
No Grammar to Rule Them All:
A Survey of JSON-style DSLs for Visualization

Andrew M. McNutt

Abstract— There has been substantial growth in the use of JSON-based grammars, as well as other standard data serialization
languages, to create visualizations. Each of these grammars serves a purpose: some focus on particular computational tasks (such as
animation), some are concerned with certain chart types (such as maps), and some target specific data domains (such as ML). Despite
the prominence of this interface form, there has been little detailed analysis of the characteristics of these languages. In this study, we
survey and analyze the design and implementation of 57 JSON-style DSLs for visualization. We analyze these languages supported by
a collected corpus of examples for each DSL (consisting of 4395 instances) across a variety of axes organized into concerns related to
domain, conceptual model, language relationships, affordances, and general practicalities. We identify tensions throughout these areas,
such as between formal and colloquial specifications, among types of users, and within the composition of languages. Through this
work, we seek to support language implementers by elucidating the choices, opportunities, and tradeoffs in visualization DSL design.

Index Terms—Visualization grammar, Survey, Declarative specification, Domain-Specific Languages

1 INTRODUCTION

Domain-specific languages (DSLs) represented in standard data seri-
alization formats, such as JSON or YAML, are an increasingly com-
mon [63] interface for the specification of visualizations across an array
of contexts and tasks. These restricted textual languages allow for the
declarative specification of both static and interactive graphics in a sys-
tematic manner that can be manipulated both by humans, making them
attractive for end-user programming, and computational agents, making
them appealing for artificial intelligence applications [89]. This lan-
guage style appears in a surprisingly large variety of tools and systems
but is well exemplified by Vega [69] and Vega-Lite [67].

While it is sometimes derided for usability issues [17, 36, 44], this
language style has a variety of benefits. DSLs which employ it can be
expressive, allowing for the concise manipulation of complex specifica-
tions with minimal textual modification [69]. Many of these languages
enhance the explorability of a space of possible programs by simple
and fluid movement between instances. Their limited scope enables
some specifications to be used portably, such that charts created in
one platform (such as a GUI like Voyager [86]) can be used in another
environment (such as in the Python-based Altair [78]).

Despite the popularity (Fig. 2) of this approach, there has been little
detailed analysis of the characteristics of these systems. Pu et al. [63]
highlight the need for additional study of visualization grammars, while
Wongsuphasawat [84] surveyed the more general space of JavaScript
(JS) visualization libraries. Although they are insightful, these works
leave critical questions about these DSLs open: What problems do they
seek to solve? Who are they designed to serve? or more generally What
design and implementation patterns are used in JSON-style DSLs?

In this paper we answer these questions by surveying visualization
DSLs represented in standard data serialization languages covering
academic, industrial, and open source language efforts, yielding 57
distinct languages (Fig. 3). We analyze each of these DSLs across
a variety of dimensions including the motivations for their design,
relationships with other languages, and the conceptual models which
are utilized. We identify five sets of concerns (Fig. 1) which are critical
to JSON-style DSL design and highlight a corresponding set of tensions
to be navigated, such as the tension between formal and colloquial

Andrew M. McNutt is with University of Chicago. E-mail:
mcnutt@uchicago.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

models or the effect on the DSL caused by the interplay of different
intended users. In doing so we note opportunities, tradeoffs, and open
challenges. To aid this analysis we collected examples of each DSL,
yielding 4395 programs, available in our interactive supplement.

While JSON-style DSLs have been usefully employed in a variety of
visual analytics systems [50, 66, 86, 93], we believe that a firmer grasp
of the design space of this language form will help future languages
better address the highlighted design questions. Moreover, a language’s
affordances, abstractions, and models guide the types of expression that
are made using it [56, 80]. Thus, a stronger foundation may open the
door to new forms of analysis and expression.

2 RELATED WORK

We will now locate our study within prior work on DSLs in general
(and review relevant terminology) and visualization DSLs specifically.

2.1 Domain Specific Languages
DSLs are a type of programming language designed to facilitate par-
ticular tasks within a chosen domain. While this term is variably
defined, DSLs are usually (but not always [17]) defined as languages
that are unable to execute general computations, in exchange for spe-
cific declarative notation related to a domain of interest—properties
that differentiate them from General Purpose Languages (GPLs). The
database query language SQL, the browser-styling language CSS, and
the markup language LATEX are all familiar examples of this design
approach. Van Deursen et al. [77] argue that DSLs are useful because
they allow domain experts to operate within the notation of a given
domain, and assert that they are typically concise, reusable, and self-
documenting. They also note that DSLs carry a host of disadvantages
including maintenance costs, learnability issues, and the danger of
language cacophony [17] resulting from a preponderance of languages.

