
Olli: An Extensible Visualization Library for Screen Reader Accessibility
Matthew Blanco*

Northeastern University
Jonathan Zong†

Massachusetts Institute of Technology
Arvind Satyanarayan‡

Massachusetts Institute of Technology

Figure 1: A) An example visualization. B) Example Olli code using a Vega-Lite adapter. C) An accessible tree view rendered by Olli.

ABSTRACT

Though recent research has explored the design of rich screen reader
visualization experiences, accessible visualizations for blind and
low vision users remain rare on the web. While some visualization
toolkits offer accessible solutions, toolkit-specific implementations
can present idiosyncratic user experiences that limit learnability. We
present Olli, an open source library that converts visualizations into
a keyboard-navigable structure accessible to screen readers. Using
an extensible adapter design pattern, Olli is agnostic to the specific
toolkit used to author the visualization. Olli renders a chart as an
accessible tree view following the HTML Accessible Rich Internet
Applications (ARIA) standard. Olli helps visualization developers
easily create accessible visualizations across visualization toolkits.

Index Terms: Human-centered computing—Visualization—
Accessibility systems and tools; Human-centered computing—Visu-
alization—Visualization

1 INTRODUCTION

Most visualizations on the web are not accessible to blind and low
vision screen reader users. A screen reader is assistive software
that reads text and image content as speech. Lack of accessible,
usable visualization experiences excludes screen reader users from
accessing information and participating in conversations about data.
Blind and low vision users have the same information seeking goals
as sighted users when reading visualizations, seeking high level
overviews followed by detailed descriptions [3]. However, these
goals are not fulfilled by current best practices for accessibility, such
as providing alt text or data tables [7].

While some visualization toolkits offer custom screen reader
interactions for accessible reading experiences, these implementa-
tions have limited reusability across toolkits and lack shared user
experience conventions. For instance, Highcharts [2] offers cus-
tom keyboard navigation within a visualization, but only for charts

*e-mail: blanco.m@northeastern.edu
†e-mail: jzong@mit.edu
‡e-mail: arvindsatya@mit.edu

created with Highcharts. VoxLens [4] supports adding accessible in-
teractions to a pre-defined set of three visualization toolkits, but can
potentially conflict with other plug-ins’ key bindings and ARIA at-
tributes. As a result, it is currently difficult for visualization develop-
ers to ensure the reusability of solutions across visualizations made
with different toolkits, and encourage standardization of screen
reader user experiences.

We created Olli, an open-source JavaScript library that con-
verts existing visualizations from multiple libraries into a keyboard-
navigable structure with text descriptions at varying levels of detail.
Olli’s user experience is informed by prior work identifying design
dimensions for richer screen reader experiences of visualizations for
blind and low vision users [7]. Using an adapter design pattern [1],
Olli can be extended to support any JavaScript visualization library
by implementing a function that adapts existing chart instances into a
standard OlliVisSpec interface. This interface details its structural,
hierarchical, and visual components, that are then rendered as a tree
view in HTML compatible with the Accessible Rich Internet Appli-
cations (ARIA) standard. A user can use the arrow keys to navigate
the tree view, which follows existing ARIA standards. The adapter
pattern allows developers to extend Olli to support new visualization
toolkits, and provides a standard rendering format compatible with
existing screen reader standards and conventions.

Olli makes screen reader accessibility easier for developers to
incorporate into existing visualizations. With Olli’s initial release,
we include adapter implementations for Vega, Vega-Lite, and Ob-
servable Plot. Following the adapter pattern, other developers can
contribute additional adapters for other commonly used visualization
libraries. Because Olli offers a standard set of user experiences that
can be repeated across a variety of charts, users can learn one set of
interactions that they can take with them across different visualiza-
tions. Screen reader users benefit from Olli’s interactions that offer
access to data at varying levels of information granularity—from
high level summaries to individual data points. Olli is available as
open-source software at: https://github.com/mitvis/olli.

2 OLLI’S SYSTEM DESIGN

There are three main parts that make up Olli: the adapter interface
for supporting external visualization toolkits, the abstract model
for accessible visualization structures, and the renderer that outputs
abstracted visualization structures as ARIA-tagged HTML.



2.1 Adapters
Because visualization toolkits are designed with different trade-offs
in mind, their APIs can vary widely [6]. In order to support adding
accessibility to the widest possible range of visualizations, Olli
uses an adapter design pattern to convert visualization specifica-
tions from various toolkits into a common interface that can then
be rendered as accessible HTML. Olli accomplishes this by wrap-
ping an instance of another visualization toolkit within an adapter
function, which returns an OlliVisSpec object that corresponds to
the visualization. Olli then constructs a hierarchical data structure
containing descriptions for elements of the visualization, which is
then rendered as an accessible tree view. Because the accessible
structure is constructed from the standard OlliVisSpec interface,
this process is agnostic to the details of the toolkit with which the
original visualization was implemented.

To extend Olli’s coverage to support adding screen reader accessi-
bility to a new toolkit, developers can simply implement an adapter
function for that toolkit, without needing to re-implement the UX
details of the accessible visualization. This lowers the barrier for
visualization authors who lack specialized accessibility expertise to
offer accessible visualization experiences.

2.1.1 OlliVisSpec
An adapter takes in a visualization toolkit’s output (e.g. an SVG, or
a scenegraph instance) and its original specification, and returns that
visualization as an object implementing the OlliVisSpec interface.

