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ABSTRACT

We propose new trigger variants for in situ automatic camera place-
ment over time (ACPOT). We evaluate the performance of these
variants on three data sets from two simulation codes. We find that
our approach has two major benefits: (1) it mitigates a problem
where the camera ”stagnates” on a view occluded from interesting
phenomena and (2) proposes alternate trigger criteria that provides
comparable camera placement quality (evaluated using a entropy-
based viewpoint quality metric) with reduced computational cost.

1 INTRODUCTION

Camera placement is an important aspect of visualizing scientific
data. In the post hoc case, i.e., when data is visualized after it is
generated, scientists can be part of the visualization process, inter-
actively setting a camera placement themselves. However, the in
situ case, i.e., when data is visualized as it is generated, typically
does not consist of a human-in-the-loop (HITL) workflow, making
it more difficult for the scientist to direct the camera placement pro-
cess. In this non-HITL case, camera positions can be obtained by
referring to predecessor, smaller-scale simulations, by incorporating
knowledge from domain scientists, or by applying an automated
technique. With this work, we consider the automation of camera
placements, building on efforts by Marsaglia et al. [5]. Their work
used Viewpoint Quality (VQ) metrics, specifically a metric they
referred to as “DDS entropy,” to find preferable camera positions.
The “DDS” acronym refers to Data, Depth and Shading, with Data
evaluating the visible data of a field, Depth evaluating the distance
from camera to the visible field data, and Shading evaluating the
shading coefficients of the visible geometry associated with the data.
The Shannon Entropy is calculated for each of these three compo-
nents to obtain the average level of information, and then the three
entropies are summed. Their user study on isosurface data found this
metric predicts expert preference 68% of the time, i.e., when given
the choice between two cameras, experts chose the camera with the
higher DDS Entropy score more than two thirds of the time. Their
subsequent work [3] provided an approach to calculate the DDS
Entropy efficiently in a distributed-memory parallel environment
and also an approach to quickly search the set of possible camera
positions to find a desirable position.

Search time is an important consideration. Evaluating the DDS
Entropy of a camera position requires rendering the scene, putting
the time to evaluate a position at slightly more than the rendering
time. Hence, Marsaglia et al. [5] recommends lower “search budgets”
(the number of positions to consider), as marginal improvements in
DDS Entropy score does not always translate to views that experts
prefer. Marsaglia’s doctoral dissertation [4] also expands the idea
to a time-varying setting by considering automatic camera place-
ment over time (ACPOT). Their ACPOT algorithm does not do
the trivial approach of doing a fresh search each cycle, but instead
only “triggers” a search for a new camera position space when the
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DDS Entropy score of the current best camera position changes by
a set percentage threshold. This approach aims to balance between
overhead (number of cameras considered) and quality (measured by
DDS Entropy score).

This work proposes three variations to the ACPOT approach es-
tablished by Marsaglia’s doctoral dissertation. One of the main
intuitions behind these variations is the need to prevent view “stag-
nation,” i.e., if the DDS Entropy score has not changed significantly
for many cycles, then to still perform an occasional search, in case
interesting phenomena are fully occluded. In our results, we show
that these variations outperform the ACPOT algorithm proposed in
Marsaglia’s doctoral dissertation.
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Figure 1: Three figures showing the entropy scores of the best sample
at each cycle, with a search budget of 10 positions. From left to right:
Jetbox, Ball of Fury, and AMR-Wind.

2 OUR METHOD

We extend the method of a trigger-based ACPOT algorithm by sug-
gesting variants of the trigger described by Marsaglia in her disserta-
tion [4]. We initially run the Marsaglia et al. [3] search algorithm
to find the initial camera position C⋆, and its corresponding DDS
Entropy score DDS⋆. The total number of cycles elapsed since the
last searched is also stored, along with the current DDS score of
camera position C⋆, i.e., DDScur. In the original approach, the trig-
ger would “fire” if DDScur has changed significantly from DDS⋆, as
determined by a DDS Entropy threshold. In our first proposed vari-
ant, Variant 1, the trigger only fires if there is a significant decrease
in DDScur from DDS⋆, and if DDScur is greater than DDS⋆, then
DDS⋆ gets updated to the new value of DDScur. Therefore, DDS⋆
always refers to the maximum entropy value encountered since last
search. In Variant 2, along with the original’s trigger criteria, a time
threshold is considered. Therefore, alongside checking for change in
DDScur, we also check if the number of cycles since the last search
is higher than the time threshold. If any of the two conditions are
fulfilled, we fire the trigger. Variant 3 combines the trigger condi-
tions of Variants 1 and 2. The Variant 3 trigger fires if DDScur has
decreased significantly from DDS⋆, where DDS⋆ is the maximum
entropy value encountered since last search. The Variant 3 trigger
also fires if the number of cycles since the last search is higher than
the time threshold considered.

