
FLOAT: Framework for Workflow Analysis, Visualization and
Transformation

John Jacobson*

University of Utah
Mike Bentley†

University of Utah
Cayden Lund‡

University of Utah
Ganesh Gopalakrishnan§

University of Utah

Ignacio Laguna¶

Lawrence Livermore National Laboratory
Gregory L. Lee||

Lawrence Livermore National Laboratory

ABSTRACT

Continued progress in high-performance computing requires the
constant creation of new workflows and frameworks to support im-
portant activities such as compilation and linking. Once such frame-
works mature, visualization tools can help oversee and ensure the
integrity of such frameworks and obtain valuable feedback. This pa-
per describes our experience creating such a light-weight framework
out of a previous tool effort FLiT for detecting compiler-induced
numerical variability. The resulting framework FLOAT has already
helped us better understand and fix performance bugs in FLiT. Our
design of FLOAT and the ways in which we anticipate it enabling
the adoption and re-purposing of FLiT are described, including sup-
port for accelerator-based programming and other heterogeneous
build workflows.

Index Terms: Software Testing; Visualization; Floating-Point
Arithmetic; Compiler Optimizations; Bisection Search

1 INTRODUCTION

With the increasing scale and heterogeneity of HPC software, the
process of producing an executable binary file for a complex appli-
cation has become quite involved. A developer frequently ends up
compiling and linking 1000’s of files with various libraries, running
the resulting executable across numerous inputs, and then validat-
ing the results in a variety of ways. This involves tuning a number
of compilation settings, sometimes even at source-file granularity,
as well as designing build systems, and reserving the necessary
computational resources for both compilation and execution. This
workflow becomes even more complicated when porting applica-
tions across machines and compilers. In existing prior work [3],
the authors identify result reproducibility concerns using bisection
methods which require many levels of compilation, execution, and
diagnosis, adding a new dimension of complexity to this standard
workflow. Further, with increasing use of GPUs and other accelera-
tors, these workflows will enter into the murkier territory of multiple
vendor-provided GPUs and their looser and highly varied numerical
specifications [8].

In many instances of creating an executable, there is an initially
planned workflow—an execution model—and the resulting concrete
code—an implementation—that is quite involved. Additionally,
automated testing frameworks generate their own complex (and
often recursive) workflows that add many “hidden details” to the
implemented workflow. Many things can (and do) go wrong in
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the face of such complexity. Accomplishing a satisfactory final
executable is now the culmination of a complex collection of tasks
orchestrated by a concrete workflow designed from a model that lies
implicit within the build system code.

Another aspect to workflows is that the computing environments
as well as humans are imperfect. One might have the right mental
model to accomplish a compilation/build but produce an inconsistent
build script; one might forget to state some dependencies, or at build-
time some of the compilations might silently fail resulting in an
unintended binary having been created and run. Bugs may creep
in (unstated dependencies, duplicated executions, build sub-calls
silently dying, etc.) Clearly there is need for automation.

There are two directions to take when considering automation:
(1) take an existing workflow system (e.g. Pegasus [7]) and adapt
it to one’s needs, or (2) organically “grow” a customized workflow
system for the immediate needs, and allow it to generalize it to the
correct level (overly generalized systems often fail to address specific
domain needs well). Taking the latter direction, our contribution is
FLOAT, a framework under construction for the capture, analysis,
and transformation of workflows manifested during the build, run,
test, and debug processes within complex heterogeneous workflows.
There are systems out there (e.g., Spack [5] for package management
and associated installation challenges) that tend to reinforce the
virtues of not over-generalizing.

The need for our framework FLOAT was highlighted by lessons
reported by the FLiT project [3, 6]—a tool for multi-level analysis
of compiler-induced variability and performance tradeoffs. FLiT
has been applied to many in-house applications at LLNL. FLiT has
also recently been extended to CUDA applications which introduce
another layer of compilation complexity via the proprietary NVCC
compilation wrapper.

Through all this, it became clear to us that offering a tool such
as FLiT without a complementary tool such as FLOAT would be
a poor decision. The main impediment is that tools such as FLiT
would be difficult meaningfully to hand over to others: the adopters
would want to customize it for their uses, and unfortunately FLiT
does not truly expose its inner workings in a manner that can be
captured through dependency annotations. It also does not report
the details of the work it carries out nor provide opportunities for
intervention, repair, and resumption. FLOAT on the other hand
reveals exactly what the internal activities of a tool such as FLiT
are, and this knowledge can help understand and adapt to a local
context. Further, while developing FLOAT, we found a significant
performance bug in FLiT’s implementation of the conceptual model
(we detail this in §4.)

