
Interactive Analysis of Post-Silicon Validation Data
Andres Lalama, Johannes Knittel, Steffen Koch, Daniel Weiskopf, Thomas Ertl*

University of Stuttgart

Sarah Rottacker, Raphaël Latty, Jochen Rivoir†

Advantest Europe GmbH

Figure 1: Overview visualization of a post-silicon validation dataset. Based on a chosen target error attribute (here: JTotal), validation
engineers can define thresholds on the right side of the interface to divide test cases into passed, neutral, or failed (C). Our system
then projects a subspace of the data composed of all symptom attributes into a two-dimensional scatter plot in which each dot is
colored according to its test outcome as defined by the specified thresholds. Users can select points of interests in the projection, for
instance, clusters of mainly failing test cases (A), which could indicate that the source of the problem differs between these groups.
In subsequent interactive analysis steps, engineers can refine these selections (B) to delineate problems and they can investigate
the correlation of input attributes with such extracted problem cases to obtain an understanding of its causes.

ABSTRACT

Analyzing post-silicon validation datasets to spot bugs and obtain
hints for design improvements challenges validation engineers with
complex and sometimes subtle problems. Through experience, engi-
neers gain accuracy and speed in recognizing the cause of a problem,
but analyzing the data remains a tedious and time-consuming pro-
cess involving substantial manual effort. Sometimes, validation
engineers just have a gut feeling regarding the cause, and in many
cases they can find themselves at a loss in understanding the cause
of a problem. This work presents a new approach that visually sup-
ports validation engineers in debugging chips during the post-silicon
validation phase. It was developed as part of a collaboration between
visualization researchers and post-silicon validation domain experts,
aiming at tackling complex problems that present subtle differences
between test case outcomes.

Index Terms: Visual analytics—Debugging—Multivariate
Dataset—;

*e-mail: andres.lalama@vis.uni-stuttgart.de
†e-mail: firstname.lastname@advantest.com

1 INTRODUCTION

Post-silicon validation deals with testing and debugging integrated
circuits (IC) chips on actual hardware. After a specific chip has
been designed, it has to be tested in hardware to make sure that it
works properly without critical bugs that may have been missed in
earlier development and testing stages, to obtain hints about possible
design improvements, and to specify a set of optimal parameters and
operating conditions. To achieve this, the chips undergo several au-
tomatic test runs with different parameters and operating conditions.
Engineers then analyze the produced validation dataset with regard
to the testing objectives, which is typically a difficult, tedious, and
time-consuming process that requires in-depth domain knowledge.

In our joint project, visualization researchers and domain experts
from a leading provider of automatic IC test equipment collabo-
rate to develop a visual analytics approach that aims to specifically
support such post-silicon validation tasks. In this work, we first
outline a typical validation workflow and describe the numerous
challenges and requirements that arise when analyzing the obtained
datasets. We then present an early version of our visualization ap-
proach (Fig. 1) that provides a straightforward yet flexible workflow
specifically adapted to the complex testing objectives and that aims
to support validation engineers during post-silicon validation (PSV)
and ultimately help to lower the barrier of entry for PSV debugging
experts. Our use case shows that the developed approach is effective
for extracting and characterizing different problem cases in multidi-



mensional validation datasets and for providing initial hints about
underlying causes.

2 RELATED WORK

While there is a considerable body of work related to the design and
execution of post-silicon validation tests for different chips, holistic
(published) approaches for the visual analysis of resulting validation
datasets for debugging and error localization purposes are lacking
to date. Many analysis steps to retrace and understand problems
still require significant manual human effort [3]. To better support
validation engineers, some approaches have thus proposed the use
of clustering algorithms such as k-means for detecting anomalies to
better understand whether failing tests constitute a bug [3, 11].

Visual analytics approaches that generally aim to support analy-
ses for large multidimensional datasets in other domains are most
relevant to our approach. In addition to simpler visualization tech-
niques such as scatter plot matrices [1] and parallel coordinates [8],
more advanced, interactive approaches have been developed to gain
insights into multivariate datasets.

