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ABSTRACT

Data visualization captions help readers understand the purpose of a
visualization and are crucial for individuals with visual impairments.
The prevalence of poor figure captions and the successful application
of deep learning approaches to image captioning motivate the use
of similar techniques for automated figure captioning. However,
research in this field has been stunted by the lack of suitable datasets.
We introduce LineCap, a novel figure captioning dataset of 3,528
figures, and we provide insights from curating this dataset and using
end-to-end deep learning models for automated figure captioning.

Keywords: figure captioning, line charts, deep learning dataset

1 INTRODUCTION

Data visualizations are commonly used in scientific papers to convey
complementary information and enhance readers’ comprehension.
Figure captions can help readers understand the purpose of a visu-
alization, and they are often the only means for individuals with
visual impairments to access figures. While guidelines for creating
accessible visualizations exist, many authors have yet to adopt these
practices when writing figure captions [22]. As such, automatic
caption generation for data visualizations can significantly alleviate
information inaccessibility for people with visual impairments.

Early efforts for automated figure captioning have primarily fo-
cused on developing rule-based and non-deep learning techniques
with modular pipelines [1, 7, 9, 23, 24]. While these methods do not
need large corpora of figures and captions, they are highly special-
ized and do not generalize well to other chart types and styles, or to
charts that require more complex high-level insights.

The advancement of deep learning has led to significant improve-
ments in the field of automated image captioning [20]. Researching
novel neural network architectures for image caption generation
would not have been possible without the curation of publicly-
shared datasets used for training and evaluation of these models.
These datasets tend to contain large amounts of images scraped from
the web with several captions crowd-sourced for each image. The
Flickr30K dataset [29], the Microsoft COCO dataset [21], and the
VizWiz-Captions dataset [10] are just a few examples of many image
captioning datasets that have been created over the past decade.

The recent successes of deep learning approaches in automated
image captioning motivate the application of similar approaches to
the task of automated figure captioning. However, research in this
field has been stunted by the lack of suitable training and evaluation
datasets. Therefore, we introduce LineCap, a dataset containing
line charts scraped from scientific papers each accompanied with
crowd-sourced natural language descriptions. We share our design
choices and challenges while curating LineCap, to help inform future
creators of figure captioning datasets. We also establish baseline
performances on LineCap and provide insights toward using deep
learning models for automated figure captioning.

*e-mail: amahinpei@g.harvard.edu
†e-mail: zonakostic@g.harvard.edu
‡e-mail: christanner@g.harvard.edu

2 RELATED WORK

Previous research has developed neural networks that generate nat-
ural language descriptions for charts when provided with the un-
derlying data in tabular form [5, 13, 26, 28, 36]. However, these
data-to-text models and their accompanying datasets are not suitable
for generating captions when the underlying figure data are not avail-
able, as is the case with most figures in scientific papers. Although
Obeid et al. [26] provide the original chart images in addition to data
tables and captions, their data were crawled from Statista1, which
only uses a limited set of chart styles and color schemes.

Chen et al. [4] and Qian et al. [31] use deep learning approaches
to generate figure captions from chart images; however, these works
trained models using FigureQA [16] and DVQA [14], which are
synthetic figure question answering datasets. To generate reference
captions for model training and evaluation, these works used a set
of templates to create captions based on the question-answer pairs
in the figure question answering datasets. The use of synthetic
charts and template-based reference captions drastically limits the
complexity of these datasets; the captions in these datasets only
convey low-level information (e.g., chart type, axis titles, and global
extrema) rather than high-level insights or trends. While describing
low-level details is also important to visually impaired individuals,
most low-level details can be extracted using figure parsing [30,
34] or question answering models [15, 35] and incorporated into
captions using natural language models. Furthermore, Lundgard
et al. [22] suggests that automated data visualization captioning
research should primarily focus on describing overall trends and
statistics. They categorize figure caption information into four broad
groups: level 1 (e.g., chart type, labels, and axis ranges), level
2 (e.g., descriptive statistics and extrema), level 3 (e.g., complex
trends and exceptions), and level 4 (e.g., domain specific insights and
explanations). Through a user study, they found that blind readers
consistently rank level 2 and 3 information as most useful [22].
However, captions provided by Chen et al. [4] and Qian et al. [31]
commonly fall under level 1 and occasionally level 2.