An OlliVisSpec object either describes a single visualization,
or contains a list of objects that each describe a single view of
a multi-view chart. Each object has information about a chart’s
visual elements, including its mark type and its guides (i.e. axes and
legends). It also has a list of names of data fields participating in
visual encodings, and other metadata such as the title.

Each view’s Guide objects contain a title, the name of the field
mapped to the axis/legend, and other metadata (e.g. the axis ori-
entation or legend type). They also include information needed to
divide axes and legends down into smaller sections (i.e., interval
extents for continuous guides and categories for discrete guides),
and a reference to the underlying data.

2.2 Accessible Structures
Like sighted users, research has found that screen reader users also
follow an information seeking strategy of “overview first, zoom and
filter, and details on demand” [3, 7]. Following prior work on design
dimensions for rich screen reader visualization experiences [7], we
represent accessible visualizations hierarchically, as a tree structure
containing descriptions at varying levels of information granularity.
The root node contains a high-level overview of the visualization.
If the visualization has multiple views, the level below the root
contains a node for each view. The next level contains nodes rep-
resenting guides (axes and legends). Each guide node has children
representing intervals and categories for continuous and discrete
guides, respectively. Finally, the leaves of the tree contains the indi-
vidual data points that correspond to those intervals and categories.
The tree allows users to leverage a visualization’s hierarchical struc-
ture to drill down into data, rather than being restricted to reading
individual data points linearly or in a table.

2.2.1 AccessibilityTreeNode
Olli uses an OlliVisSpec returned by an adapter to construct a tree
of AccessibilityTreeNodes. Each AccessibilityTreeNode
contains a reference to its parent node (null in the case of the root
node), and a list of child nodes. It also contains a information about
what part of the visualization it represents, and a textual description
to be read by a screen reader. For example, a node representing an x-
axis might have a text description reading, “X-Axis for a quantitative
scale with values from 14.43 to 34.7”.

2.3 Rendering
Olli renders an accessible structure by traversing the tree and out-
putting HTML elements and necessary ARIA attributes. To imple-
ment an accessible HTML tree view, we adapted an example from
the W3C’s WAI-ARIA Authoring Examples documentation [5]. As
the AccessibilityTreeNode is traversed, tree nodes that have
children are rendered as a nested unordered list with a group role
and aria-expanded attribute. Otherwise, a node is rendered as a
list item with a treeitem ARIA role. The addition of the ARIA
roles and extra attributes allow the screen reader to provide a more
specific description of the node’s position of the tree.

3 USAGE EXAMPLE

Consider the case of a visualization developer who wants to offer
an accessible version of an existing Vega-Lite chart (Fig. 1A). They
first pass their Vega-Lite chart instance and specification to Olli’s
VegaLiteAdapter function, which returns an object adapting the
chart’s specification to Olli’s standard interface. They then pass this
object to the olli function, along with a config object (Fig. 1B). At
minimum, this config object includes a selector for a DOM element
inside which to render the accessible visualization. The developer
can optionally also specify alternate render formats, such as tree
view or table. With these few steps, Olli can render an accessible
version of the chart on a webpage (Fig. 1C).

4 CONCLUSION

Olli contributes a system for converting existing visualizations into
keyboard-navigable structures accessible to screen readers, and a
set of abstractions for extending support to additional visualizations
using an adapter pattern. With the initial release of Olli, we provide
adapter implementations for Vega, Vega-Lite, and Observable Plot.
By releasing Olli as an open-source project, we hope that community
members can contribute new adapters for visualization libraries, and
refine the user experience of Olli’s rendered output as accessible
design guidelines evolve. By providing a reusable way to make
visualizations accessible, and by providing a standardized screen
reader UX for accessible charts, Olli can help make visualization
accessibility more widespread on the web.

ACKNOWLEDGMENTS

We thank Josh Pollock and Daniel Hajas for feedback and support.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., USA, 1995.

[2] Highcharts. Accessible line chart, 2021.
https://www.highcharts.com/demo/accessible-line.

[3] A. Sharif, S. S. Chintalapati, J. O. Wobbrock, and K. Reinecke. Under-
standing Screen-Reader Users’ Experiences with Online Data Visual-
izations. In ACM Conference on Computers and Accessibility (SIGAC-
CESS), ASSETS ’21, pp. 1–16. New York, NY, USA, 2021. doi: 10.
1145/3441852.3471202

[4] A. Sharif, O. H. Wang, A. T. Muongchan, K. Reinecke, and J. O. Wob-
brock. VoxLens: Making Online Data Visualizations Accessible with an
Interactive JavaScript Plug-In. In CHI Conference on Human Factors in
Computing Systems, pp. 1–19. ACM, New Orleans LA USA, Apr. 2022.

[5] w3c. Navigation Treeview Example, 2021. https://w3c.github.io/aria-
practices/examples/treeview/treeview-navigation.html.

[6] K. Wongsuphasawat. Encodable: Configurable Grammar for Visual-
ization Components. In 2020 IEEE Visualization Conference (VIS), pp.
131–135. IEEE Computer Society, Los Alamitos, CA, USA, Oct. 2020.
doi: 10.1109/VIS47514.2020.00033

[7] J. Zong, C. Lee, A. Lundgard, J. Jang, D. Hajas, and A. Satyanarayan.
Rich Screen Reader Experiences for Accessible Data Visualization.
Computer Graphics Forum, 2022. doi: 10.1111/cgf.14519


	Introduction
	Olli's System Design
	Adapters
	OlliVisSpec

	Accessible Structures
	AccessibilityTreeNode

	Rendering

	Usage Example
	Conclusion

