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ABSTRACT

We present an interactive visual analysis tool for the spread of wild-
fires and what influences their evolution. Multiple spatio-temporal
scalar and vector fields are investigated and related to each other
to identify causes of atypical fire spread. Our tool allows for the
comparative analysis of multiple runs of a simulation ensemble.

1 INTRODUCTION

Understanding the interactions of various physical and chemical phe-
nomena is essential for the study of wildfires. Of those phenomena,
vorticity-driven lateral spread (VLS) has been singled out as one
important factor for causing atypical fire propagation [2]. Gaining
insight into the emergence of VLS requires an analysis of potential
relationships between the fire’s environment, such as vegetation
and atmospheric conditions, and the fire’s evolution. We propose
an interactive workflow for a visual analysis of those features and
their relationships. We apply our methods to the IEEE SciVis 2022
Contest data to analyze interactions between the wind and other
environmental features, especially in relation to fire spread.

2 METHODS

The given simulation ensemble consists of seven runs, where three
can be categorized as headcurve (fire starts on the windward side
of a mountain ridge), three as backcurve (fire starts on the leeward
side), and one as a simulation of a valley. The headcurve and
backcurve runs are differentiated by the curvature of the mountain
ridge. Each run contains six scalar fields and one vector field. We
present methods to analyze both the fields and their interactions with
each other. Our work focuses on the analysis of flow features and
especially the vorticity of the wind to understand the influence of
the shape of the terrain.

2.1 Fire Spread
The spread of the fire over time can be analyzed and quantified by
observing the behavior of the dry-fuel (rhof 1) field. For each run,
we detect the time step in which the dry-fuel density inside a voxel
starts to diminish and encode it using a sequential transfer function
(see Fig. 1). Summing up the quantity by which the value of each
voxel diminishes in one time step and multiplying it by the volume
of the voxel (1.8m3) allows us to further compare the mass of the
burned dry fuel over time for each run (see Fig. 2). To compare
the different runs’ fire spread over the whole simulation time, we
visualize the contours of the regions in which the dry fuel density
changed between the last and the first time step (see Fig. 3).

2.2 Global Comparison of Simulation Runs
Similarity plots [1] are used to compare the evolution of all runs
over time in all fields. They depict each simulation run by a curve
parametrized over time in a low-dimensional embedding, where the
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closeness of curves in the embedding represents field similarity of the
respective simulation runs’ time steps. To choose the dimensionality
of the embeddings, we plot the principal components (see Fig. 4),
which indicates that the first principal component is always dominant
despite not capturing the full variance. Still, we decided to use a 1D
embedding, which allows us to intuitively plot the evolution over
a time axis, see Fig. 5(a), Fig. 6(a), Fig. 7(a) and Fig. 8 for the
evolution of the ensemble runs’ similarity for different fields.

2.3 Correlations
To visually analyze the correlations and relations between given
and derived scalar fields (including vector field magnitude), we use
parallel coordinates.Interactively changing the order of axes as well
as brushing on the axes to highlight selected data items using color
allow us to investigate different relations and properties for a selected
time step (see Fig. 9, Fig. 10). To observe how correlations change
over time, we calculate the Pearson correlations among the whole
fields at different timesteps (see Fig. 11). To analyze the impact of
the vegetation, we create histograms to compare the fuel distribution
of voxels that start burning to the overall distribution (see Fig. 12).

2.4 Volume Rendering
To analyze the spatial behavior of scalar fields, we use volume
visualizations based on multi-field GPU ray-casting. To define a
meaningful color mapping for each scalar field, we use piecewise
linear transfer functions [3]. Dry-fuel, temperature, and O2 scalar
fields, e.g., allow for a visual comparison of a chosen time step for
different runs (see Fig. 13). We also use volume renderings of the
fire to provide context in other visualizations (see Fig. 14).

2.5 Flow Integration
Line- and surface-based flow visualizations show the wind’s behav-
ior, especially in the vicinity of the fire. Streamlines and stream
surfaces (see Fig. 14) can be used to analyze the current state of
the flow field , while pathlines and path surfaces provide additional
temporal information that can be color-coded into the surfaces (see
Fig. 15). For flow integration, we use a fourth-order Runge-Kutta
scheme. The seeding curves can be placed on arbitrary, user-defined
positions inside the given volume. Alternatively, a GPU implemen-
tation of the Marching Cubes algorithm for isosurface extractions
of the rhof 1 field approximates a region of interest near the fire
where the seeding curve can be placed automatically based on a few
parameters, like the distance from the region of interest (see Fig. 16).

