Massive Data Visualization Techniques for use in Virtual Reality Devices

Jason A. Ortiz*
Argonne National Laboratory
University of Central Florida

Victor A. Mateevitsi
Argonne National Laboratory

Joseph A. Insley
Argonne National Laboratory
Northern lllinois University

Michael E. Papka
Argonne National Laboratory

Janet Knowles
Argonne National Laboratory

Silvio Rizzi
Argonne National Laboratory

Northern lllinois University

ABSTRACT

Scientific simulations executed on supercomputers produce massive
amounts of data. Visualizing this data is essential to discovery and
dissemination, but methods for transforming and displaying such
large data visualizations for use in Extended Reality (XR) devices are
not commonly supported. We investigated the viability of existing
XR applications (i.e., ParaView VR, SummitVR, and Omniverse
XR) to display large data visualizations. Our investigations led us
to create a proof-of-concept Virtual Reality (VR) application with
Unity using Universal Scene Description (USD) files exported from
Houdini to display and interact with large time-varying scientific
data visualizations. We present our investigations as a basis for
future work to display and interact with scientific data visualizations
in XR.

1 INTRODUCTION

High Performance Computing (HPC) applications executing scien-
tific simulations can produce massive amounts of data traditionally
visualized with tools like ParaView and displayed on 2D monitors.
However, common visualization tools cannot directly import or dis-
play such large data in its entirety, which leads to missed discoveries
and opportunities. Exploring and manipulating multidimensional
data with immersive Extended Reality (XR) technology, an umbrella
term for Augmented Reality (AR), Virtual Reality (VR), and Mixed
Reality (MR), can provide improved understanding and analysis of
multidimensional data via natural interactions and gestures to move
oneself and to rotate, translate, and scale virtual objects [1]. XR
also affords an intuitive sense of copresence between multiple users
sharing a virtual experience in-person or remotely, thus enabling
improved collaboration scenarios [2].

We discuss existing XR applications that allow for scientific data
analysis and visualization and their data size limitations, and we
present the intermediate results of a proof-of-concept workflow
and Unity VR application for large scientific data visualization and
interaction.

2 RELATED WORK

Since 2016, ParaView, a scientific data analysis and visualization
tool, has provided support for data exploration using VR headsets
[3]. The ParaView VR plugin allows users to view ParaView visual-
izations and edit the corresponding filters just as they would in the
desktop GUI editor. SciVista SummitVR [4] has also introduced a
ParaView module which allows for ParaView state file import, thus
allowing multiple users to rotate, translate, and scale the same Par-
aView data together. Both applications have promising potential for
scientific data discovery and dissemination, but we faced data size
limitations when attempting to display our visualizations. Smaller

*e-mail: jason.ortiz@knights.ucf.edu

datasets displayed adequately, but for large data, some meshes would
not appear and animations would not play smoothly.

Similarly, Nvidia Omniverse, an “... easily extensible platform
for 3D design collaboration and scalable multi-GPU, real-time, true-
to-reality simulation”, provides Apps and Connectors for common
3D tools such as Autodesk Maya, Epic Games Unreal Engine, and
ParaView [5]. Omniverse allows for consistent interoperability be-
tween these applications because 3D scene and asset information
is stored in Universal Scene Description (USD) files. These files
can be imported, exported, and live-synced between applications via
Omniverse Connectors. For example, Omniverse XR allows users to
view and move around ParaView visualizations as USD scenes with
AR or VR devices. Omniverse is not compatible with all types of
computer networks and environments however, but it shows that the
USD file format can provide a viable way to reliably store massive
3D data. As discussed in [6], “USD is an effective data format for
encoding scientific data in preparation for cinematic visualization,”
which encouraged us to investigate viable workflows to transmit
scientific data to XR devices.