DSLs are often thought of as solely declarative, as the user specifies
intent relative to the domain rather than through low-level details of how
that action is executed. However, some DSLs use imperative syntax
(e.g. shaders or Atlas [44]), but all DSLs in our study are declarative
and the closest exceptions are pipeline models.

A common decomposition of DSLs [17, 53] describes them as ex-
ternal or internal. External languages define their syntax outside of
their host language, such that they typically require separate parsing to
execute. Some utilize custom syntax (e.g. SQL or CSS), while others
elect to use standard data serialization grammars (e.g. XML or JSON).

This raises questions about what qualifies as a language as opposed to
an API. Highlighting this ambiguity, Fowler [17] argues for a heuristic
related to a fluent, composable, or language-like nature. This refers
to the concept that “expressiveness comes not just from individual

https://vis-json-dsls.netlify.app/


Affordances   
Question: Who is the end user?
Tension: Competing interests vie for conveniences

Domain:  
Question: Why is this DSL necessary?
Tension: Design for general vs specific use cases 

Models:  
Question: What is this DSL?
Tension: Formal/Colloquial models and Low/High abstraction

Relationships   
Question: How does it relate to other DSLs?
Tension: Language customization vs reuse

Practicalities   
Question: Where is work done?
Tension: Locate features among competing incentives 

?

Fig. 1. An overview of the analysis of our survey.

expressions, but also from the way they can be composed together” [17].
That is, there is a systemic way that the language operates, without
needing special cases for every expression form. We use this heuristic
to identify languages in our survey.

The complement to external DSLs are internal DSLs, which are em-
bedded (as a library or through syntax extensions) into a host language—
e.g. dplyr, d3, or RSpec. These languages provide expressivity similar
to external languages, but do so in a way that confers the benefits
and limitations of their host. Tobin-Hochstadt et al. [74] highlight the
permeable border between languages and libraries in Racket, where
libraries are distributed as language extensions—an ambiguity that is
increasingly relevant as more visualization libraries adopt language-
style interfaces. This architectural choice allows for the straightforward
creation of richly expressive languages that are easy to integrate into a
host, but can force constraints and notation which are inappropriate to
the DSL domain. In contrast, Diderot [7] explicitly resists embedding
so as to maintain the domain specificity of its type system.

Prior studies have sought to understand and typify DSL usage [3, 17,
61, 77]. Mernik et al. [53] describe design patterns exhibited at each
stage of the DSL design process. Van Deursen et al. [77] characterize
75 DSLs by purpose. The analysis of our survey draws on these works
but is designed to complement these considerations made by others
by focusing on a particular domain. Erdweg et al. [16] identify a set
of language composition mechanisms, which guides our discussion of
the topic (although ours is adapted to a less-general domain). Several
studies consider DSLs in specific domains, such as declarative data
analytics [47], configuration languages [20], and visual computing [71].
Our work is related to these but is centered on visualization.

The use of standard serialization languages as carrier languages for
DSLs is not new. XML and other hierarchical serialization languages
have long been used as a way to configure applications [17, 20] and
even specify visualizations (as in VizML [83]). Similarly, visualization
is not unique in its use of JSON-DSLs. Beyond familiar uses such as
configuration or NoSQL languages (e.g. MongoDB), they are used in
domains as varied as statistical analysis [30], web development [2],
narrative [8] and game generation [13], chatbots [35], dance [58], and
fabrication [75]. We are interested in building a better understanding of
JSON-style DSLs precisely because they are so prevalent—although
their sudden prominence (Fig. 2) may indicate that they are a fad.

Despite their popularity, JSON-based languages are no panacea.
They are sometimes maligned for their lack of programming usability
features [36], rendering them hard to learn, debug, and extend [44].
These criticisms can be extended through the Cognitive Dimensions
of Notations (CDN) [1], which are a suite of lightweight heuristics
(highlighted throughout) that characterize the usability of notational
interfaces. For instance, viscosity refers to the effort required to alter a
program to a desired state, while diffuseness describes how terse the lan-
guage is. This style of evaluation is especially useful for programming
languages as it provides an external reference from which to critically
reflect and a common grammar for usability issues. Thus, we can
add to the criticisms of JSON DSLs by noting that they are subject to

2005 2010 2015 2020

6

1

13

1
4

2 2

7

211 11

VegaSurvey DSL Paper Year
Nb: systems without papers describing 
them are not represented here

Fig. 2. Since Vega’s publication JSON-style DSLs have become popular.

errors related to premature commitment (choices that make movement
between states difficult), hard mental operations (the work required
outside of the coding environment), and progressive evaluation (how
incomplete programs are examined). Some serialization formats (e.g.
YAML or JSON5) or languages (e.g. dhall [12]) seek to address us-
ability issues—such as diffuse syntax and lack of a secondary notation.
Yet, a consensus replacement has not materialized. This may be due to
JSON’s ubiquity in modern systems, which impart rich error handling
and parsing, as well as typings via projects like JSON Schema [60].