2.6 Vorticity and Divergence
Vorticity is a measure of the curl or rotation of the wind vector field
that is of particular interest in the context of vorticity-driven lateral
spread (VLS). Vorticity of a flow volume is given by ω = ∇×V
where V = (u,v,w) denotes a 3D vector field and ∇ the gradient
operator. Due to the fact, that the vorticity does not describe the
direct movement of particles anymore, we cannot utilize stream-
or pathlines. Instead, we follow the idea of Sharples et al. [2] to
differentiate between ambient and pyrogenic vorticity. The ambient
vorticity is defined as the v-component of the vorticity ωv, while
the pyrogenic vorticity ωp is defined as the vector ωp = (ωu,0,ωw).
Sharples et al. describe regions of interest on the right and left flanks



of the fire, where both components of the pyrogenic vorticity are
positive or negative, respectively. The interaction between ambient
and pyrogenic vorticity drive the occurrence of VLS. We apply a vol-
ume renderer to the ambient vorticity ωv (see Fig. 17). Additionally,
we categorize the PV into the sets ωp<0 = (ωu < 0,0,ωw < 0) and
ωp>0 = (ωu > 0,0,ωw > 0) and map the result to -1 if ωp ∈ ωp<0,
1 if ωp ∈ ωp>0, and 0 otherwise. Then, we apply again a volume
renderer (see Fig. 18).

Divergence is a measure of a flow to compress or spread out at
a certain point. Divergence div(V ) of a vector field V is defined
as div(V ) = ∇ · V . We visualize it using volume rendering (see
Fig. 19).

2.7 Simulation Run Prediction
Since the analysis of the influence of simulation parameters would
benefit from more simulation runs, we aimed to extend the simu-
lation ensemble. As a proof of concept, we apply a conditional
variational auto-encoder (CVAE) [4] that is trained on the u, v, and
w component of the vector field of time steps 6 - 70, after the fire
was ignited on a resampled grid of size 64x64x48. The respective
results for our test run (backcurve 80) can be seen in Fig. 20. Our
CVAE is able to predict a simulation run for other ridge smoothness
parameters, which we demonstrate for backcurve 200 (cf. Fig. 8).

2.8 Analytical Workflow
We propose a top-down analysis, where we start with an overview
of the fire’s spread and the correlations among the fields using the
methods presented in Sections 2.1-2.3 , giving us an idea of the tem-
poral evolution of the fire, the occurrence of VLS and the relations
between the different fields. Based on these plots, we can proceed
with an interactive analysis of the data. More detailed visualizations
of the wind, its vorticity, and volume renderings of scalar fields (as
described in Sections 2.4-2.6) are shown in multiple coordinated
views that can be used to investigate the conditions that lead to the
observed fire spread or compare different ensemble members.

3 IMPLEMENTATION

Our application extends the open source rapid application develop-
ment framework Voreen [3]. The overview approaches for analyzing
the spread of the fire were implemented using Python. The given en-
semble was converted from VTS to the HDF5 format by resampling
the data into a regular grid of resolution 600×500×60 (cf. Fig. 21),
leading to a reduction in the required disk storage and an accelerated
loading of the dataset. To achieve voxel-wise comparability between
all simulation runs, we create a second version of the ensemble
dataset, parameterized by the height from the ground, which we use
to compute the field similarity for the similarity plots.

4 RESULTS

Fire Spread. We begin the analysis by looking at the temporal
evolution of the rhof 1 field at ground level to get an overview
of the total spread of the fire and when the fire starts to spread
(Figs. 3, 1, 2). Additionally, this gives a good intuition for the
beginning of the lateral spread on the mountain ridge. We notice
that the lateral spread is larger for steeper mountains and does not
occur for a roundness of 320. It begins between timesteps 30 and
35 in all the simulations and only occurs when the fire reached the
lee side of the mountain ridge. Finally, we compare the streamwise
speed of the fire and observe no difference in the headcurve runs,
whilst the backcurve speeds are indirectly influenced by the radius
of the mountain curve. The latter is due to the fire’s movement
driven mainly by the lee side upwind.