To address the limitations of synthetic data, the research commu-
nity has introduced non-synthetic datasets including SciCap [11],
ChaTa+ [33], and Chart-to-Text [17]. SciCap is a dataset of figures
and captions extracted from computer science papers published on
arXiv between 2010 and 2020. ChaTa+ is a much smaller dataset
of only 1,640 figures and captions extracted from scientific articles
on arXiv and The World Health Organization (WHO). Chart-to-Text
is another large figure captioning dataset that extends Obeid et al.’s
data-to-text dataset. Its figures and captions predominantly consist
of bar charts and are extracted from Pew Research2 and Statista.
While more diverse than synthetic datasets, the type and amount
of information provided in figure captions scraped from scientific
papers and online sources can vary dramatically. Some captions
only include limited, level 1 information which is insufficient for
visually impaired readers; other captions include extraneous, level 4
information which no model or layperson can deduce without access
to external knowledge or the content of the article.

1https://www.statista.com/
2https://www.pewresearch.org/



3 LINECAP DATASET

Unlike some previous works that focused on creating datasets of
bar charts, we created a benchmark dataset of line charts, as they
are the second-most commonly occurring type of charts in scientific
publications (second to diagrams [2]) and have more complex trends
and patterns (i.e., level 3 information). We created a collection of
line charts by taking a random sample of line plots from the SciCap
dataset. SciCap [11] used PDFFigures 2.0 [6] to extract figures
from scientific papers, then used a pre-trained classifier to identify
the figure types – with a reported accuracy of 86%. As such, we
manually inspected all sampled line plots to remove incorrectly
cropped or classified figures. We also removed figures that were
illegible due to poor quality, along with any multi-lined figures
that were missing line labels or legends. Furthermore, to make the
caption generation task easier for human annotators, we limited our
scope to figures with at most five lines.

3.1 Caption Collection
Although Kim et al. [19] provide guidelines for generating line chart
captions, their guidelines are designed to enhance caption efficacy
for sighted individuals. In this work, however, we focused on cre-
ating captions that enhance accessibility. As a result, following the
recommendation of Lundgard et al. [22], we created captions that
describe overall trends and statistics (i.e., level 2 and 3 captions).
Level 3 information is perceiver dependent and cannot be generated
from data tables, without reference to the visualization [22]. As
such, we used Amazon Mechanical Turk to crowd-source captions,
unlike some previous works that used data tables to fill out template
captions. According to Morash et al. [25], when collecting chart de-
scriptions from novice web workers, using query templates is more
suitable than providing a set of written guidelines. We used a modi-
fied version of Morash et al.’s template for line chart descriptions.
More specifically, since we were focusing on high-level information,
we did not keep any parts of the template that extracted low-level
details (e.g., axis and line labels). We also added a question to cap-
ture additional information such as notable comparisons between
the lines in a multi-lined figure. This format provides the necessary
structure to ensure annotators provide all the high-level details that
must be included in an accessible caption. However, it does not limit
sentence structures and the types of trends that could be described.

To ensure no low-level content from the chart is referenced in
the high-level captions, annotators were instructed to number the
lines based on the order in the figure legend, and to refer to the
lines by their numbers (i.e., Line 1 to 5)3. Annotators were also
instructed to use the term xlabel to refer to the x-axis label and
ylabel to refer to the y-axis label. Our objective in excluding
any references to labels from the figure is two-fold. First, labels in
scientific figures tend to include subscripts, equations, or special
characters that cannot be found in an English keyboard. By asking
annotators not to use these labels in their descriptions, we avoid
having to provide guidelines on transcribing these symbols. Second,
this setup allows for training models that can be easily integrated
with chart parsing models. Previous work on chart parsing can
extract and classify text from figures [8, 30]. The classified texts can
then replace the standardized terminology in our high-level captions.

Based on the results of an initial pilot study, we provided human
annotators with a pictographic list of useful terminology for describ-
ing common line trends, along with video instructions that detail our
Mechanical Turk interface. Because our task was writing intensive,
we only accepted annotators from the following anglophone coun-
tries: Australia, Canada, New Zealand, UK, and USA. To ensure
high quality, we only granted access to our annotation task to those
who first passed a qualification test. We also regularly inspected
random samples of chart descriptions from each annotator.

3Details can be found in our supplementary materials

The collected captions were processed to fix some spelling mis-
takes. We also followed a similar text normalization process to
SciCap [11], whereby we replaced all references to axis values (e.g.,
5.2, 10%, 100k) with the token value . We provide access to both
the annotations with axis values and the normalized annotations4.

Figure 1: A sample figure-annotation pair from LineCap compared to
the caption provided in the SciCap dataset.