Several approaches [2, 5, 6] first reduce the data to two-
dimensional scatter plots (e.g., with UMAP [13]) to provide an
overview and enable analysts to explore how clusters of seemingly
similar items differ to each other. Visual Neural Decomposition [9]
applies a neural network to extract and visualize relationships sep-
arately for similar cases. Another strategy is to first extract sub-
spaces of interest, which can then be visualized in more compact
ways [7, 10, 18]. For finding relevant attributes or sets of attributes,
we can rank attributes and pairs of attributes according to statisti-
cal correlation factors [4, 12, 15] or classification metrics such as
separability [17]. Such rankings also motivate the use of iterative
workflows in which analysts increase the complexity of relationships
step-by-step, guided by suggestions based on previously performed
selections [14, 19, 20]. The correlation map by Zhang et al. [21]
visualizes pairwise correlations between attributes in a graph.

However, these approaches typically either aim to provide general
methods for exploring multivariate datasets or focus on domains
other than ours. In contrast to this, our approach is specifically
tailored to the challenges and requirements of post-silicon validation
analysis tasks.

3 REQUIREMENTS

One of the main goals in post-silicon validation is to better under-
stand in which situations the first prototypes of integrated circuit (IC)
chips do not behave as expected or produce erroneous outputs. We,
an interdisciplinary group composed of visualization researchers
and domain experts from a leading provider of automatic IC test
equipment, discussed the typical setting and workflow of post-silicon
validation in a series of meetings, while iterating over prototypes
based on real world data. We based this process on the design study
methodology [16]. In particular, we were interested in the challenges
validation engineers currently face when analyzing the collected data
for spotting bugs and obtaining hints for design improvements.

3.1 Data Collection
The chips are tested in an automated way using different parameters
and operating conditions, often in iterative batches. The resulting
multivariate validation dataset captures several measurements in
addition to the respective parameters and operating conditions for
each test run.

The project’s domain experts divide the attributes of the collected
data into three categories. Input attributes (inputs) correspond to
the different parameters and operating conditions under which the
chip was tested. Target attributes (targets) indicate whether the chip
performs in-spec or out-of-spec and are thus the most important
quantities for determining whether the chip failed a specific test
run. However, instead of binary pass/fail test results, they are often

floating point numbers that, for instance, express the extent of devi-
ations from the expected output, i.e., engineers want to find out in
which situations such a target attribute has high values. Symptom
attributes (symptoms) may contribute valuable information about
the state of the device under test to gain an understanding of what
is going on. They could indicate errors as well as unexpected or
undesired behavior that may not necessarily lead to a failed test run
in a strictly technical sense (out-of-spec behavior).

3.2 Analysis Goals
According to the domain experts in our project team, validation engi-
neers analyze the data to investigate in which situations out-of-spec
behavior occurs and to get clues about possible design improvements.
Since there could be very well several problems that cause undesired
behavior, the engineers typically first try to identify groups of prob-
lem cases that probably share a similar root cause. While validation
engineers can quickly identify out-of-spec test cases based on the
collected target attributes, they are interested in how they can char-
acterize and delineate these issues based on symptom attributes and,
for each identified group of problems, understand the relationships
between input attributes and the respective problem.

One strategy that worked well in the past is to first identify all
problematic cases based on one or several target attributes, for in-
stance, test cases that exhibit an error rate above a certain threshold.
In a next step, the engineers would look at the symptoms to discern
different groups of problematic cases. For each such group, ana-
lysts would then investigate which input attributes and value ranges
correlate with the respective undesired outcome to get a better un-
derstanding of what could cause the problem or which operating
conditions should be avoided.

Hence, in contrast to more generic analyses of multivariate
datasets, the goal here is two-fold. The first goal is to analyze
a subspace of the dataset for extracting and characterizing individual
problems. Based on and using this obtained knowledge, the sub-
sequent goal is then to investigate the relationships between input
attributes and the extracted problems.

3.3 Challenges
Validation engineers have to deal with numerous challenges when
analyzing the data. They need to accomplish two major tasks. They
must disentangle and characterize different problem cases solely
based on the collected data, mainly involving symptom and target
attributes, and they must gain a better understanding of the relation-
ships between input attributes and undesired outcomes, involving all
attributes.

Recognizing truly multidimensional and non-linear relationships
in datasets is a difficult endeavor, particularly because of the growing
sparsity of data points in high-dimensional spaces. Even if we can
extract a limited set of interesting attributes for a specific problem
case, it may still be challenging to visualize their multidimensional
relationship with the respective target attribute(s) so that analysts
can better understand possible problem causes.

We must also take into account that the occurrence of errors can
be sporadic and that, depending on the test objective, there may well
be a spectrum of results that sometimes cannot be clearly categorized
as passed or failed. It also happens that errors only occur with an
unfavorable combination of different input parameters and value
ranges. Furthermore, problems that trace back to different causes
can overlap. The applied methods must also deal with different
attribute types and encodings, such as binary inputs, categories,
floating point values, and integer values.