2.2 Visualization DSLs
Visualization features a rich space in which a DSL can usefully abstract
away unnecessary details in favor of domain-appropriate notation.

The most prominent visualization DSL is Wilkinson’s Grammar of
Graphics (GoG) [83], which describes the visualization process as a
series of stages that results in a mapping of data attributes to visual-
encoding channels (e.g. a penguin’s flipper length mapped to spatial
position). This approach allows the construction of myriad chart forms,
in contrast to “chart templates” which map data attributes to aspects
of a given chart type. GoG has influenced the development of many
contemporary visualization language systems [4, 69, 82]. Friendly [18]
reviews the model and its history.

Despite its prevalent use, the term “visualization grammar” is not
well defined and is used in a variety of ways [63]. This term is some-
times used in the generative syntactic sense [57], referring to a system
of rules that can be repeatedly applied to create particular shades of
meaning. It may also be used to refer to composable systems of ex-
pression [42, 50], akin to Fowler’s language definition. Further, it may
specifically refer to variants of Wilkinson’s [83] GoG. Still others use
it to refer to any visualization system [88]. We do not strive to provide
a conclusive definition of visualization grammars here, instead elect-
ing to use the slightly more general framing of DSLs—although we
sometimes use the term to refer to a space of allowed syntax.

There are a wide variety of DSLs for visualization that fall outside
of our language form of interest. The dot graph language and the
mermaid diagramming language feature custom syntax for graph-based
tasks. APT [46] is a DSL used to describe charts in a manner amenable
to automated recommendations. Idyll [9] is a DSL for visualization-
mediated explorable explanations. ViSlang [65] provides a system for
making and coordinating small DSLs in SciVis, while Diderot [7] uses
notation specifically aligned with the tensor-calculus operations which
arise in that setting. Although the design patterns these DSLs manifest
are valuable, they are beyond the scope of our study.

Several prior works study visualization languages. Wongsupha-
sawat [84, 85] sketched a taxonomy based on the level of abstraction
covering graphics languages, low-level languages, grammars, high-
level languages, and templating systems. Qin et al. [64] sketch a similar
taxonomy based on an expressiveness-accessibility axis. We expand
upon these studies through a more in-depth survey of narrower scope.
Pu et al. [63] highlight the pressing need for more formal study of these
entities. We seek to explore and address the questions they raise, as
well as support future work by developing a richer understanding of the
state of the art of this language form. Satyanarayan et al. [66] reflect
on the design of visualization authoring systems, the results of which
overlap with our study, although tuned to a slightly different domain.

3 SURVEY METHODOLOGY

We conducted a survey of visualization languages represented fully or
partially in standard serialization languages (e.g. JSON, YAML, XML).
This yielded 57 languages, which are displayed in Fig. 3.

We searched relevant academic search engines (Google Scholar,
ACM Digital Library, IEEE Xplore) and code repositories (GitHub) for



A
n

iV
is

A
n

im
at

io
n

A
n

tV
Sp

ec
R

ec
om

m
en

d
at

io
n

A
p

ex
C

h
ar

ts
C

h
ar

ti
n

g

A
rr

ay
 V

is
 G

ra
m

Fu
n

ct
io

n
 v

is
u

al
iz

at
io

n

A
to

m
U

n
it

 V
is

u
al

iz
at

io
n

s

B
er

ti
n

M
ap

s

C
an

is
A

n
im

at
io

n

C
FG

C
on

f
C

on
tr

ol
 F

lo
w

 G
ra

p
h

s

C
h

ar
t.