Table 1: Number and % of figures with the specified number of lines

number of lines number of figures % of total figures

1 570 16%
2 1025 29%
3 829 23%
4 796 23%
5 308 9%

3.2 Dataset Analysis
LineCap contains 3,528 figures, each with at least one human an-
notation that specifies: the number of lines in the figure; a separate
description for the trend of each line in the figure; and, an overall
chart description. Most figures contain only a single annotation, but
some figures have up to three different annotations. Our resulting
dataset has a total of 3,964 annotations. The distribution of the
number of lines in each figure can be found in Table 1. Figures
most often have 2 lines, while the least common figures have 5 lines.
An average description for a line trend is 14 words long, while an
average description for the overall chart is 26 words long. Most anno-
tations (both for individual lines and the overall chart), do not make
any references to axis values from the chart. After pre-processing
the descriptions (i.e., removing stop words and lemmatizing), the
10 most common words are: line, increase, decrease, rate, ylabel,
trend, xlabel, value, roughly, and constant. Excluding graph values,
the pre-processed descriptions have a total of 925 unique words.

Individual line trends tend to describe the type of change (e.g.,
increase, decrease, constant) and the rate of change (e.g., increasing,
decreasing or constant rate) of the line. Sometimes the trends also
indicate the presence of noise, peaks, and troughs in the line. If a
figure line is composed of multiple segments with different trends
(e.g., first increasing then horizontal), descriptions tend to specify
the trend of each segment in chronological order, but they do not
indicate where exactly the change starts. The type of information
provided to describe a figure’s overall trend varies. When the figure
has multiple lines, annotators tend to specify details such as: the
relative rate of change of the lines, any notable line intersections, and

4https://github.com/anita76/LineCapDataset

https://github.com/anita76/LineCapDataset


Table 2: Average, mode, and maximum number of words and number
of references to axis values for individual line and overall chart de-
scriptions. The minimum number of words was 3 while the minimum
number of axis value references was 0 for all description types.

description
type

words per annotation values per annotation

mean mode max mean mode max

line 1 15.1 6 112 0.6 0 16
line 2 14.4 6 123 0.5 0 11
line 3 13.9 6 68 0.4 0 11
line 4 13.1 6 96 0.4 0 16
line 5 12.9 6 82 0.4 0 6

overall chart 25.6 16/17 123 0.5 0 12

Figure 2: The deep learning pipeline for caption generation where n
is the predicted number of lines in the figure, i is the line index which
iterates from 1 to n, and captioni is the generated caption for line i.

the relative order of the lines along the y-axis. When the figure has a
single line, the figure’s overall trend either mirrors or is a summary
of the description provided for the line’s trend.

4 EXPERIMENTS

To better understand LineCap’s complexity, we set up a baseline
deep learning model for predicting individual line trends. Training
separate models for each of the figure lines is inefficient and does
not scale well to figures with large number of lines. Furthermore, the
knowledge required for generating descriptions for lines 1 through
5 is transferable between all these lines. As such, we built a model
that generates descriptions for all the figure lines one at a time. We
designed a two-staged deep learning pipeline that is comprised of
two neural network models: a line count prediction and a caption
generation model. First, the line count prediction model receives
a figure as input and predicts its number of lines, n. Second, the
pipeline iterates n times. At every iteration, the caption generation
model produces a description for the corresponding line, which is
based on the following inputs: the figure image, the iteration number
(indicating the line index), and a number indicating how many lines
the figure has in total.

The two models were implemented using a modified version of
the PReFIL [15] model. Despite its simple architecture compared
to other figure question answering and captioning models, PReFIL
achieves high accuracy performance on FigureQA [16] and DVQA
[14]. Furthermore, unlike models such as FigJAM [31] and STL-
CQA [35], it does not require any auxiliary annotations such as the
figure texts and bounding boxes – which our dataset does not supply.

4.1 Line Count Prediction
Our line count prediction model uses: a DenseNet [12] to process
the figure image; two fusion blocks [15] for processing high and
low level feature maps from the DenseNet; and, a neural network
classifier that predicts the output.

We used 80% (2,822 figures) of our data for training, 10% (353
figures) for validation and 10% (353 figures) for testing. We trained
the model using both our training data and the 40,000 line graphs

Figure 3: The architecture of the caption generation model. Several
copies of the line index, i, and number of lines in the figure, n, are
concatenated to the LSTM and DenseNet features, and are given as
inputs to the fusion blocks. The line count prediction model has the
same overall architecture but does not have an LSTM.

Table 3: Accuracy of the line count prediction model on the FigureQA
and LineCap datasets when trained with the full FigureQA dataset
and a sub-sample of the FigureQA dataset.