As of now, the process of analyzing validation datasets is a tedious,
labor-intensive process that requires skilled engineers. They often
start with testing initial, ‘gut-driven’ hypotheses and continue the
analysis process in an iterative manner, employing statistical tests
and straightforward visualizations such as scatter plot matrices.



Figure 2: Interactive workflow with its phases, the main direction of
analysis, and possible feedback loops.

4 METHODOLOGY

As mentioned in the previous section, the analysis and debugging
of multivariate data generated by post-silicon validation (PSV) tests
is complex and ultimately relies on skilled validation engineers te-
diously analyzing datasets using straightforward visualizations and
in-house developed tools. Thus, in our joint project, we are de-
veloping an interactive, integrated visualization approach for the
analysis of PSV test data inspired by the design study methodol-
ogy [16]. Our approach is intended to provide a basic, yet flexible
workflow adapted to the complex objectives that supports validation
engineers in finding, characterizing, and understanding problematic
cases and failed test runs and helps lower the barrier of entry for
PSV debugging experts. The focus of this paper is to present an
early version of this first integrated visualization approach for PSV
and its effectiveness for analyzing initial problems. The extent to
which this reduces the learning curve and workload for experts has
yet to be evaluated.

4.1 Workflow
Based on many conversations and discussions between PSV and
visualization experts, we developed a workflow comprising several
steps to tackle the aforementioned challenges in the analysis of PSV
test data. Each step focuses on a specific set of objectives:

1. Data Selection: The selection of input and symptom attributes
to be analyzed. Depending on the task, different targets or
symptoms could be relevant, and other attributes in the dataset
might not be of use during the analysis (e.g., test id).

2. Candidate Identification: An overview and first rough ex-
ploration of the test cases after the analyst has chosen one
target attribute as main error indicator. This step should al-
ready provide first insights into possibly different groups of
error cases.

3. Problem Refinement: The selection, comparison, and delimi-
tation of possible groups of problems (subproblems), mainly
involving symptom and target attributes, since the dataset may
contain several not necessarily related issues that analysts want
to get a grasp on.

4. Problem Analysis: An analysis of the causes of an identified
(sub-)problem in terms of input attributes and value ranges,
which is important for fixing bugs, designing future test runs,
and determining suitable operating conditions.

As shown in Fig. 2, the phases already imply a general direction
of the workflow. However, the individual objectives often cannot
be achieved in one step right away, but can only be worked out
successively through iterative analyses. Such iterations can be car-
ried out within individual phases or encompass several phases. An
example of this is the selection of a possible subproblem, which is
initially performed in the second phase, but is extended or restricted
accordingly after comparison with other problems and cases that
have passed the test (third phase). The user interface of the integrated
approach is also aligned to the different phases and offers separate
interactive visualizations tailored to the respective objectives.

Figure 3: The tabular data selection interface, where users can inspect
the preprocessed data and choose the attributes to be analyzed.

The prototype was created as a web-based application to simplify
testing, provide access to intermediate stages of the development,
and make sure that the developed approach scales well to many
clients based on modern web technologies. For some computations,
such as the UMAP projection, we still rely on server-side computing
but aim at integrating those as well on the client-side in the long
run. In the following, the visualization interfaces and the respective
interaction possibilities are presented. An example of an analysis,
and thus the interaction of the individual interfaces, is presented in
Sect. 5.

4.2 Data Preprocessing and Selection
As indicated in Sect. 3.1, there are three categories of attributes in
the collected validation dataset: inputs, symptoms, and targets. In
addition to the actual dataset, our system can also load a separate
file that indicates the category of each attribute. Even though this
is optional, it greatly supports the workflow, since the different
categories differ in relevance for each of the analysis steps that we
outlined in the previous section. Users may also change the category
associations (e.g., for a specific analysis task, the assignment of
symptom and target attributes might differ).

After loading both files, the system preprocesses the data. This
includes an analysis of the attributes’ values and potential problems.
Attributes that show no variance in their values, are empty, or are
deemed as a counter will be automatically deactivated. Fig. 3 shows
the interface after the preprocessing step.

