Reordering for Matrix Visualization with Reorder.js

Nathan van Beusekom*
TU Eindhoven, The Netherlands

Jean-Daniel Fekete'
Université Paris-Saclay & Inria, France

Figure 1: Several matrix visualizations of the Les Misérables co-occurrence dataset with different vertex orderings. From left to right:
ordered alphabetically, ordered with Leaf Order using Euclidean distance, ordered with Leaf Order using a Moran’s I-based distance.

ABSTRACT

Effective matrix visualizations rely heavily on the order of the ver-
tices. The patterns that appear thanks to such an ordering provide
information about the structure of the graph. However, implement-
ing reordering algorithms is not trivial. Reorder. js is a JavaScript
library that provides several algorithms for matrix reordering. This
library has now been updated with the state-of-the-art measure
Moran’s I, algorithms based on Moran’s I, and simultaneous re-
ordering for multiple matrices. The poster shows the results of the
new algorithms applied to several visualizations. Finally, our exam-
ples aim to remind practitioners of the importance of reordering in
visualization, e.g., for Parallel Coordinate Plots and tables.

Index Terms: Matrix Reordering—Simultaneous Orderings—
Open Source Library—keyword

1 INTRODUCTION

Graphs are commonly used to represent network-like data, such as
social networks, transportation networks, and brain connections. In
order to explore this data and interact with it, the graphs must be
visualized. There are two common ways to visualize a graph: node-
link diagrams, where vertices (or entities) in the graph are drawn
as nodes and the edges (or relations) between them are drawn as
links between nodes, and matrix visualizations, where the adjacency
matrix of the graph is visualized as a table, such that each row and
column represents a vertex and a cell is filled if there exists an
edge between the vertices in the respective row and column (see
Fig. 1). For matrix visualizations, the order in which the vertices
appear as rows and columns in the table is crucial. A good ordering
of the vertices makes patterns appear in the visualization, which
reveals information about the structure of the graph. Behrish et
al. [4] identified patterns that correspond to different types of graph
structures, and anti-patterns that reveal no information about the
graph.

*e-mail: n.a.c.v.beusekom@tue.nl
fe-mail: Jean-Daniel Fekete @inria.fr

In order to facilitate matrix reordering for users, the JavaScript
library Reorder. js was released, which includes several reorder-
ing algorithms [6]. However, it only facilitated reordering methods
for a single matrix. When multiple matrices are visualized, it is
important to use the same ordering for all matrices, so that they can
be compared to each other. For reordering multiple matrices, Bach
et al. [2] compute the union of the matrices, then apply conventional
reordering methods. However, this has the limitation that infor-
mation about individual matrices is lost. Van Beusekom et al. [9]
addressed this by doing the aggregation later on in the methods,
retaining some information about individual matrices. Now, both
methods have been implemented in Reorder. js, such that multiple
matrices can be reordered to have the same, effective ordering. This
implementation can directly be used by visualizations of multiple
matrices such as [2] or methods that compare matrices, such as [1].
In the poster, we present examples of how to use the methods, and
when to use matrix reordering in general.

2 QUALITY MEASURES AND MEASURE-DRIVEN REORDER-
ING

Accurately measuring the quality of a matrix visualization is es-
sential, as a well-reordered matrix is more effective in showing the
structure of the graph. The presence of patterns and the absence of
anti-patterns are indicative of a matrix visualization of good quality.
However, the presence of patterns is not a straightforward qualitative
measure. One way to measure the quality of a matrix visualization
is to measure whether vertices which are connected in the graph are
also close to each other in the ordering. In the matrix visualization,
this means that filled cells that are close to the diagonal are preferred
over filled cells far from the diagonal. Such measures include Band-
width, Profile, and Linear Arrangement. However, these measures
do not reflect all the useful patterns. For example, an off-diagonal
block pattern is sometimes desirable, but it has filled cells far from
the diagonal. Instead, regarding more general desirable patterns,
filled cells should be placed adjacent to each other and empty cells
adjacent to each other: having filled cells together and empty cells
together is desirable for matrix visualizations to visualize meaning-
ful structures in the graph. This goal is similar to that of spatial
autocorrelation. Spatial autocorrelation is a measure of similarity (or
correlation) between nearby elements. In matrix visualizations we
want cells near each other to have the same values. An established

spatial auto-correlation measure is Moran’s / [8]. This measure can
also be applied to matrix visualizations, to measure their quality [9]
(see Fig. 2). A high Moran’s I indicates that cells of similar values
are grouped together. This implies that patterns are being formed
and that structure in the graph is being visualized. A low Moran’s /
means that cells of similar values are not grouped. This corresponds
with the noise and anti-bandwidth anti-pattern. The library has been
extended to include Moran’s / measure.

Furthermore, it is possible to define a distance measure between
vertices based on Moran’s /. This distance measure compares the
two rows of the vertices and sees how many similarities there are
between the cells in the same position, using the same weight val-
ues as the Moran’s / measure. Minimizing such a distance would
maximize Moran’s /. This distance can be used by several exist-
ing algorithms, similarly to Euclidean distance, and has also been
added to Reorder. js. One example is shown in Fig. 1, where this
distance function has been used in the Optimal Leaf Order algo-
rithm [3]. This idea of basing a distance function on a measure is
very effective for maximizing said measure.