Roadmap: In this paper, we will primarily take the point of view
of FLOAT serving the needs of a tool such as FLiT. §2 presents
background and related work. §3 presents the overall design of
FLOAT, walking through an example. §4 presents some results
obtained using FLOAT. Conclusions and future work are in §5,
where we also touch on the higher level perspective of FLOAT.



Figure 1: Abstract model of FLiT control flow, capturing all high-level
tasks which form a basic FLiT run. Although the implementation
involves the use of 3 languages to dynamically create and execute
build systems, these few tasks are sufficient for a useful analysis of
the programs design.’

2 BACKGROUND, RELATED WORK

FLOAT was motivated by the need for further development on the
FLiT tool. FLiT is a testing framework for identifying floating-point
variability caused by compiler optimizations or changes in hardware
and execution environments. In particular, FLiT’s bisection search
allows the user to isolate such variability to symbol (or function)
granularity, greatly reducing the scope of troubleshooting large ap-
plications. Preliminary implementation of GPU file bisection has
also been recently completed. This gives FLiT the ability to analyze
heterogeneous CPU/GPU programs in future.

FLiT is realized as a ”meta-build system” in which the target
application is built and tested under any number of conditions spec-
ified by the user. These conditions are specified by the user in the
form of a TOML configuration file enumerating the desired build
parameters and their own test functions to define the specific in-
puts and execution parameters. Provided these files, FLiT creates
a search space of compilation parameters (here a compilation is
defined as a triple of [compiler, optimization level, compiler flags])
and generates a (recursive) GNU Make build system for generating
and executing all defined variations of the target application. The
user-defined test cases are executed under each compilation, and
results are compared with a trusted baseline execution to determine
variability in floating-point results and performance.

Variability within a compilation of interest identified through
a FLiT execution may then be further dissected with FLiT bisect.
Using a variation of delta-debugging, FLiT bisect links object files
from a ”trouble compilation” with other files from the baseline com-
pilation, creating mixed-compilation executables which are tested
for variability from the trusted results. The results guide the search
through continued re-linking of trouble and baseline object files until
individual variability-inducing files are isolated.

Once a single file is found to induce variability, the bisect search
proceeds with another round of delta-debugging inspired search
by creating a mixed-compilation object file. This is achieved by
linking two variations of the trouble file; one file from the trouble
compilation, and one from the trusted baseline. Each symbol within
both files is marked as weak within one copy, and conversely as

1 def match_Linking(e, p):

2 return p[’obj’] in \

3 [f for f in e[’src’].split()] \

4 and e[’compiler’] == p[’compiler’] \

5 and e[’opt’] == p[’opt’] \

6 and e[’switches’] == p[’switches’]

7

8 link_def = {

9 "Parent" : [’root’],

10 "Dependencies" : [’Compile’,

11 ’Baseline Compile’,

12 ’Compile fPIC’]

13 "Matching" : match_Linking

14 }

15

16 event_definitions[’Linking’] = link_def

17

Figure 2: Python code to define the ‘Link’ task represented in Fig. 1.
It is not a sub-task of any other defined task, thus is nested within the
root. Linking object files depends on the compilation of those files into
object files, hence the possible parent events. Lastly, the “Matching”
function is used to determine exact parents of a unique Link event.

strong within the other file. When linked, the resulting executable
will retain only strong symbols from each file, and variability in the
resulting executable is blamed on the set of strong symbols from the
trouble compilation file. This leads to further bisection of the set of
blamed symbols, and the search continues until blame is assigned to
individual symbols from the original trouble file.

As all of these steps are achieved through dynamically generated
build systems, the resulting execution trace of FLiT runs quickly
become complex and difficult to analyze, particularly for large ap-
plications. Further, the trusted build system profile for target ap-
plications often require significant time on their own so the FLiT
search through multiple builds has significant performance concerns
for adoption on large HPC applications, where the tool is most
needed. FLOAT was developed in order to understand the perfor-
mance bottlenecks within FLiT and guide further development of
the application in the face of this complexity.