Since the data is organized into test cases, we show them in a
table-based interface in which each row depicts one test result with
respective input parameters, symptoms, and target values. The inter-
face indicates whether attributes have some missing values. If this
is the case, it automatically suggests dropping the rows containing
the missing values, but the user can opt to fill those values with
zero or with the attribute’s mean value. After dealing with these
detected issues, users select those attributes of the data they would
like to analyze in subsequent steps, thereby filtering the test data to
a suitable subset.

To visualize the attribute’s value distribution, we show a compact
histogram view that fits well to the tabular view due to its low height.
It is possible to switch between a linear and a logarithmic scale.
The latter improves the handling of skewed value distributions, both
visually and computationally. The system additionally displays the
attribute’s mean value and variance.

4.3 Candidate Problem Identification
The second phase aims at providing an overview of the data while
indicating latent similarity of the test cases at the same time. Show-
ing an overview of passed and failed tests helps identify and select
subsets of interesting test cases to be included in subsequent analysis
steps. The validation engineer first sets one attribute as the chosen
target that best fits their analysis goal (out of the set of targets) and
specifies two thresholds of that target with a slider that maps the
(continuous) value into one of three possible test results: passed
(‘good’), in-between (‘neutral’), and failed (‘bad’), as depicted in
Fig. 4 B. The user interface typically marks passed cases in blue,
in-between cases in gray, and failed cases in red. We visualize the



Figure 4: Users can define ranges of positive, negative, and undefined
test outcomes with sliders (B). These are depicted in a histogram view
(A) and as a bar chart (C) to understand the numbers of test cases
that fall into these categories. The latter can also be used for selecting
categories in a convenient way.

distribution of the chosen target attribute with a histogram (Fig. 4 A)
in which we also indicate the respective thresholds using accordingly
stacked bars to help analysts set suitable thresholds. Based on this
classification, we provide several views for generating an overview
of the dataset and enabling analysts to get first insights into possibly
different groups of error cases, which we describe in the following
sections.

4.3.1 Data Projection

We project a subspace of the dataset involving only symptom at-
tributes into a two-dimensional scatter plot using UMAP [13] to
provide analysts with a visual overview of the test cases (Fig. 1 A).
Each dot represents one test case and is colored according to the test
result (defined by the specified thresholds). As outlined in Sect. 4.1,
validation engineers typically discern different groups of problems
by looking at the symptoms. Hence, the idea is that similar test
cases in terms of their symptoms should also be projected nearby,
possibly forming visual clusters. Since the symptoms are used for
the disambiguation of different problem cases in traditional work-
flows, projecting test cases based on them provides a good chance
of indicating subproblems visually.

Based on this visualization, analysts can then interactively select
groups of points of interest to investigate them further and save them
for subsequent analysis steps. For instance, a visual cluster that
mainly comprises red dots could indicate one group of test cases
that exhibit a similar issue. Even though such a projection inevitably
leads to information loss and may not always preserve data distances,
it can nevertheless offer hints about possible groups of subproblems
and serve as a starting point for further analysis.

4.3.2 Computed Clusters

Since the projection might not always succeed in separating groups
of problematic cases as visually distinguishable clusters, the system
also supports the computation of clusters in the multidimensional
space by applying k-means clustering either using only symptoms
or only inputs (Fig. 5). After the clusters have been computed, we
can switch the coloring of the dots to the computed clusters, i.e., the
color of a dot then indicates its associated computed cluster rather
than its test result.

Analysts can then assess whether there is an overlap with the
visually formed clusters, but they may also get a first hint whether
a group of similar test cases in the input space corresponds to one
of the interesting clusters. One important caveat is, though, that
analysts have to specify the number of clusters, so they may need to
run the clustering several times with different hyperparameters to
obtain a useful clustering.

Figure 5: (A) Computed clusters mapped to user-defined ranges.
(B) Bar chart of computed clusters with their associated color.

4.3.3 Clusters Selection
Our interface helps analysts select interesting clusters and save them
for further analysis. We provide several ways to select clusters (also
called selections in this work). Analysts can select them in the scatter
plot using a circular or rectangular brush, they can choose all cases
with one specific outcome (e.g., passed), or they can click on one of
the computed clusters to select all associated test cases.