3 METHODOLOGY

Figure 1 shows a proposed workflow for moving scientific data into
the Unity game engine [7], which was chosen for its ease of use
and existing packages allowing for XR interactions and USD file
integration. After a simulation is executed and results are output,

Execute Export .usd » Stitch M USDs
Simulation binary per N K times
timesteps

* \ 4
@ Unity"
-npy
binary
files Import K USDs °°LTSP§SS Add XR
as prefabs ST Interactions

Figure 1: Workflow to create scientific data visualization XR app.

a user can import that data into SideFX Houdini [8] for example
by using a custom Python script to read and transform the raw data
as necessary. Our example transforms two 108 MB NumPy binary
files to display the activated neurons of a neural network training
on LIGO gravitational wave datasets [9]. For time-varying data, a
user then exports N binary USD files for each animation frame via
the USD Render Node. In our example, N = 300 and each file is
approximately 276 MB. Next, a user executes the usdstitch [10]
Python script provided by Pixar to combine M different USD files
into one new binary USD file K times where K = % In our example,
M =175, K =4, and each of the four USD files are large at 18 GB.
Each stitched USD file has M = 75 merged USD timeSamples
representing 75 frames. Attempting to stitch more than 75 files
failed due to exceeding memory limits.

3.1 Development in Unity

Using Unity version 2020.3.26f1 and Unity’s USD preview package,
version 3.0.0-exp.2, we import each stitched USD binary as a Unity
prefab, which bundles all the USD assets and properties into one
manageable Unity GameObject. Each prefab is an 89 MB metadata
object that allows a Unity developer to inspect its USD file infor-
mation within the Unity editor and work indirectly with the USD
mesh data that is stored on local disk. Next, we create a Timeline
GameObject and add two tracks for each USD prefab: one for play-
ing the USD timeSamples and one for listing the USD prefab as
active. This format allows us to show and play the animations for
only one USD prefab at a time.

Next, using Unity’s XR Interaction Toolkit package, version
2.0.2, we can enable XR device support for common XR devices
such as the Meta Quest 2. We use the toolkit’s scripts to make the
USD prefabs in the scene interactable with XR rays which project
from XR controllers. We also add a custom C# script with a call-
back function to play or pause the animation timeline within the
PlayableDirector GameObject when the Right XR Controller
emits a Select action on the interactable USD prefab, which is
triggered on right-grip press.

We then play the application with a Meta Quest 2 tethered by a
Quest Link USB-C cable to a desktop PC equipped with an Nvidia
RTX 3080 GPU, 32 GB of RAM, and 10 GB of dedicated video
memory.

4 RESULTS

While playing the application, a user can press the right-grip button
of the XR Controller while pointing at the prefab representing the
data as seen in Figure 2. When the animation is paused, the measured

Figure 2: VR application running on Meta Quest 2 showing three

frames of a user playing or pausing an animation of activated neurons
in neural network layers.

frames-per-second (FPS) is approximately 70 on average, whereas
while playing, FPS is approximately 7. Oculus PC VR experiences
are recommended to consistently meet 90 FPS (i.e., ~11.1 ms per
frame) for machines with recommended specs or 45 FPS (i.e., ~22.2
ms per frame) for machines with minimum specs [11]. The Unity
Profiler shows that each frame takes approximately 180 ms to build
the USD scene with its meshes. This large amount of time spent
could be attributed to the extra CPU time necessary to retrieve the
mesh data from the 18 GB USD binary for the next frame and
rendering the millions of polygons comprising the mesh.

5 FUTURE WORK

Next, we plan to expand this app by: 1) Improving FPS through
level-of-detail and/or mesh decimation before USD import to Unity;
2) Adding asset rotation, translations, scaling in Unity via XR inter-
actions, and animation time reversal and scrubbing; 3) Investigating

loading USD prefabs from remote sources using the Unity Address-
ables package, which may allow the USD prefab to be hosted closer
to where the raw data is stored, thus enabling new opportunities for
remote app playing; 4) Improving the graphics quality via the Unity
Universal Render Pipeline and/or High Definition Render Pipeline;
5) Launching the app on MR and AR devices, such as the Microsoft
HoloLens, and gathering performance metrics.

