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École de technologie supérieure
Jon Mease†

VegaFusion Technologies LLC
Dominik Moritz‡

Carnegie Mellon University

Figure 1: A generic Vega specification is automatically partitioned by the VegaFusion Planner into a runtime specification for the
VegaFusion Middleware (describing operations on large datasets) and a client specification for Vega (describing the visualization of
the output of these operations as well as client-side interactions). The Middleware dynamically responds to interaction signals from
Vega by querying an out-of-browser, natively-compiled VegaFusion Runtime instance and relaying the results back to Vega. The
pseudocode on the right illustrates a typical partition for a brushed histogram specification, including the dependencies between
data and signals.

ABSTRACT

The Vega grammar has been broadly adopted by a growing ecosys-
tem of browser-based visualization tools. However, the reference
Vega renderer does not scale well to large datasets (e.g., millions
of rows or hundreds of megabytes) because it requires the entire
dataset to be loaded into browser memory. We introduce VegaFusion,
which brings automatic server-side scaling to the Vega ecosystem.
VegaFusion accepts generic Vega specifications and partitions the
required computation between the client and an out-of-browser,
natively-compiled server-side process. Large datasets can be pro-
cessed server-side to avoid loading them into the browser and to
take advantage of multi-threading, more powerful server hardware
and caching. We demonstrate how VegaFusion can be integrated
into the existing Vega ecosystem, and show that VegaFusion greatly
outperforms the reference implementation. We demonstrate these
benefits with VegaFusion running on the same machine as the client
as well as on a remote machine.

Index Terms: Human-centered computing—Visualization—Visu-
alization systems and tools—Visualization toolkits; Human-centered
computing—Visualization—Visualization application domains—
Information visualization;

1 INTRODUCTION

The Vega [11] grammar has been broadly adopted as a declarative
visualization specification format by a growing ecosystem of tools in-
cluding Altair [13] for programmatic authoring in Python, Lyra [17]
for direct-manipulation authoring, and Voyager [14] for automated
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recommendation. These tools all use a client-server architecture and
integrate the reference implementation of the Vega renderer, which
is written in JavaScript and renders visualizations and handles user
interactions in a browser.

The design of the Vega renderer assumes that the entire dataset
is available in browser memory, and as a consequence, visualiza-
tions based on datasets of more than a million rows or more than
100 megabytes are often unacceptably slow to initially render and
exhibit unacceptably high latencies of up to multiple seconds during
interaction. Depending on the client hardware, sufficiently large
datasets can even cause Vega to crash the containing browser tab.

This problem is particularly vexing when the input data has many
rows and the visualization needs to be interactive, but the output does
not require displaying one mark per row because it is aggregated. A
specific motivating example is the case of cross-filtered histograms
for large datasets: each client rendering this visualization using Vega
must download and process the entire dataset for initial rendering,
and then pass over it again on every brushing interaction. That
said, the Vega grammar is declarative, meaning that specification
and implementation are not necessarily tightly coupled. This leaves
room for the development of new implementations which accept
Vega specifications but execute them differently than the reference
implementation.

In this paper, we introduce VegaFusion, which brings automatic
server-side scaling to the Vega ecosystem. VegaFusion is a new
system which works alongside the reference client-side Vega ren-
derer, accepting generic Vega specifications and automatically par-
titioning the required computation between the client and a server-
side process. VegaFusion is open-source software available from
https://github.com/vegafusion.

2 BACKGROUND AND RELATED WORK

Vega [11] is a declarative JSON specification language for interac-
tive data visualizations. The Vega parser parses the specification
into a dataflow, which the Vega runtime executes to generate a scene-
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graph. The scenegraph is then rendered by a Vega renderer into
SVG or Web Canvas. To support interactivity, Vega’s dataflow can
be parameterized by signals. Vega-Lite [10] is a higher-level JSON
specification language which compiles down to Vega specifications.

Moritz et al. proposed a comprehensive client-server architecture
to dynamically partition a declarative visualization plan based on
a cost model and a predictive component to prefetch the results of
likely future user interactions [6], and VegaFusion can be considered
the implementation of some of these ideas. VegaPlus [15] proposes
a similar system to automatically convert parts of the Vega trans-
formation pipelines into SQL statements for server-side processing,
albeit with slightly different design goals (notably not R3, see be-
low). Tapestry [9] uses a similar client-server architecture to scalably
embed interactive volume rendering visualizations in web pages.