These clusters then typically represent either potential subprob-
lems (‘bad clusters’) or clearly passing test cases (‘good clusters’).
The main advantage of separating the dataset into several such clus-
ters is that it simplifies subsequent analysis steps in which analysts
compare different ‘bad clusters’ to each other or contrast them to one
or several ‘good cluster(s)’. Operating on meaningful subsets of the
data enhances the utility of our visualization views (e.g., less clut-
ter and possibly easier-to-spot relationships in parallel coordinates
plots) and it also greatly supports validation engineers in character-
izing and understanding individual problems compared to analyzing
entire datasets as a whole. Our system offers several interaction
mechanisms so that users can refine these clusters iteratively, as
presented in the next section.

4.4 Problem Refinement
In the next analysis step, the system allows exploring previously
created selections so that analysts can delineate groups of problems
and obtain a better understanding of the problem in terms of symp-
toms. For instance, a selected visual cluster may still contain two
problems that should be investigated separately. We may also want
to understand whether other test cases placed elsewhere in the pro-
jection still exhibit similar symptoms. Analogously to our workflow,
users can click on the Refine tab, which provides several views to
support the refinement and debugging of selections and problems.

4.4.1 Re-Projection
Each row in the Refine view corresponds to one selection, as depicted
in Fig. 6. We highlight the associated points with a black outline
in the compact projection overview to the very left. The system
also computes a local UMAP projection using only the data items in
the respective selection, which is then visualized next to the main,
global projection. With the two projections side-by-side, analysts
can assess whether there are any larger differences between the
projections, for instance, the occurrence of additional visual clusters
in the local projection, which are not visible in the global projection
(e.g., due to competing projection stresses). Users can interact with
this local projection to modify selections as well as adding new ones.

4.4.2 Attribute Scoring and Difference Assessment
Next to the two projections, we show a scoring of the attributes with
small colored dots from white to purple based on how different the
histogram of the respective attribute is to our reference selection
(which could be another selection or the entire dataset). The scoring



Figure 6: The Refine view allows investigating and modifying clusters of interest that are visualized in a row-based layout for easier comparison.
This example shows two clusters mainly comprising failed test cases (in red). For each row, The scatter plot (A) highlights the respective cluster on
the initial global projection based on symptoms (first phase). The second scatter plot (B) visualizes the reprojection of the respective data selection
to help understand potential intra-cluster patterns. Column (C) shows a ranking of interesting attributes based on the Kolmogorov–Smirnov test.
The histogram views (D) show how the distribution of values of a specified attribute differs between a reference cluster (top histogram in each row)
and the respective clusters (bottom histogram), which helps delineate different subproblems.

is based on the nonparametric Kolmogorov–Smirnov test, which
evaluates the distance between two distributions by computing the
maximum distance between two (discretized) cumulative density
functions at any bin. High values in purple indicate pronounced dif-
ferences between the two distributions, guiding users to potentially
interesting symptom attributes that could help differentiate different
selections and, thus, subproblems. When we know which symptom
attributes differ the most between two selections, odds are high that
they can help to characterize a given problem.

To the right, the user interface displays two stacked histograms
that both correspond to one selected attribute but on different sub-
sets of the dataset, which allows users to explore in greater detail
how certain symptom attributes differ between selections. The first
histogram at the top visualizes the distribution of values in a user-
defined reference selection; the one underneath is based on all data
items of the respective selection in the current row. To simplify
their comparison, we align them vertically in our row-based layout
of potential subproblems. The option to reorder rows interactively
lets users compare problems more easily. The minimum, maximum,
and mean of the values represented in the histogram are displayed
on the right side to further support the difference assessment of the
attributes. The best case scenario is to find a distribution in one can-
didate problem that rarely overlaps with another candidate problem,
since the respective attribute and identified value ranges could then
be used to delineate this problem from other problems in the dataset.

Once analysts have identified an attribute of interest that helps
delineate or understand a given set of problematic cases, they can
bookmark it for subsequent analysis steps. This list is then stored to-
gether with the respective selection and serves as a compact problem
characterization in terms of involved symptom attributes.

4.5 Problem Analysis

The final step of the workflow supports validation engineers in
developing an understanding of the cause of identified errors by
visualizing which input attribute value combinations relate to a
problem, i.e., for a given subproblem we identified and delineated
in phases two and three, we want to find out which inputs and
input ranges correlate with the occurrence of that subproblem. The
rationale behind this idea is that if one attribute or a combination

of several attributes is correlated to failed test cases, it is likely that
these inputs are causing the problem. Should several input attributes
in combination cause a problem, their joint correlation with the
target attribute should be higher than the individual correlations of
single inputs and the target.