6 CONCLUSION

XR applications such as ParaView VR, SummitVR, and Omniverse
XR allow for satisfactory analysis and exploration of some classes
of scientific data. However, for massive scientific data produced by
simulations executed in HPC applications, more work is necessary
to adequately display and interact with such data. We propose
a workflow that serves as a basis for future work to display and
interact with scientific data in XR applications. The USD file format
and related toolsets allow us to package scientific visualizations for
consumption in game engines like Unity, and the XR Interaction
Toolkit allows us to quickly enable data interaction scenarios for
many XR devices.

ACKNOWLEDGMENTS

Data courtesy of Eliu Huerta, Pranshu Chaturvedi, Asad Khan, Nikil
Ravi, and Minyang Tian with Data Science and Learning at Argonne
National Laboratory. This work was supported by and used resources
of the Argonne Leadership Computing Facility, which is a U.S.
Department of Energy Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

REFERENCES

[1] 1. Heldal et al. “Immersiveness and symmetry in copresent
scenarios”. In: Pro. IEEE VR. Mar. 2005, pp. 171-178. DOTI:
10.1109/VR.2005.1492771.

[2] Huyen Nguyen et al. “Collaborative Data Analytics Using
Virtual Reality”. In: IEEE Conf. on VR and 3D Uls (VR). Mar.
2019, pp. 1098-1099. po1: 10.1109/VR.2019.8797845.

[3] Ken Martin et al. Taking ParaView into Virtual Reality. The
Source. Sept. 22, 2016. URL: https://www.kitware.com/
taking-paraview-into-virtual-reality/ (visited on
06/13/2022).

[4] SummitVR. Version 1.1.83. URL: https://www.summitvr.
app/summitvr (visited on 06/20/2022).

[5] Nvidia. Omniverse Platform for Virtual Collaboration. URL:
https://www.nvidia.com/en-us/omniverse/ (visited
on 06/17/2022).

[6] Mark A. Bolstad. “Large-Scale Cinematic Visualization Us-
ing Universal Scene Description”. In: /IEEE 9th Symp. on
Large Data Analysis and Visualization (LDAV). Oct. 2019,
pp- 1-2. DOI: 10.1109/LDAV48142.2019.8944362.

[71 Unity. Version 2020.3.26f1. URL: https://unity.com/.

[8] Houdini. URL: https://www.sidefx.com/products/
houdini/ (visited on 06/27/2022).

[9] E. A.Huertaetal. “Accelerated, scalable and reproducible Al-
driven gravitational wave detection”. In: Nature Astronomy 5
(July 2021), pp. 1062-1068. DOI: 10.1038/s41550-021-
01405-0. arXiv: 2012.08545 [gr-qc].

[10] wusdstitch. Version 22.05b. 2016. URL: https://github.
com/PixarAnimationStudios /USD /archive /refs/
tags/v22.05b.zip.

[11] Meta. Guidelines for VR Performance Optimization. URL:
https://developer . oculus . com/documentation/
native/pc/dg-performance-guidelines/ (visited on
08/01/2022).

https://doi.org/10.1109/VR.2005.1492771
https://doi.org/10.1109/VR.2019.8797845
https://www.kitware.com/taking-paraview-into-virtual-reality/
https://www.kitware.com/taking-paraview-into-virtual-reality/
https://www.summitvr.app/summitvr
https://www.summitvr.app/summitvr
https://www.nvidia.com/en-us/omniverse/
https://doi.org/10.1109/LDAV48142.2019.8944362
https://unity.com/
https://www.sidefx.com/products/houdini/
https://www.sidefx.com/products/houdini/
https://doi.org/10.1038/s41550-021-01405-0
https://doi.org/10.1038/s41550-021-01405-0
https://arxiv.org/abs/2012.08545
https://github.com/PixarAnimationStudios/USD/archive/refs/tags/v22.05b.zip
https://github.com/PixarAnimationStudios/USD/archive/refs/tags/v22.05b.zip
https://github.com/PixarAnimationStudios/USD/archive/refs/tags/v22.05b.zip
https://developer.oculus.com/documentation/native/pc/dg-performance-guidelines/
https://developer.oculus.com/documentation/native/pc/dg-performance-guidelines/

	Introduction
	Related Work
	Methodology
	Development in Unity

	Results
	Future Work
	Conclusion