Falcon [7] introduced prefetching and indexing techniques to
reduce the latency of cross-filtered histograms, but did not automat-
ically integrate with Vega specifications. SSVG [12] introduced a
lower-level multi-threaded Javascript renderer for SVG. Battle et al.
implement machine-learning powered prefetching in ForeCache and
demonstrate that it improves performance over naive prefetching [3].

Altair [13] is a Python library which supports the construction
of Vega-Lite specifications using a method-chaining API. Notably,
Altair provides a mechanism for Python developers to refer to data
stored in pandas [1] data frames from a specification and is com-
monly used within the Jupyter notebook environment [5] to author
visualizations.

3 GOALS AND REQUIREMENTS

We set out to build a system that could be added to the existing Vega
ecosystem with minimal disruption and yet enable Vega-specified
visualizations to scale to larger datasets with better initial-render and
interaction latencies. We decompose this overarching goal into the
following requirements:

R1 - Progressive Enhancement, Graceful Degradation, and
Parity: the system must not require authors or tools to construct
specifications in a particular way or store their data in a particular
system, such as an SQL database. If the system cannot process
a given specification, it should gracefully fall back to the Vega
reference implementation. Other than performance characteristics,
the rendering and interactive behaviour of visualizations should be
identical with or without the system.

R2 - Moving computation out of the client: the system should
enable computation to be moved out of JavaScript, out of the browser,
and ultimately out of the client machine to a physically separate
server with more memory, more and faster cores, and/or faster access
to the underlying data. That said, the system should also still be
able to optionally run entirely on the client machine and ideally still
within a browser, albeit with commensurately reduced performance.

R3 - Fine-grained caching across interactions: the system,
when running outside the browser, should be able to cache the
results of computing individual parts of Vega transformation graphs
for reuse in subsequent interactions, even across browser sessions.

4 SOLUTION

We designed VegaFusion to meet the above requirements with the
three-part architecture outlined in Fig. 1. This architecture works
around and alongside an unmodified Vega implementation (consist-
ing of a parser, runtime, and renderer). The VegaFusion Planner
can run in the browser and partitions the incoming generic Vega
specification into a client specification which must be run within
Vega (e.g., user interaction specifications) and a runtime specifi-
cation which can run outside of Vega (e.g., aggregations of large
datasets). The VegaFusion Runtime can run on the server and
handles computations described by the runtime specification, and
the VegaFusion Middleware runs in the browser and coordinates
communication between Vega and the VegaFusion Runtime. The

Middleware is the only component in the VegaFusion architecture
which manages the state of the visualization in the browser: the
Planner and the Runtime are both stateless, functional processors.
The Middleware uses its representation of the state of the visualiza-
tion to request only the minimal amount of data from the Runtime.
All three components are written in Rust, a language which can be
compiled to high-performance binary executables to run on servers,
or to WebAssembly for execution in a browser.

4.1 Planner
The VegaFusion Planner accepts a generic Vega specification and
produces two new Vega specifications, one for Vega and one for
the VegaFusion Runtime, as well as a communication plan for how
Vega events should trigger VegaFusion Runtime calls. Our Runtime
currently supports a subset of Vega’s transforms and expression
language (see below). Our Planner determines which subset of the
computation described in the input specification can be executed
by our VegaFusion Runtime and which subset must be executed in
Vega.

For example, as in Fig. 1, the Vega specification for cross-filtered
histograms of columns in a large dataset will include a reference to
this large dataset, followed by some transformations such as binning
and aggregation calculations, and some signals which bind filter
transformations to user-provided brushing operations. In this case,
the Planner will determine that all of the operations which are im-
mediately downstream of the large dataset reference, i.e. binning,
can be handled by the Runtime, and so the resulting client spec-
ification which is passed to Vega does not contain a reference to
the full dataset, but rather to multiple smaller intermediate datasets
which can be provided by the Runtime: one for the initial rendering
and then additional ones for the filtered representations. Datasets
which depend on operations not supported by the Runtime, such as
stacking, are not extracted into the runtime specification, and will
be handled by Vega.

The current implementation of the Planner does not take into
account statistics about the data such as its length or cardinality
in partitioning the specifications: any operation that can be sent to
the Runtime is assigned to the runtime specification. The Planner
is the primary way that VegaFusion meets R1: the reference Vega
implementation is used for all rendering and interactions, and only
the subset of operations that the Runtime supports are executed
outside the browser.