To achieve this, we first add for each user-identified subproblem
a binary attribute to the dataset that depicts if the respective item is
part of the identified problem and filter the dataset to all items in the
selection plus all items of a ‘good’ cluster mainly containing passing
test cases. We then compute and visualize the mutual information
between (sets of) inputs and the corresponding binary attribute to
get an idea which input attributes correlate with our subproblem the
most. The advantage of computing the mutual information is that
we can also detect nonlinear correlations, since it is an information-
theoretic test of dependence.

Fig. 7 shows an example. The left side lists all previously created
selections of subproblems and the respective symptom attributes
that have been bookmarked (Fig. 7 A). If the user picks one of these
selected problems, the system visualizes a ranking of possibly corre-
lated attributes and sets of attributes in a grid-like layout (Fig. 7 B).
The first column of dots indicates the mutual information scores
(from purple to orange) between the respective input attribute to the
left and our target binary attribute. The second column of dots visu-
alizes the mutual information between attribute pairs and our target,
the third column between sets of three attributes and our target, and
so on. The parallel coordinates plot (Fig. 7 D) visualizes the data
items in the currently selected problem. Users can hover over a dot,
which will update the axes of the parallel coordinates plot at the
bottom with the respective input attributes. The mutual information
grid helps users to select interesting subspaces and to quickly assess
how the selected input attributes influence the subproblem of interest,
even if the actual number of attributes in the dataset is high.

An exhaustive computation of the mutual information of all pos-
sible attribute combinations and the target would be prohibitively
expensive. As of now, we compute the mutual information up until
sets of three input attributes, but we plan to implement an iterative
process in the future to also support subspaces of four and more
input attributes by pruning low-scoring sets after each step and only
extending the remaining sets for higher-order correlations.



Figure 7: Problem Analysis view to investigate which input attributes
and ranges correlate to one of the identified subproblems. After select-
ing one of the previously created selections of subproblems (A), the
system visualizes a ranking of possibly correlated attributes and sets
of attributes in a grid-like layout (B). The first column of dots indicates
the mutual information from purple (low) to orange (high) between
the input attribute to the left and our target, which is a binary attribute
indicating the membership to the respective problem selection. The
second column of dots visualizes the mutual information between
attribute pairs and our target, and so on. Users can hover a dot, which
will update the result view (C) showing the score and attributes being
analyzed, as well as the axes of the parallel coordinates plot at the
bottom accordingly (D), visualizing the data items in the selection.

5 USE CASE

As stated in Sect. 3, validation engineers want to understand in
which situations the first chip prototypes fail to behave as expected
and which input attributes and value ranges lead to such erroneous
behavior. We describe the following use case based on a proprietary
artificial benchmark dataset, which is based on realistic scenarios
and was created by domain experts. We assume here that we have
a clocking chip that should not exhibit too high jitter, that is, the
timing of the output signal should not deviate too much from the
ideal values. The dataset consists of 10,000 data items and 64
attributes (59 after preprocessing). The chosen target is the total
jitter JTotal.

Based on visual clusters of red points in the projection (see Fig. 1),
the validation engineer creates three selections of candidate problems
cp1,cp2, and cp3, as well as a fourth selection comprising all data
items that passed the test (goodRef ) for comparison. In the Refine
tab, the engineer sees that the first selection differs greatly from the
other two problem selections, but the second and third selection show
similar characteristics in the respective top four symptom attributes.
This is an indicator that, even though the clusters were further away
in the projection, they still might be caused by the same problem.
Now, the validation engineer takes a closer look at the histograms
and sees how well the distributions match. The candidate problems
cp3 and cp2 show a different distribution of the symptom attribute
fErr as depicted in Fig. 6 D.

The validation engineer now bookmarks relevant symptom at-
tributes for both selections of problem cases. They bookmark JRan-
dom, the random jitter, and dtMin and dtMax, depicting the limits of
control deviations (Fig. 7 A).

In the final stage, the mutual information for the identified sub-
problems is computed. Fig. 7 B depicts the ranking of possible
attributes and sets of attributes in descending order (top to bottom)
of cp2. Hovering the topmost node having the highest rank for three
input attributes, the engineer realizes that P, fCkd and TImbal seem

to correlate with problem cases in cp2. This updates both the small
overview (Fig. 7 C) and the PCP (Fig. 7 D) that shows the correlation
between the input attributes and the chosen target attribute. One
interesting finding is that, for this subproblem, problematic test cases
only occur when attribute P has a value of 1.5. This is consistent
with the known ground truth of this benchmark dataset.