Instead of targeting statement or function level analysis within
FLiT, FLOAT aims to model the underlying conceptual model of a
test framework and project this model onto actual execution traces
to verify implementation of the conceptual model, as well as to
identify higher-level design enhancement opportunities within the
application. This methodology greatly eases the burden of analyzing
interoperable programs like FLiT, which since little to no communi-
cation between separate language components is necessary. Also, by
tracing execution at a higher level of abstraction, the volume of data
is significantly reduced and their mapping to well-understood design
abstractions allows for more natural digestion and processing by
the developer, and suggests a number of pre-defined visualizations
and results to be provided to the user. As stated earlier, workflow
management systems such as Pegasus [7] and FLUX [4] are popular
in scientific computing. Although one might imagine their use in
our context, this approach would not result in a light-weight and
domain-focused framework.

3 DESIGN OF FLOAT

FLOAT is designed to represent a high-level abstraction of a pro-
grams design for analyzing performance and correctness from an
overall design perspective. The user models their application as a
task dependency graph, where tasks are arbitrary blocks of func-
tionality within the application which are not necessarily tied to the
structure of code implementation. This model is then mapped to



1 {

2 "date" : "Tue Aug 10 13:41:18 MDT 2021",

3 "time" : 1628624478570859473,

4 "name" : "Compile",

5 "type" : "stop",

6 "properties" : {

7 "file" : "tests/Mfem13.cpp",

8 "obj" : "obj/GCC_MFMA_O3/Mfem13.cpp.o",

9 "compiler" : "g++-7",

10 "switches" : "-mfma",

11 "opt" : "-O3"

12 }

13 }

14

Figure 3: Sample event, capturing a specific ‘Compile’ task instance.
The top layer of items are required for all events, while the contents of
the “properties” object allow capture of arbitrary fields. These fields
are primarily used for building unique event relationships.

the code by manual instrumentation of log calls, after which the
resulting logs are processed into a DAG data structure guided by the
abstract model. This process allows a high-level view of the imple-
mentations conformity to the defined model, concurrency potential
and utilization, and critical path analysis.

The model is initially defined by a Python dictionary as shown
in Fig. 2.1 The model defines a set of events by unique string
identifiers, each representing a unique task within the application
design. (See Fig. 3.)

For example, within the FLiT framework the complete compi-
lation of an executable may be defined as one task including pre-
processing, compilation, assembly, and linking as a single event.
Alternatively, these sub-tasks may be modeled as individual tasks
(as determined by the user.) The actual implementation in FLiT
tracks two tasks within compilation; pre-processing, compilation,
and assembly of an object file are treated as a single task, while
linking is tracked as a second independent task. This particular
definition was important in our use-case for FLiT Bisect where
initially each file is compiled in two variants (unoptimized versus
optimized), but later linked in multiple combinations to detect non-
reproducible situations (e.g., one file has a function whose numerical
behavior changes unacceptably upon optimization). While a loga-
rithmic search might require only log(N) linkages for N files, a true
delta-debug session might potentially require an exponential number
of linkages. The latitude to define sub-tasks flexibly may prove to
be important for adopters of FLOAT. Here are additional details of
our design:

Event Hierarchy For each event defined in our framework, a
list of parent events and a ”Matching” function containing logic for
matching this event to its parent event(s) is expected. As an example,
within the FLiT framework source files are compiled multiple times,
using different flags, to produce multiple executables. As such,
there are several object file linking tasks performed (one for each
produced executable), but each linking task depends only on source
files compiled with the relevant flags. As such, it is necessary
in both the linking and its parent compilation events to capture
unique identifiers (in this case compilation optimization level plus
all flags and switches.) The function match_Linking shown in
Fig. 2 demonstrates the logic necessary to identify which source
compilation tasks are linked by a specific linking instance during
runtime.

1Technically the model is not required, but any events not included in the
model will be collected as an unorganized set of events, i.e. plain json logs
with no additional functionality.

Event Structure Each of these events is then captured by in-
strumenting logging within the source files. JSON format is used
for its human-readability and ubiquity. The captured logs require
only (1) their unique event identifier (such as ”Compilation” within
FLiT), (2) a timestamp, (3) a start/end identifier, and (4) a JSON
string containing relevant properties for uniquely identifying each
separate instance of this event and to match this event to its parent(s)
and/or children, as shown in Fig. 3.

Log-file Structure and Visual Elements Once the event def-
initions and collected logfiles have been provided, FLOAT parses
the logs and generates a DAG data structure using the Python Net-
workX library [1]. During parsing, any events not conforming to the
provided model will be explicated to the user. The generated DAG
is available to the user for manual processing, as well as a number
of built-in analyses. A Gantt chart demonstrating relative runtimes
of captured events, such as in Fig. 6, provides an at-a-glance view
of utilized concurrency and bottleneck tasks. A graph visualization
of the entire graph structure for the underlying model is available,
as well as a similar representation including actual runtime event
details captured, as shown in Fig.’s 1 & 5. Event specific details
captured within the logs are also queryable for isolating runtime
variability.