4.2 Middleware
The VegaFusion Middleware accepts the runtime specification and
communication plan produced by the Planner and attaches callbacks
to the Vega renderer to subscribe to all signals which serve as inputs
to portions of the runtime specification. The Middleware determines
which initial queries to the Runtime are required, if any, and there-
after, dynamically calls the Runtime in response to Vega interaction
signals to provide all the data required by Vega to render the client
specification.

In the case of our cross-filtered histogram example, since the
client specification passed to Vega refers to intermediate datasets
produced by the Runtime, the Middleware will immediately call the
Runtime to produce these intermediate datasets and pass the results
to Vega for initial rendering. Thereafter, any time a user interaction
such as brushing triggers a Vega signal which triggers a callback as
per the communication plan, the Middleware will call the Runtime to
produce the new intermediate datasets and pass them back to Vega.

4.3 Runtime
The VegaFusion Runtime is the backend server in the VegaFusion
architecture: it services queries from the Middleware. VegaFusion
queries are computation graph specifications with certain nodes
marked for evaluation. The computation graph specification is



Figure 2: A sequence of two VegaFusion queries along with the state
of the cache before the query, and the nodes whose values must be
computed to respond to the query. Queries are computation graph
specifications with nodes whose values are requested in orange and
root nodes in blue. Query 1 contains a data node whose value is the
URL of a dataset and whose hashed fingerprint is A, as well as leaf
nodes D and E representing the heights of the bars in a histogram,
dependent on intermediate node C representing the binned dataset.
Node E additionally depends on signal node B, which represents a
brush whose initial value is 0-500. When the Runtime receives Query
1, its cache is empty so the values of C, D and E are computed and
cached, and the values of D and E are returned as requested. When
the user changes the brush range to 135-275, the Middleware will
issue Query 2, whose graph is slightly different: the signal node has
a new fingerprint F because it has a new value and the requested
node has fingerprint G, as it depends on F. Only G’s value must be
computed because C’s value is in the cache.

a directed acyclic graph (DAG) derived by the Middleware from
the runtime specification. Root nodes in the DAG (those with no
parents) can be data nodes whose values include URLs to data
files, or signal nodes whose values include, for example, selection
ranges. Non-root nodes describe one of the supported Vega op-
erations such as filter, formula, bin, timeunit, aggregate,
join-aggregate and window but do not include their (likely large)
values. The role of the Runtime is to compute and return the val-
ues for the requested nodes. An example of a Vega operation not
yet supported by the Runtime is stack, which therefore is always
run on the client, but it is usually run after aggregation and is not
compute-intensive.

Each node has a cheaply-computed fingerprint, which is hashed
from a recursive expansion of its definition and that of its parents,
all the way to root nodes with values. This fingerprint is computable
by both the Middleware and the Runtime, and enables a fine-grained
caching scheme. Fig. 2 shows a schematic view of how caching
is used to service a sequence of two VegaFusion Queries. This
Runtime caching system is how VegaFusion is able to meet R3. In
the example sequence, the large dataset located at the URL which
is the value of node A is never transferred to the client; only the
smaller, aggregated datasets D, E and F are transferred. Note that the
two queries in this sequence need not be issued by the same instance
of the Middleware: they could have come from two totally separate
client machines, or two browser sessions on the same machine, etc.

The Runtime can run on the same client machine as the browser,
or on a remote server so as to meet R2. The Runtime can load
datasets from all the same sources as the Vega renderer can, including
local and remote CSV and JSON files, which is key to VegaFusion
meeting R1.

Datasets are loaded and processed using the Apache Arrow Data-
Fusion [2] library, whence the name VegaFusion. We selected Data-
Fusion as the core backend technology for VegaFusion because its
API was a natural fit for the explicit DAG representation of com-
putation and the caching scheme described above, as well as for
its Web Assembly-friendly Rust implementation and its close inte-

gration into the popular Apache Arrow ecosystem. Supporting the
Vega filter and formula transforms requires supporting Vega’s
expression language, which is a subset of JavaScript. VegaFusion
compiles such expressions into typed DataFusion operations.

An SQL datastore was an alternative here, but converting VegaFu-
sion queries into SQL would have made it much more challenging
to implement the fine-grained caching we sought by forcing us to
rely on the SQL datastore’s harder-to-control internal caching mech-
anism: there is no way in SQL to specify which intermediate outputs
a query engine should cache. The architecture of VegaPlus [15]
is quite similar to VegaFusion except for this key design choice,
because R3 was not a requirement for VegaPlus.