6 DISCUSSION

A strength of our proposed approach and the associated workflow is
that they were developed iteratively in close collaboration with PSV
experts, taking into account broad and longstanding experiences
gained on previously used, non-integrated procedures. In contrast
to previous work on the visual analysis of multivariate data, our
system is specifically tailored to the needs and requirements of
validation engineers that analyze post-silicon validation data. The
choice of visualization components and interaction methods are
based on intensive discussions after reviewing alternatives. Another
strength of this work is that we had access to a real test data set for
the development. It certainly helped in making the approach more
robust and informed many design decisions, especially regarding the
close integration of attribute types (symptoms versus targets) and
regarding data preprocessing.

At the same time, however, it is clear that focusing on a specific
dataset also has drawbacks. There is a risk of overfitting the approach
to the errors it contains and their causes. Unfortunately, chip test
data sets are rarely (if at all) publicly available, which is not least
due to the fact that this data is usually strictly confidential. Another
challenge is that not all possible or even typical problems will be
present in one test data set. To counteract this problem, we used
a tool for generating artificial test data sets. This tool allows us to
generate fault situations with different levels of complexity, and at
the same time the ground truth is available for evaluating the visual
analytics approach.

Our first experiments show that it is possible with the presented
approach to detect and characterize errors by means of interactive
analyses in addition to the meaningful analysis of a real data set.
However, these analyses have so far only been applied by ourselves
to a manageable number of error situations. A more comprehensive,
independent, and long-term evaluation of the approach with external
users is still pending. Nevertheless, based on our experience and
carried out analyses, we are convinced that our workflow-driven
approach and design can be effectively applied for debugging PSV
data. We consider the definition of the iterative workflow and the
choices made regarding the interactive visual components an impor-
tant contribution that can be extended to cover additional problem
cases in the future.

7 CONCLUSION AND FUTURE WORK

With this work, we contribute a workflow that visually aids valida-
tion engineers in debugging complex problems during post-silicon
validation. Based on this workflow, we developed a first prototype
implementation that enabled us to analyze a real-world validation
dataset and several benchmark datasets successfully, showing the
suitability of our proposed approach. In the future, we want to get
additional feedback from validation engineers who are utilizing our
system as part of their daily analyses. This will most probably lead
to an improvement of the approach’s usability and further revisions
of design decisions. In addition, we plan to incorporate additional
automatic analysis steps with matching visualization and interac-
tion techniques that can be integrated into a holistic workflow for
analyzing post-silicon validation data.

ACKNOWLEDGMENTS

This research was supported by Advantest as part of the Graduate
School ”Intelligent Methods for Test and Reliability” (GS-IMTR) at
the University of Stuttgart.



REFERENCES

[1] D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield.
Scatterplot Matrix Techniques for Large N. Journal of the American
Statistical Association, 82(398):424, 1987. doi: 10.2307/2289444

[2] A. Chatzimparmpas, R. M. Martins, and A. Kerren. T-viSNE: In-
teractive Assessment and Interpretation of t-SNE Projections. IEEE
Transactions on Visualization and Computer Graphics, 26(8):2696–
2714, 2020. doi: 10.1109/TVCG.2020.2986996

[3] A. DeOrio, Q. Li, M. Burgess, and V. Bertacco. Machine learning-
based anomaly detection for post-silicon bug diagnosis. In 2013 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp.
491–496, 2013. doi: 10.7873/DATE.2013.112

[4] C. Eichner, H. Schumann, and C. Tominski. Making Parameter Depen-
dencies of Time-Series Segmentation Visually Understandable. Com-
puter Graphics Forum, 39(1), 2020. doi: 10.1111/cgf.13894

[5] T. Fujiwara, O. H. Kwon, and K. L. Ma. Supporting Analysis of
Dimensionality Reduction Results with Contrastive Learning. IEEE
Transactions on Visualization and Computer Graphics, 26(1):45–55,
2020. doi: 10.1109/TVCG.2019.2934251

[6] M. Gleicher. Explainers: Expert explorations with crafted projec-
tions. IEEE Transactions on Visualization and Computer Graphics,
19(12):2042–2051, 2013. doi: 10.1109/TVCG.2013.157

[7] M. Hund, D. Böhm, W. Sturm, M. Sedlmair, T. Schreck, T. Ullrich,
D. A. Keim, L. Majnaric, and A. Holzinger. Visual analytics for concept
exploration in subspaces of patient groups: Making sense of complex
datasets with the Doctor-in-the-loop. Brain Informatics, 3(4):233–247,
2016. doi: 10.1007/s40708-016-0043-5