Comparison of Simulation Runs. The similarity plots re-
veal two groups (headcurve vs. backcurve) of runs with similar
evolution for the rhof 1 (Fig. 5(a)), rhowatervapor (Fig. 6(a)) and

theta (Fig. 7(a)) field, while three groups (w.r.t. ridge smoothness)
can be observed for the wind speed magnitude field (Fig. 8).

Analysis of Environment. For analyzing the environment,
we present results for the run backcurve 40 but similar phenomena
can be seen for other runs. The temperature and water vapor field
are highly correlated while oxygen and temperature show a strong
anticorrelation after an initial transition phase, see Fig. 11. To
analyze the direct influence in the burning region, we define a
mask covering regions of burned fuel and a margin of one voxel
surrounding this region. The parallel coordinates for this region are
shown in Figs. 9 and 10. We see that strong wind prevents the fuel
from burning. The distribution of fuel shown in Fig. 12 shows that
voxels that are burned tend to have a higher density.

Flow Analysis. Expanding on the previous analysis, streamlines
allow us to analyze the upwind on the lee side of the mountain
(see Figs. 22, 23) by visualizing the flow of particles. Fig. 23
shows how the winds stemming from the windward streamwise
flow evolve into updraft winds in the opposite direction on the
lee side of the mountain. These winds eventually push the fire
towards the mountain ridge. We observe similar vorticity and
updraft in the valley run, thus making this simulation behave more
like a backcurve in this regard. Additionally, path surfaces help in
gaining an intuition for the ambient and pyrogenic atmospheric
turbulence (Fig. 24). Turbulence independent of variations caused
by the fire is categorized as ambient turbulence (i.e. caused by
the mountain, friction with the ground level terrain). In contrast
to that is the pyrogenic turbulence originating from the fire’s in-
teraction with the wind by heat transfer or pressure changes (Fig. 19).

Vorticity. To analyze the cause and effects of the observed
turbulence, especially regarding VLS, we visualize the vorticity
field of the wind flow. A volume rendering of the ambient vorticity
(AV) ωv (see Fig. 17) shows a vorticity sheet oriented mostly in
the +Y direction on the lee side of the mountain. The vorticity
sheet’s height and density above the mountain ridge increases with
decreasing mountain curvature. In the volume rendering of the
categorized pyrogenic vorticity (PV) (see Fig. 18), we observe two
distinct regions of high vorticity on the two opposing flanks of the
fire. The interaction of this PV with the AV sheet on the mountain’s
lee side creates the possibility for lateral spread near the ridge [2].

5 CONCLUSION

We proposed an interactive tool for the analysis and visualization
of various phenomena emerging from wildfires. Overview plots
showing, e.g., the expansion of fire over time allow immediate com-
parison between simulation runs. Stream and pathlines (as well as
their surface variants) can be used to visualize wind flow in a single
or multiple timesteps. Combined with visualizations of vorticity
and divergence, these tools provide an intuitive understanding of the
VLS phenomenon and the influence that the fire and surrounding
terrain have on it. This understanding might help firefighters to
better estimate the dangers and future spread of the fire.
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Figure 1: Fire expansion over time for different runs looking from the top. The color encodes the timestep in which a change in the rhof 1 field
occurs. We see differences in the expansion speed of the fire. For the valley (los Alamos), we see that the fire not only spreads very little but the
spread slows down in the progression of the simulation until it stops completely.

Figure 2: Multi-run plot of the burned dry fuel rhof 1 field per timestep (left) and accumulated (right). These plots confirm our observations in Fig. 1
regarding the different speeds of fire expansion. It is also noticible that the valley run (los Alamos) is the only simulation run for which the burned
fuel mass decreases.



Figure 3: Overview of the fire expansion for different runs looking from the top. The different colors represent the different ensemble members. We
observe a stronger lateral spread for higher curvatures of the mountain ridge. For a curvature of 320 we see no lateral spread. In case of the
valley, we see a relatively small lateral spread whose shape looks similar to the spread of backcurve 40.