FigureQA LineCap

Validation 1 Validation 2 Validation Test

Accuracy (%)
Full training 99.88 99.88 94.90 94.05

Accuracy (%)
Sub-sample

training

98.50 98.39 90.93 91.50

in the training split of FigureQA. Adding FigureQA to our data,
boosted the model’s initial accuracy from about 70% to about 90%.
Our model obtained a final accuracy of 94.05% on our test set. This
is lower than the 99.88% accuracy on the line charts from FigureQA.
To ensure that this discrepancy was not solely due to the much larger
number of synthetic data from FigureQA, we also trained the model
with our data and only a random sub-sample of 2,822 figures from
FigureQA’s training split. The accuracy values on the FigureQA
dataset were still much greater than our dataset, thus illustrating the
greater complexity of our real dataset compared to synthetic ones.

4.2 Caption Generation
Our caption generation model uses an LSTM to process the figure’s
caption one token at a time and predict the next token of the caption.
We used beam search with k = 32 to generate several captions and
selected the caption with the highest weighted probability as the
final prediction. We incorporated the scalar inputs (i.e., line index
and number of lines in the figure) into the PReFIL model by passing
several copies of them into the high and low level fusion blocks.

We report the model’s performance in terms of three automated
machine translation metrics: BLEU-45 [27], CIDEr [37], and
BLEURT [32]. Additionally, to better assess the accuracy of gen-
erated captions, we randomly sampled 100 figures from our test
split and asked Mechanical Turk workers to rank the accuracy of the
descriptions for each of the figure lines on a scale of 1 to 5, where 1
is completely inaccurate and 5 is completely accurate.

5We used NLTK’s implementation of BLEU-4 with the smoothing 7
technique [3]



Figure 4: Sample gold and generated line descriptions for figures with one, three, and five lines.

Table 4: The caption generation model’s performance on the test split
of LineCap. Accuracy is reported for a sub-sample of 100 figures. All
scores are reported when the ground-truth line count number is used
in the caption generation model. Scores that use the predicted line
count number are in the supplementary materials.

figure with BLEU-4 CIDEr BLEURT-20 Accuracy

1 line 0.366 1.173 0.511 3.43
2 lines 0.418 1.096 0.524 3.13
3 lines 0.433 1.244 0.521 3.03
4 lines 0.443 1.458 0.516 3.22
5 lines 0.455 1.018 0.529 3.36

all figures 0.433 1.229 0.522 3.20

Based on human evaluations, descriptions of single-lined figures
are the most accurate. The model generally does well on simple
trends but struggles with more complex trends and multi-lined charts.
For multi-lined charts, we observe that the model mostly repeats the
same description for all of the figure lines even if the lines do not
display the same trend (e.g., second example in Fig. 4). Some of
the higher accuracy scores for multi-lined charts are due to all the
figure lines having the same overall trend, as is the case with the
last example in Fig. 4. This could be because the model is unable to
learn the correlation between the line number indices and the lines
in the figure. Additional figure annotations such as bounding boxes
and labels could help guide the model in learning this information.

We also calculate correlation coefficients between the automated
metrics and human evaluation. BLEURT has the highest correlation
of 0.45. CIDEr and BLEU-4 have correlation coefficients of only
0.26 and 0.25, respectively, suggesting that these metrics are likely
not suitable for effectively comparing figure captioning models.

5 CONCLUSION

We created LineCap, a novel dataset of line charts for figure caption-
ing models. We subsequently established baseline line count and
caption prediction performances. Through this work, we gathered
the following insights and areas of future research toward automated
captioning of data visualizations using deep learning models:

• Future work should aim to create datasets similar to LineCap
for other chart types. Creators of datasets for automated figure
captioning should focus on gathering real figures and human-
written captions. Novice web-workers should be provided with
further guidance on how to describe figures in order to ensure
accuracy. Future research could also benefit from investigat-
ing how visually impaired audiences perceive the descriptions
written by sighted individuals.

• Previous works [18] have investigated the limitations of au-
tomated metrics for evaluating image captioning models, and
have proposed guidelines for proper assessment of these models.
Figure captions have additional nuances that are not common
in image captions. For instance, while the order in which ob-
jects in an image are described is not important, changing the
order of trends in a line would lead to inaccurate descriptions.
Such nuances warrant similar investigations toward identifying
suitable metrics for evaluating figure captioning models. Our ex-
periments have shown that some common automated evaluation
metrics do not correlate well with human evaluation. To develop
state-of-the-art figure captioning models, future research should
first identify suitable automated evaluation metrics for this task.

• Deep learning models for figure captioning can benefit from
incorporating additional intermediate prediction tasks from pre-
vious research on chart processing and analysis [8]. Tasks such
as segmenting the lines or extracting data values from the fig-
ures could be particularly useful for distinguishing between the
different lines in a multi-lined figure. Training intermediate
tasks on large, synthetic datasets and fine-tuning on smaller, real
datasets could significantly boost performance without the costs
of creating large, crowd-sourced datasets.
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