5 DEMONSTRATION: SCALING ALTAIR

To demonstrate that the VegaFusion architecture not only meets
the decomposed requirements R1, R2, and R3 but can achieve our
broader goals of bringing server-side scaling to the Vega ecosystem
with minimal disruption, we built a Python library based on Vega-
Fusion which integrates with an unmodified version of Altair. With
a single additional line of code, generic examples from the Altair
documentation can be scaled to datasets with millions of rows while
maintaining smooth interactive performance.

5.1 Integration

Altair includes an extension mechanism whereby data transformers
can be registered to preprocess data before the Vega-Lite specifi-
cation is sent to the browser. The VegaFusion extension to Altair
registers a data transformer which will write data frames to disk in
binary format, automatically launch a Runtime instance and cause it
to load data from that file, and rewrite the Vega-Lite specification
to refer to this file. The data transformer uses a fingerprint of the
data frame to determine filenames to avoid writing the same file to
disk more than once. VegaFusion also provides its own browser-
side Jupyter rendering extension, which includes the Planner and
Middleware components as well as a Vega bundle.

Taken together, the VegaFusion extension to Altair enables a
Python developer to load a large dataset into memory in Python using
pandas, and then specify, for example, cross-filtered histograms
using the Altair API. The Altair API then produces a Vega-Lite
JSON specification, which is passed to the VegaFusion renderer via
a Jupyter-provided websocket. On the browser, Vega-Lite converts
its input into a Vega specification which is intercepted by the Planner
and Middleware and Vega is invoked to render the visualization. Any
time the user interacts with the visualization, the Middleware calls
the Runtime by sending messages back down the Jupyter-provided
websocket to the VegaFusion extension Python code which then
relays the message to the Runtime process and relays responses
back. The large dataset never leaves the machine on which Python
is running, and the developer is not responsible for launching or
disposing of the VegaFusion Runtime instance.

The result of this process is that visualizations based on large
datasets and specified in Altair not only result in much less data to be
transferred to the client and therefore initially render more quickly,
but subsequent interactions can exhibit much less latency than with
the un-extended version of Altair.

5.2 Benchmarks

We benchmarked Altair versus Altair+VegaFusion in JupyterLab
on a 2020 M1 Macbook Air using a figure with three cross-filtered
histograms based on a 1 million row dataset stored on disk as a 4.6
megabyte Parquet file. The VegaFusion Runtime and the browser
were running on the same machine, so network latency can be
assumed to be zero.

The end-to-end latency from the user executing a notebook
cell to initial rendering was 9470ms for Altair and 600ms for



Altair+VegaFusion for a speedup in excess of 15. The Altair la-
tency was divided into 5160ms in Python, serializing the dataset
then 4300ms in the browser, deserializing and rendering. Al-
tair+VegaFusion spent 250ms in Python writing the dataset to disk
and loading it into the Runtime, then 350ms in VegaFusion proper, of
which 320ms was spent in the Runtime. Brushing across a histogram
in Altair yielded 0.6fps, whereas Altair+VegaFusion rendered at
60fps initially, dropping to 10fps as more data fell within the brush.

We further benchmarked Altair+VegaFusion on the same dataset
and visualization with the Runtime on a physically separate machine
using the public Binder [8] service. In this test, the client machine
was in Eastern Canada, and the server was in Central Europe. Binder
kernels run on shared, unspecified hardware, so a direct comparison
to the above case is difficult, but comparable Runtime calls were
approximately 3 times slower on the server than when running on
the client machine. These conditions comprise a worst-case scenario
for VegaFusion, with high network latency and a slower server than
client.

Initial rendering took 2150ms (530ms on the server, then 1620ms
within VegaFusion, of which 1010ms was in the Runtime). The same
brushing interaction as above yielded approximately 5fps. This is,
as mentioned above, a worst-case scenario for a remote runtime, and
locating the server physically closer to the client can significantly
reduce latency.

A video demonstrating initial rendering and interaction latencies
for the various benchmark cases described above is included as
supplementary material.

6 DISCUSSION

VegaFusion is able to better scale computation than the reference
Vega renderer in three main ways: by moving computation out of the
browser, moving computation to a separate machine, and through
caching. Its main limitations are that it cannot help scale all Vega
visualizations, it always causes data to be copied into the Runtime,
and that its Planner takes into account limited information.