(a) Bulk density of dry fuel (b) Bulk density of moisture

(c) Potential temperature (d) Wind speed magnitude

Figure 4: Eigenvalue plots for the embeddings used for the similarity plots shown in Figs. 5, 6, 7 and 8, respectively, indicate, that the first principal
component might not capture most of the variance. However, it is dominant in all cases for the selected fields. We hence make use of 1D similarity
plots, where time is used as second axis.



(a) Similarity plot for bulk density of dry fuel. Time
step 69 has been selected. The valley run has been
removed to better analyze the two groups.

(b) valley losAlamos

(c) mountain backcurve40 (d) mountain headcurve40

(e) mountain backcurve80 (f) mountain headcurve80

(g) mountain backcurve320 (h) mountain headcurve320

Figure 5: In the similarity plot of all simulation runs for the bulk density of dry fuel field, we observe two groups. The group using red colors is
represented by the headcurve simulation runs (d), (f), and (h). The group using blue colors is represented by the backcurve simulation runs (c),
(e), and (g). In the respective volume renderings, the extent of the fire has been projected on the surface geometry to highlight the affected area.
After the fire has been ignited (t=5), the groups separate over time. The difference can hence be explained by the amount of voxels burned, that is
higher in the headcurve runs (cf. Fig. 2).



(a) Similarity plot for bulk density of moisture.
Time step 14 has been selected.

(b) valley losAlamos

(c) mountain backcurve40 (d) mountain headcurve40

(e) mountain backcurve80 (f) mountain headcurve80

(g) mountain backcurve320 (h) mountain headcurve320

Figure 6: In the similarity plot of all simulation runs for the bulk density of moisture field, we observe two groups up to a certain point in time.
The group using red colors is represented by the headcurve simulation runs (d), (f), and (h). The group using blue colors is represented by the
backcurve simulation runs (c), (e), and (g). The valley run (purple, (b)) evolves differently from the two groups, but more similar to the backcurve
runs. In the respective volume renderings, the extent of the fire has been projected on the surface geometry to highlight the extent of the fire
for the selected time frame. After the fire has been ignited (t=5), the runs separate over time until the groups vanish (t ≈ 40). For the selected
time step, we observe in the volume renderings that the fire in the headcurve runs yields much more water vapor to the athmosphere than the
backcurve runs, causing the separation in the similarity plot. The valley run, for both volume rendering and similarity plot, is situated in between
the two groups.



(a) Similarity plot for potential temperature. Time
step 21 has been selected.

(b) valley losAlamos

(c) mountain backcurve40 (d) mountain headcurve40

(e) mountain backcurve80 (f) mountain headcurve80

(g) mountain backcurve320 (h) mountain headcurve320

Figure 7: In the similarity plot of all simulation runs for the potential temperature field, we observe two groups up to a certain point in time. The
group using red colors is represented by the headcurve simulation runs (d), (f), and (h). The group using blue colors is represented by the
backcurve simulation runs (c), (e), and (g). The valley run (purple, (b)) evolves differently from the two groups, but more similar to the backcurve
runs, eventually resembling the backcurve 320 run. In the respective volume renderings, the extent of the fire has been projected on the surface
geometry to highlight the extent of the fire for the selected time frame. After the fire has been ignited (t=5), the runs separate over time until the
groups vanish (t ≈ 40). For the selected time step, we observe in the volume renderings that the overall potential temperature is much higher than
in the backcurve runs, causing the separation in the similarity plot. The valley run, for both volume rendering and similarity plot, resembles more
the backcurve runs, i.e., the purple curve is close to the backcurve group.



Figure 8: Similarity plot of all simulation runs for the magnitude of the uvw-vector field. We observe three groups that are characterized by the
roundness of the mountain ridge where, intuitively, the more similar values (40 and 80) correspond to more similar vector fields. The valley run
was projected very differently and was hence removed from the embedding to achieve better comparison of the other runs. Two additional runs
have been added (dashed lines) that have been generated using a prediction with a conditional variational auto-encoder neural network. For the
training process, only the time range from t = 5 to t = 70 has been considered, i.e., time after the fire has been ignited and before the first run ends.
The predicted run for backcurve 80 is in the proximity of the ground truth data (of course, the ground truth was excluded from the training data).
Additionally, a backcurve 200 run was predicted using our neural network, leading to a vector field in between the backcurve 80 and backcurve
320 run. For both predicted runs, the high frequencies could not be predicted, however, the overall trend could be captured. With our architecture
it is, in principle, possible to predict a simulation run for any value of the smoothness parameter of the mountain ridge. Of course, a larger training
data set would be helpful.