[8] A. Inselberg. The plane with parallel coordinates. The Visual Computer,
1(4):69–91, 1985. doi: 10.1007/BF01898350

[9] J. Knittel, A. Lalama, S. Koch, and T. Ertl. Visual Neural Decom-
position to Explain Multivariate Data Sets. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1374–1384, 2021. doi: 10
.1109/TVCG.2020.3030420

[10] J. Krause, A. Dasgupta, J. D. Fekete, and E. Bertini. SeekAView:
An intelligent dimensionality reduction strategy for navigating high-
dimensional data spaces. In Proceedings of the 2016 IEEE Symposium
on Large Data Analysis and Visualization, LDAV 2016, pp. 11–19,
2017. doi: 10.1109/LDAV.2016.7874305

[11] B. Kumar, K. Basu, and V. Singh. A Technique for Electrical Error
Localization with Learning Methods During Post-silicon Debugging.
In 2018 Ninth International Green and Sustainable Computing Confer-
ence (IGSC), pp. 1–8, 2018. doi: 10.1109/IGCC.2018.8752141

[12] A. Malik, R. Maciejewski, N. Elmqvist, Y. Jang, D. S. Ebert, and
W. Huang. A correlative analysis process in a visual analytics en-
vironment. In Proceedings of the 2012 IEEE Conference on Visual
Analytics Science and Technology, VAST 2012, pp. 33–42, 2012. doi:
10.1109/VAST.2012.6400491

[13] L. McInnes, J. Healy, N. Saul, and L. Großberger. UMAP: Uniform
Manifold Approximation and Projection. Journal of Open Source
Software, 3(29):861, 2018. doi: 10.21105/joss.00861

[14] T. Mühlbacher and H. Piringer. A partition-based framework for build-
ing and validating regression models. IEEE Transactions on Visual-
ization and Computer Graphics, 19(12):1962–1971, 2013. doi: 10.
1109/TVCG.2013.125

[15] H. Piringer, W. Berger, and H. Hauser. Quantifying and comparing fea-
tures in high-dimensional datasets. In Proceedings of the International
Conference on Information Visualisation, pp. 240–245, 2008. doi: 10.
1109/IV.2008.17

[16] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:
Reflections from the trenches and the stacks. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2431–2440, 2012. doi:
10.1109/TVCG.2012.213

[17] A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind, H. Theisel,
M. Magnor, and D. Keim. Combining automated analysis and visualiza-
tion techniques for effective exploration of high-dimensional data. In
Proceedings of the 2009 IEEE Symposium on Visual Analytics Science
and Technology, VAST 2009, pp. 59–66, 2009. doi: 10.1109/VAST.
2009.5332628

[18] A. Tatu, F. Maaß, I. Färber, E. Bertini, T. Schreck, T. Seidl, and D. Keim.

Subspace search and visualization to make sense of alternative clus-
terings in high-dimensional data. In Proceedings of the 2012 IEEE
Conference on Visual Analytics Science and Technology, VAST 2012,
pp. 63–72, 2012. doi: 10.1109/VAST.2012.6400488

[19] C. Turkay, A. Lundervold, A. J. Lundervold, and H. Hauser. Repre-
sentative factor generation for the interactive visual analysis of high-
dimensional data. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2621–2630, 2012. doi: 10.1109/TVCG.2012.256

[20] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. MacKinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. In Proceedings of the Confer-
ence on Human Factors in Computing Systems, pp. 2648–2659, 2017.
doi: 10.1145/3025453.3025768

[21] Z. Zhang, K. T. McDonnell, E. Zadok, and K. Mueller. Visual cor-
relation analysis of numerical and categorical data on the correlation
map. IEEE Transactions on Visualization and Computer Graphics,
21(2):289–303, 2015. doi: 10.1109/TVCG.2014.2350494


	Introduction
	Related Work
	Requirements
	Data Collection
	Analysis Goals
	Challenges

	Methodology
	Workflow
	Data Preprocessing and Selection
	Candidate Problem Identification
	Data Projection
	Computed Clusters
	Clusters Selection

	Problem Refinement
	Re-Projection
	Attribute Scoring and Difference Assessment

	Problem Analysis

	Use Case
	Discussion
	Conclusion and Future Work

