that our PSN outperforms the KNN and RNN in terms
of the reconstruction error. KNN is the fastest approach, while our
method has comparable computation time to KNN in some cases.
Both our method and KNN are faster than RNN. This is because both
KNN and PSN usually find a much smaller number of neighboring
segments for each grid point than RNN. PSN is slower than KNN
due to the search region construction and distance calculation.

4 CONCLUSION AND FUTURE WORK

We address the non-uniform spatial coverage problem often seen in
the existing neighbor search approaches (e.g., KNN) by proposing a
direct neighbor search for curve-based representation that focuses
on uniform spatial distribution of neighboring segments. We demon-
strate their effectiveness through the visualization of the saliency
metric and vector field reconstruction.

However, our definition of direct neighbors is rather heuristic and
not precise. In addition, our search region construction may not
handle some extreme configurations (e.g., two nearby streamlines
that are orthogonal to each other while one has sharp changes at
places where they are the closest to each other). We plan to address
these limitations and extend the direct neighbor search for pathlines.

ACKNOWLEDGMENTS
This research was partially supported by NSF IIS 1553329 and OAC
2102761.

REFERENCES

[1] Y. Lu, L. Cheng, T. Isenberg, C.-W. Fu, G. Chen, H. Liu, O. Deussen,
and Y. Wang. Curve complexity heuristic kd-trees for neighborhood-
based exploration of 3d curves. In Computer Graphics Forum, vol. 40,
pp. 461-474. Wiley Online Library, 2021.

[2] L.Shi, R. Laramee, and G. Chen. Integral curve clustering and simplifica-
tion for flow visualization: A comparative evaluation. /EEE transactions
on visualization and computer graphics, 27(3):1967 — 1985, 2021.

	Introduction and Background
	Method
	Results and Discussion
	Conclusion and Future Work