Figure 9: Parallel coordinates for the run backcurve 40 where those samples are selected where the dry fuel did not decrease compared to the
previous timestep (no fuel burned). We only consider those voxels, where fuel gets burned on some point in time together with a margin of one
voxel in each direction. Here, we see an anticorrelation between the density of dry fuel and the wind magnitude which can be explained by the
vegetation stopping the wind. Voxels with strong wind (high values on the magnitude axis) will not burn in the future. We also observe several
voxels with high temperature (axis theta) and high moistures (axis rhowatervapor) that will not burn in the future. For further investigations on
these voxels, see Fig. 10.



Figure 10: When selecting the voxels with high temperature (between 600 K and 1000 K) in Fig. 9, we see that those, that do not burn also contain
very low densities of dry fuels. This can be explained by considering that we also sample a margin of one around the regions where fuel gets
burned. Thus, these voxels correspond to the voxels on the upper part of the margin where very little to no fuel is present.



Figure 11: Correlations between all scalar fields of simulation run backcurve 40, computed every five timesteps. As expected, the density of
released moisture (rhowatervapor) and temperature (theta) as well as the convective (convht 1) and radiative heat transfer (frhosiesrad 1) show a
strong positive correlation, while oxygen (O2) and temperature (and consequently oxygen and the density of released moisture) show a strong
negative correlation. The density of dry fuel (rhof 1) shows no correlations with other fields.
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Figure 12: Histograms of the initial fuel distribution for the run backcurve 40 of those voxels that will burn on the left and of all voxels on the right.
For both histograms, we set a lower threshhold of 0.001 kgm−3 for the fuel density to exclude the voxels that do not contain a significant density of
fuel. To make both histograms comparable, we normalize the total density (area below the plots) to 1. Even though the distributions are similar,
there are more voxels with high density among those that will start burning compared to all voxels with fuel.

Figure 13: Multi-field volume rendering of the dry-fuel (rhof 1), the temperature (theta) and O2 scalar fields of the headcurve 40 run. The
visualization shows the propagation of the fire and the consumption of the dry-fuel at timestep 50. The dry-fuel is colored in green for voxels with
values larger than 0.03 kg m−3. The theta field is colored yellow or red for temperatures above 400K and grey for temperatures between 300K and
330K. The O2 field is colored yellow as well for values greater than 0.21 and lower than 0.23.



Figure 14: Stream surface visualization of the wind vector field (u, v, w) at timestep 30 of the run headcurve 40. The seeding curve (red dots) is
set behind the fire with about twice the length of the fire width. The stream surfaces are color-coded by the velocity of the wind field.



(a) Opaque solid path surface

(b) Timeline visualization of the same path surface for better background visibility

Figure 15: (a) Path surface of the run headcurve 40 seeded at the beginning of the windward side of the mountain and integrated from timestep
20 to timestep 30. (b) The same path surface with a texture that highlights the evolution of timelines.



Figure 16: Stream surface visualization of the wind vector field (u, v, w) at timestep 25 of the run backcurve 40 with embedded streamlines. The
seeding curve (red dots) is automatically placed a set distance in front of the region of interest given by the fire. The region of interest is visualized
with a bounding box. The streamlines are color-coded by the velocity of the wind field. We observe slow winds on the lee side of the mountain
raising in altitude while accelerating before moving windward at higher velocities. Furthermore, we observe that the fire disturbs the wind directly
in front of it, causing vortices and also achieving higher vertical velocities.
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Figure 17: The y-component of the vorticity field for timestep 4 (thus, before the ignition) in the headcurve runs. An increase in y-vorticity (or
ambient vorticity) and height of the vorticity sheet on the mountain’s leeward side can be observed in steeper mountains. The vorticity sheet is
stable and can be observed during all timesteps.