3 BACKGROUND FOR EXPERIMENTS

Data Sets:
For our experiments, we considered three data sets coming from

two simulation codes: AMR-Wind [1] and CloverLeaf3D [2]. The
first data set, “Ball of Fury,” came from a Cloverleaf simulation of
9100 simulation cycles on a 643 mesh, with visualization occurring
every 100 cycles (91 total visualizations). The visualization was
of isosurfaces of the energy field. The second data set, Jetbox,
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Figure 2: Six pairs of figures, where each pair shows how Number of Camera Positions Evaluated and Average DDS Entropy loss varies for
various values of DDS Entropy threshold percentage and time threshold, with a search budget of 10 positions. The columns are organized by data
set: Jetbox (left), Ball of Fury (middle), and AMR-Wind (right). The rows are organized by trigger variants: Variant 2 (top) and Variant 3 (bottom).
The original approach and Variant 1 are special cases of Variant 2 and 3, where the time threshold equals the number of cycles in the data.

also came from a Clover simulation. This simulation had 1200
simulation cycles on a 256× 128× 256 mesh, with visualization
occurring every 10 cycles (120 total visualizations). Once again, the
visualization was of isosurfaces of the energy field. The third data
set, AMR-Wind, was of 65 simulation cycles on a 8483 mesh, with
visualization occurring every cycle (65 total visualizations). This
visualization was of isosurfaces of the velocity field. Figure 1 shows
the change in DDS Entropy over time for all data sets.
Metrics: The two key elements that determine the performance of
an ACPOT algorithm as described above are:

• Computational Work Performed: We use the number of camera
searches triggered as the metric of computational work per-
formed. The total time taken to execute the algorithm scales
linearly with the number of searches.

• Quality of Chosen Cameras: We use the loss in DDS Entropy
as the metric. At each cycle, for a fixed sampling budget, the
difference between the DDS entropy score of the “best sample”
and the chosen sample is recorded. We average over this metric
to assess the quality of the algorithm’s full run.

4 RESULTS

We run the experiments by varying both the DDS entropy threshold
and the time threshold between the ranges of 1% - 5% and Nd/5 -
Nd respectively, where Nd is the number of cycles for data set d. We
evaluate Variant 2 and Variant 3 triggers on the data sets and report
our findings. The original approach and Variant 1 are also evaluated,
as they are a special case of Variant 2 and 3 respectively, when the
time threshold equals Nd (as the trigger based on number of cycles
since last search never reaches the threshold value).

Figure 2 shows the effect on both the number of searches and
average DDS entropy loss. The fields are mapped to the same
color map across the variants, for easy visual comparison. From
the analysis, we find that Variant 3 tends to trigger less searches
compared to Variant 2 on average. Variant 3 is comparable to Variant
2 in average DDS Entropy loss, although the average DDS Entropy
loss in Variant 3 tends to be higher when DDS Threshold is low.
We also find that both Variant 2 and Variant 3 can overcome the
issue where the view “stagnates,” as the time threshold gets lowered.
This result is most notable in Ball of Fury’s Variant 2 results, where
the average DDS entropy loss is very high around the 2% DDS

Threshold region, which gradually fades when we lower the time
threshold.

5 CONCLUSION

We presented new triggers for the ACPOT algorithm proposed in
Marsaglia’s doctoral dissertation [4]. For the same data sets and
search budget, we find that the triggers variants proposed here can
outperform the original approach. Variant 2, which adds a time
threshold trigger onto the original approach, mitigates the issue
where the view “stagnates” and interesting phenomena are occluded.
Variant 3 is suggested as it performs comparably with Variant 2 but
does not trigger as many searches, making it computationally more
efficient at the cost of DDS entropy. Future work includes exploring
and analyzing the space of search budget, time threshold, and DDS
entropy threshold across a variety of data sets, exploring triggers
with variable search budgets, and optimizing the search algorithm
for a time-varying setting.
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