Since we have distances between the vertices and we want to
minimize the distances between subsequent vertices in an ordering,
the matrix reordering problem can be considered as a “Traveling
Salesman” (TSP) algorithm: we want to find an ordering of the
vertices, such that traversing the vertices in that order minimizes
the overall distances. Hence, we can apply commonly used TSP
heuristics to matrix reordering, such as NN-20PT [5], as already
indicated in the appendix of [9]. This algorithm has also been added
to Reorder. js.

3 SIMULTANEOUS MATRIX REORDERING

As stated in the introduction, it is important to use the same ordering
when comparing several matrices sharing the same vertices, so that
they can be compared to each other. Again, we want to reorder the
matrices to reveal information about the structures of the graphs, yet
now we want to find an ordering which reveals structure in all the
matrices simultaneously.

There are generally two methods for computing such an ordering
(see Fig. 3). One is computing the union of the matrices and applying
state-of-the-art reordering methods to the union, this was done by
Bach et al. [2]. Reorder.js has been extended with a simple
method for computing the union of matrices, which can then be used
as an input for one of the existing algorithms. A more sophisticated
method is to modify a state-of-the-art reordering algorithm to use
information from all individual matrices. Van Beusekom et al. [9]
modified the Optimal Leaf Order method [3] and the Barycenter
method [7]. These modified (collection-aware) methods have been
implemented in Reorder. js. For the Collection-aware Optimal
Leaf Order method, only the way the distance matrix is computed
has been changed. Hence, this simultaneous reordering idea can
be applied to any reordering method that uses as input a distance
matrix. For example, one could use the newly implemented NN-
20PT algorithm in a collection-aware manner, by simply providing
it with the collection-aware distance matrix.

4 ON THE IMPORTANCE OF MATRIX REORDERING

Often, the data that is being visualized comes with an inherent
ordering. This could be the order of entry or the alphabetical order.
It is easy to simply use this order for the matrix visualization, even
though this might not clearly visualize the graph structure. For
many visual practitioners, matrix reordering does not come to mind
when using visualizations that could benefit from it. This often
reduces the appeal of matrix visualizations, as they might come
cluttered and hard to interpret. However, matrices and tables have
the potential to show the data concisely, when reordered properly.
In the poster, we aim to show examples where reordering improves

Figure 2: Figure from [9] to explain Moran’s I on matrices: the yellow
and blue adjacencies add to the Moran’s I value, while the grey
adjacencies lower the Moran’s 1.

Ordering ¢
% -

Collection-aware Aopl
ordering PPl

cdabefhg cdabefhg gcdaefhb gcdaefhb

Figure 3: Figure from [9] to explain the benefit of collection-aware
ordering. The information lost in the union produces a worse order for
the matrices.

the interpretability of the visualization, such that practitioners will
more easily recognize when matrix reordering is beneficial.

Reordering can be applied to optimize Parallel Coordinate Plots,
tables, and a large number of other visualizations where consistency
across rows or columns highlights structures.

REFERENCES

[1] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J.-D. Fekete.

Weighted graph comparison techniques for brain connectivity analy-

sis. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI *13, p. 483-492. Association for Computing

Machinery, New York, NY, USA, 2013. doi: 10.1145/2470654.2470724

B. Bach, N. Henry-Riche, T. Dwyer, T. Madhayastha, J.-D. Fekete,

and T. Grabowski. Small MultiPiles: Piling Time to Explore Temporal

Patterns in Dynamic Networks. Computer Graphics Forum, 34(3):31-40,

2015. doi: 10.1111/cgf. 12615

Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf

ordering for hierarchical clustering. Bioinformatics, 17(suppl 1):S22—

$29, 2001.

[4] M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete.
Matrix Reordering Methods for Table and Network Visualization. Com-
puter Graphics Forum, 35(3):693-716, 2016. doi: 10.1111/cgf.12935

[5] G. A. Croes. A method for solving traveling-salesman problems. Oper-
ations Research, 6(6):791-812, 1958.

[6] J.-D. Fekete. Reorder.js: A JavaScript Library to Reorder Tables and
Networks. In Abstr. 2015 IEEE VIS posters, 2015. Available at https:
//hal.inria.fr/hal-01214274/file/reorder.pdf.

[7]1 E.Maikinen and H. Siirtola. The barycenter heuristic and the reorderable
matrix. Informatica (Slovenia), 29(3):357-364, 2005.

[8] P. A.P. Moran. Notes on continuous stochastic phenomena. Biometrika,
37(1/2):17-23, 1950.

[9] N. van Beusekom, W. Meulemans, and B. Speckmann. Simultaneous
matrix orderings for graph collections. IEEE Transactions on Visualiza-
tion and Computer Graphics, 28(1):1-10, 2022. doi: 10.1109/TVCG.
2021.3114773

[2

—

3

—

https://hal.inria.fr/hal-01214274/file/reorder.pdf
https://hal.inria.fr/hal-01214274/file/reorder.pdf

	Introduction
	Quality Measures and Measure-Driven Reordering
	Simultaneous Matrix Reordering
	On the importance of Matrix Reordering