Headcurve 40 Headcurve 80

Headcurve 320

Figure 18: Visualization of the pyrogenic vorticity for timestep 35 in the headcurve runs. In purple, regions where both the x- and z-component are
greater than zero and in green, regions where both the x- and z-component are less than zero. Of special interest are the regions at the fire’s
flanks. The noisy region on the mountain’s lee side is caused by atmospheric turbulence.



(a) Divergence of the flow field for timestep 4.

(b) Divergence of the flow field for timestep 20.

Figure 19: Two images comparing the existence of divergence in the timesteps 4 and 20 for the headcurve 40 run. The presence of a divergence
|div(V )|> 0.4 is color coded in blue. We can observe the fire causing a divergence in its vicinity.



Figure 20: We trained a conditional variational auto-encoder on the u, v and w component of the vector fields of backcurve 40, backcurve 320,
headcurve 40, headcurve 80 and headcurve 320 and predicted all timesteps of backcurve 80. Here we show only the u component as the
results for the v and w components yielded similar results. The x, y and z domain was resampled onto a regular grid of size 64x64x48, allowing to
efficiently train the model. In this figure, we compare five of the predicted time steps to their ground truth, namely 16, 26, 36, 46 and 56 (from top
to bottom). For each of these time steps, we select 6 xy-slices, starting from the ground (5, 10, 15, 20, 25, 30) from the aforementioned resampled
z-dimension of size 48.



(a) The adaptive grid used for the simulation. The
resolution towards the ground level is increased.

(b) Absolute error for O2 field at time step 40 after
resampling onto a regular grid. The error is high at the
slopes due to stair-case artifacts. This error is removed
after the parametrization.

(c) Values of the oxygen field for time step 40 near
the surface at the full resolution

(d) Values of the oxygen field for time step 40 near
the surface at the resampled resolution

(e) After removing the stair-case artifacts, the rela-
tive error can be high (up to 86%) in single voxels
near the surface.

Figure 21: For our data analysis, we resample the adaptive grid to achieve a regular grid, for which most of our algorithms have been implemented
efficiently. This introduces an error, especially in the lower layers near the surface. For the whole fields, we obtain the following root-mean-square
errors (calculated exemplarily for each field of time step 40 of the backcurve 40 run): O2: 0.016; convht 1: 121.1 Wm−3; frhosierad 1: 151.5 Wm−3;
rhof 1: 0.024 kgm−3; rhowatervapor: 0.000056 kgm−3; theta: 20.99 K; u: 0.797 ms−1; v: 0.316 ms−1; w: 0.278 ms−1. For our purposes, however, this
error is negligible, since the error only is prominent in isolated voxels and because we sample the domain using an eighth of the resolution for
each spatial dimension such that those are unlikely to be selected. Hence, the decrease in resolution did not effect the projection of our multi-run
similarity plots significantly. For the non-parametrized data, we only analyze features that appear in upper layers (e.g. streamlines), where the
error vanishes.



(a) Backcurve 40 (b) Backcurve 80

(c) Backcurve 320

Figure 22: Streamlines for timestep 20 of the lee side upwards draft in the backcurve simulation runs. These upwinds are mainly responsible for
the fire’s movement towards the mountain ridge in the backcurve simulations. The color of the streamlines is mapped to the magnitude of the wind.
A white color indicates a magnitude exceeding 10 m s−1. Of special interest are the segments of the streamlines in the vicinity of the ground. We
observe that in those regions, the density of higher velocity winds increases with the steepness of the mountain.



(a) Backcurve 40 (b) Headcurve 40

(c) Backcurve 80 (d) Headcurve 80

(e) Backcurve 320 (f) Headcurve 320

(g) Valley

Figure 23: Streamlines for timestep 20 seeded at the windward side of the mountain. The headcurve visualizations show how the streamwise
wind evolves into the updraft at the lee side of the mountain, which - in the backcurve runs - pushes the fire up the hill. As can be seen in the
valley visualization, the fire is also pushed up the hill by these winds, thus behaving more like a backcurve simulation in this regard.
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Figure 24: Pathsurfaces for the different runs, integrated from timestep 35 to 55, showing the effects of atmospheric turbulence on the lee side of
the mountain. A notable decrease in vertical velocity can be observed in the runs that are less steep. Hence, in these less steep runs the particles
follow a trajectory that is more aligned with the general wind direction.
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