Use-case: FLiT applied to MFEM We now walk through the
use of FLOAT using an example of FLiT as applied to MFEM [2],
a popular finite-element library. MFEM was one of the examples
analyzed using FLiT [6]; in the following, we highlight the added
insights to FLiT offered by FLOAT.

The first step in application of FLOAT is design of the abstract
model underlying the target application (in this case the FLiT testing
framework.) Despite the inherent complexity of the recursive build
system FLiT utilizes to explore the compilation search space, the
framework relies on a simple conceptual model. As shown in Fig. 1,
FLiT may be understood as a simple workflow for compiling and
executing the test application. Using this abstraction, a FLiT run
may be modeled by only seven unique tasks (and five distinct tasks
suffice as ground truth processing may be identified from only one
unique task in the compilation branch.)

With the model defined conceptually, we translate to a specifi-
cation for automated processing. FLOAT works from a Python
dictionary whose keys represent unique task names, and associated
values are dictionaries of dependency relationship information (see
Fig. 2.) Dependency relationships are defined by three parameters:

1. A unique ”Nested Parent” - This is a super-task which encap-
sulates the defined task. This allows for isolated analysis of
tasks by relating them to sub-tasks defined within their scope
(”nested within” the scope of their Nested Parent.) All tasks
are nested within the overall execution (defined in the DAG as
the root node, or ”FLiT Run” in Fig. 1.)

2. A list of ”Parents” - These are tasks on which the defined task
depend logically. For example, in Fig. 1 Compile tasks are
parents of Link tasks, since the linkage phase of compilation
depends on compiled object files from the Compile task.

3. A ”Matching” function - This function takes an instance of the
defined task (an event) and an instance of a potential parent
task, and determines whether the event defined logically de-
pends on the potential parent. For example, in 1 the trouble
compilation Link task depends only on Compile tasks for the
trouble compilation and not on Compile tasks for the ground
truth compilation. The ”Match” function distinguishes this
relationship using data captured within specific log events.

This specification is defined by a Python script containing the nec-
essary definitions in a dictionary; our implementation of the “Link”
task is shown in 2.



Figure 4: Abstract model of FLiT Bisect control flow. 2 layers of bisec-
tion search increase the model complexity a small amount relative to
the necessary implementation intricacy.

With the abstract model specified in this way, we instrument
the capture of log events representing each logical task defined.
Log events are captured in JSON format conforming to a simple
specification (as seen in Fig. 3.)

• Date (string)

• Time (integer), a timestamp for performance analysis

• Name (string), a unique task identifier for each task within the
model

• Type (string), ”start” or ”stop” for event duration demarkation

• Properties (JSON string), a JSON object containing arbitrary
fields deemed necessary by the user. These should capture
necessary runtime details for relating specific events to their
runtime dependencies.

The instrumentation of logging in the target application is left to
the user. FLiT is implemented using 3 distinct languages; Python is
utilized for the command-line interface (as well as implementing the
dynamic build system in FLiT Bisect), GNU Make is used to build
the test application, and C++ is used for test implementation and
floating-point code. As such, our logs for capturing runtime event
data were defined with a simple logging function in each language
and calls to these functions were manually placed within the source
code.2

Finally, with a collection of logfiles captured from an execution of
FLiT on the MFEM tool, along with the model definition dictionary,
FLOAT parses the logs and constructs a NetworkX DAG data struc-
ture. The provided model guides the creation of the data structure,
so ill-defined dependency relationships are identified and flagged to
the user as exceptions. The resulting object is provided to the user
for manual analysis, alongside a number of built-in functions for
analyzing the data.

In this example test case, we compare the results of executing
MFEM’s example Test-13 under two compilers (g++ and clang),
with 3 flags (--ffast_math, --funsafe-math-optimizations,
and --mfma) all under -O3 forming a small search space of six
distinct compilations, alongside a ground truth compilation using
g++ in -O2. In Figure 5 one may see the six distinct compilation
branches. This concrete execution trace DAG is provided in the form
of a Gephi graph specification for interactive visualization and graph
processing.

Additionally, Figures 6 show relative execution time for all events
captured in the execution using -j4 and -j respectively.

4 RESULTS

Our use of FLOAT yielded a few interesting results:

1. Defining the abstract model and workflow dependencies be-
comes more difficult with added functionality as compared to
the original design.