6.1 Scaling
VegaFusion moves part of the computation out of the browser’s
single-threaded JavaScript engine into compiled Rust code which
can use multi-threading and specialized batch processor instructions,
even on the same machine as the browser. A data scientist running
Jupyter on their own workstation can take advantage of VegaFusion’s
Altair extension to scale visualizations in this mode.

Moving computation out of the browser makes it possible to move
it to machines with faster processors, with more cores and memory,
and faster access to the underlying data than the client machine. A
data scientist using a centrally-hosted, shared installation of Jupyter-
Hub, for example, would be using VegaFusion’s Altair extension
in this mode. Deploying VegaFusion so as to take advantage of a
more powerful server machine does come at the cost of network
latency on every request to the Runtime as in the benchmarks above.
Network latency is typically not so high as to make VegaFusion
in this mode slower at initial rendering than Vega alone, since the
data set itself does not need to be transferred to the client. During
interaction, however, there is a range of smaller dataset sizes where
the added network latency can make a VegaFusion visualization less
responsive than a Vega one. Neither the Planner nor the Middleware
currently take dataset size or network latency into account to counter
this problem. Furthermore, VegaFusion does not give a user any
more feedback to the user than Vega does that computation is under
way, so any unusually long network requests will be perceived as
interface lag.

Although Vega caches the last-computed values of its internal
dataflow graph, it does not do so in a long-lived, fingerprinted man-
ner. Consequently, an upstream signal toggling between two values
will cause the entire downstream graph to be recomputed on each

toggle. The fingerprints used as cache keys by the VegaFusion
Runtime depend on the full parent graph of each node, so in this
toggling case, each node will only be evaluated once for each value.
Furthermore, the Runtime cache can be shared by multiple visualiza-
tions, be they in the same browser window or even across different
machines, leading to large potential speedups compared to Vega
when considering a full user session where each subsequent visual-
ization or interaction can use previously-cached values, potentially
including those resulting from the sessions of other users.

6.2 Limitations

VegaFusion’s biggest limitation is that it cannot help scale visual-
izations that do not make use of some kind of data reduction such
as aggregation or sampling. For example, a Vega specification for
a multi-million-point scatterplot will always be run on the client
side today. VegaFusion can accelerate a density heatmap of the
same data, however, which not only results in better performance
but also mitigates the overplotting problem inherent in rendering so
many points. That said, VegaFusion today will not automatically
convert the specification for such a scatterplot into a heatmap spec-
ification. Additionally, although Vega can be used with streaming
data, VegaFusion only operates in batch mode on static data.

Second, the Runtime today will always load a copy of the entire
dataset into memory, even if the data at rest is stored in a system
where it is already indexed and which already supports efficient
computation, such as an SQL database or a distributed compute
cluster. This provides benefits over loading the data into browser
memory as described above, but a truly optimal query plan would
explicitly consider the cost tradeoff of copying data vs computing in
place.

Finally, the Planner today partitions the computation greedily so
as to maximize the amount of work done by the Runtime, without
consideration for latency or the size or cardinality of the dataset
or the capabilities of the client machine. If the client machine is
powerful, the dataset is small, and/or the client-server latencies are
high, this can result in lower performance for VegaFusion than by
simply using Vega for the entire process.

7 FUTURE WORK

VegaFusion is a functioning system which can be integrated into
various parts of the Vega ecosystem to scale Vega-specified visual-
izations. There remain many opportunities for further development,
however, such as greater coverage of the Vega transform and expres-
sion language in the Runtime, and improvements to the Planner so
as to have it take into account latency, client capabilities and data
statistics in determining the partitioning of the input specification.
The Middleware could be extended to include predictive prefetching
techniques such as those used in Falcon [7].

The most promising area is the expansion of the Runtime to
directly access datastores which support efficient computation such
as SQL databases or Spark clusters and where data might already be
stored. Instead of pulling data out of such systems into DataFusion,
the Runtime could dynamically compile portions of queries into
SQL, as VegaPlus [15] does it, or other systems such as Dask [4] or
Spark [16] and let upstream systems handle part of the computation,
while the Runtime itself continues to manage the cache.

Finally, a subset of the Runtime, in particular the cache, could
also be compiled to meet the WebAssembly System Interface and
run on edge services such as Cloudfare workers. An edge Runtime
could perform cache lookups and cheap computations locally to min-
imize latency and delegate expensive computations to an upstream
server Runtime running on more powerful hardware, providing more
flexibility in deployment to control latency problems.
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