2. Capturing the defined model required only a handful of log
capture points, but these points were enough to identify a
significant performance bug in the implementation.

3. Applying FLOAT even to very simple, pathological test cases
for the FLiT tool are enough to identify, and quantify, perfor-
mance bottlenecks within the implementation and guide future
development.

The FLiT framework follows a fairly simple model; search over the
space of compilations and run an executable for each. FLiT’s Bisect

2Practices such as Aspect-Oriented Programming might help automate
this in future.



Figure 5: After the user instruments logs to capture run-time events for
each task described within the abstract model, the logs are read into
FLOAT. An implementation DAG is generated using Gephi displaying
unique event relationships for analysis. Edge-weights represent run-
times, and edge/node labels are removed here due to size constraints.
All event details captured by user-implemented logs are available
within the data structure provided by FLOAT.

functionality isn’t much more complex from this level and can be
viewed as adding two layers of bisection search. Despite this, the
implementation required changes to the underlying model within
FLoAT which are in some ways unnecessarily complicated. In the
case of FLiT Bisect, many components of FLiT testing are reused,
but to expedite the search process a number of branch conditions
are created which change the dependencies of certain events. As
an example, in a single FLiT Bisect run it is necessary to compile
files using the --fPIC flag for the symbol bisect stage. Depending
on whether Bisect is run on a single compilation or against a set
of compilations these compilations may depend on different tasks
within the FLiT model, where logically the compilation of these files
has no dependency within the other defined tasks.

With the model constructed, implementing data capture neces-
sary to feed FLOAT is quite simple; since the captured tasks are
high-level abstractions there is generally no need to search through
complex stack traces or nested functions and definitions as they are
usually launched from top-level function calls. Once captured we
immediately found a violation of the constructed model for FLiT
in that the ground-truth test compilation was being executed redun-
dantly; due to the complexity of the implemented recursive Make
build system, a small technical oversight caused the executable to be
forcibly run each time a separate test executable was run. Aside from
doubling the number of tests being run, the ground truth executable
is compiled as a trusted baseline usually with with fewer compiler
optimizations so that it is generally one of the worst-performing
compilations in the search space.

By only tracing high-level tasks we were able to quickly iden-
tify a general performance model for the FLiT tool. With a goal
of improving the overall design of the FLiT framework one may
quickly analyze the critical path of a particular execution, or verify
at-a-glance in the provided visualizations the tasks which occupy

Figure 6: Event timing from a FLiT run using ‘-j4’ to limit to 4 jobs. A
missing bar represents a duration smaller than the charts resolution;
this is caused by some tests being disabled in the test run.



significant runtime. This allows one to isolate those tasks which
deserve deeper analysis, and targeted profiling of these tasks can
take place in a more narrow scope for higher return on invested
development time.

5 CONCLUSIONS, FUTURE WORK

We have motivated the need for a flexible and customized workflow
analysis and transformation framework. In addition to helping en-
hance trust aiding in adoption of complex applications, FLOAT also
helps reveal potential deficiencies of an existing workflow. FLOAT
has already played an important role in enhancing the FLiT tool as
well as detecting serious performance bugs lurking within it. From
our walk-through in §3, additional insights provided by FLOAT in
enhancing a user’s trust should be apparent: capturing the abstract
model behind an application and mapping it onto the execution
allows for much simpler and more focused visualizations of the
applications workflow. As we gain more experience with FLOAT,
we will be making improvements to its specification mechanisms
and validation mechanisms, as outlined under future work.

Future Work
Some of the anticipated future directions of FLOAT are as fol-
lows. First, we are developing ways to optimize floating-point codes
through precision tuning (e.g., [11]) and selective expression rewrit-
ing (e.g., [10]). The search-space in these cases will be the execution
differences between the original (say, higher) precision- and the new
(lower precision) codes.

Second, we are interested in input (test) generation for CPU and
GPU codes. In this case, the search-space will be the behavior under
the initial tests, and (after monitoring coverage) additional tests
administered to enhance coverage. Our initial results in this area
have been published [9] and are planned to be integrated into FLOAT
along with facilities to visualize heterogeneous compilations and
optimizations.

Given that compilation itself is a rich domain, it may pay to
focus FLOAT to excel in visualization support for this domain.
For instance, if static analysis methods were to be used to augment
dynamic analysis, additional tasks as well as dependencies and event-
types will have to be accommodated into FLOAT. In all these cases,
having a framework such as FLOAT will retain the advantages of
workflow analysis and improvement.
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