js
C

h
ar

ti
n

g

C
h

ar
tM

L
C

h
ar

ti
n

g

C
ic

er
o

R
es

p
on

si
ve

 V
is

C
om

ic
Sc

ri
p

t
D

at
a 

C
om

ic
s

C
om

p
as

sQ
L

R
ec

om
m

en
d

at
io

n

D
at

a 
Th

ea
te

r
E

xp
lo

ra
b

le
 E

xp
la

n
at

io
n

s

d
ec

k.
g

l/
js

on
M

ap
s

D
G

M
L

G
ra

p
h

s

D
ot

M
L

G
ra

p
h

s

D
X

R
XR EC

h
ar

ts
C

h
ar

ti
n

g

En
co

d
ab

le
C

h
ar

ti
n

g

Fl
ex

-E
R

XR Fr
ap

p
e

C
h

ar
ti

n
g

Fu
si

on
C

h
ar

ts
C

h
ar

ti
n

g

G
em

in
i 1

A
n

im
at

io
n

G
em

in
i 2

A
n

im
at

io
n

G
en

om
e 

Sp
y

G
en

om
ic

s

g
g

C
h

ar
ti

n
g

G
lin

d
a

D
at

a 
sc

ie
n

ce

G
os

lin
g

G
en

om
ic

s

G
oT

re
e

Tr
ee

 V
is

u
al

iz
at

io
n

G
ra

p
h

M
L

G
ra

p
h

s

G
X

L
G

ra
p

h
s

H
ig

h
ch

ar
ts

C
h

ar
ti

n
g

Iv
y

C
h

ar
ti

n
g

JS
O

L
C

h
ar

ti
n

g

K
yr

ix
-S

Zo
om

ab
le

 b
ig

 d
at

a

M
u

lt
ic

la
ss

-D
en

si
ty

D
en

si
ty

 m
ap

s

N
EO

C
on

fu
si

on
 m

at
ri

ce
s

P
4

B
ig

 d
at

a

P
5

P
ro

g
re

ss
iv

e 
V

is

P
6

M
L P
ap

A
R

V
is

XR P
lo

tl
y 

JS
O

N
C

h
ar

ti
n

g

Sc
h

ol
z 

3D
 V

is
 L

an
g

Sc
iV

is

Se
tC

oL
a

G
ra

p
h

s

Sh
ih

 V
ol

 V
is

 L
an

g
Sc

iV
is

St
ru

ct
G

ra
p

h
ic

s
C

h
ar

ti
n

g

SV
L

C
ol

la
b

or
at

io
n

V
eg

a
C

h
ar

ti
n

g

V
eg

a-
Li

te
C

h
ar

ti
n

g

V
iz

G
ra

m
m

ar
C

h
ar

ti
n

g

V
iz

M
L

C
h

ar
ti

n
g

V
iz

Q
L

C
h

ar
ti

n
g

V
R

-V
iz

XR V
R

IA
XR X

M
L 

C
h

ar
ts

C
h

ar
ti

n
g

Zi
n

g
C

h
ar

t
R

es
p

on
si

ve
 V

is

Charting
Standard Statistical Graphics

Chart Type
A particular chart type

Interaction
A particular interaction

Medium
A particular task or context

Low Level
Close to the renderer

Formal Model
Pervasive Logical Structure

Academic
Originating in academic work

Internal DSL
Roughly a library style

Compiled
Code is generated

Interpreted
Code is executed

Has Abstraction
Variables, Loops, or Control-Flow

In GUI
Part of an application

Data manip.
Can use filters or more

Extensible
Externally

D
om

a
in

M
od

els
A
fford

a
n
ces

P
ra
ctica

lities

The surveyed DSLs 
were analyzed 
across various axes, 
a subset of which 
are shown here. 
See supplement for 
details.

Fig. 3. DSLs select different feature combinations to achieve their goals. No one language, or feature combination, will suit all situations.

the following keywords: DSL, domain-specific language, JSON,
XML, YAML, visualization, map, grammar, language, chart, and
graph. Given the influence of the works on Vega and Vega-Lite on this
type of DSL, we also reviewed all papers citing the papers document-
ing those systems [67–69]. We utilized snowball sampling whenever
possible. We refer to systems in our survey like Vega, while we cite the
works documenting them. See the appendix for a survey bibliography.

Our survey criterion included any human-usable language that uses
a standard serialization language to produce visualizations. We follow
Fowler’s definition of a language [17] as being a system with a concept
of composition or a sense of fluency. This language nature can manifest
in a variety of ways, such as mark or series composition, as well as data
or view algebras. We follow our prior definition [48] of a visualization
as being a transformation of data meant to be interpreted by a human.

This criterion excludes some system types. SVG, HTML, and other
high-level markup languages (as well as general-purpose JSON-based
DSLs, such as Varv [2]) were excluded because they are capable of pro-
ducing far more than visualizations. Also excluded were those merely
subsetting another language—for instance, GraphScape [33] uses a
non-interactive subset of Vega-Lite to explore sequence recommenda-
tion. These systems are excluded because they simply make use of a
visualization DSL rather than constructing one. Systems that possess
systematically described languages (e.g. Visception [37]) but either
do not utilize a standard serialization language for its description or
do not expose that language to the end-user were excluded. We focus
on computer-based languages, which precludes natural language spec-
ifications such as in NL4DV [55]. While many libraries excluded by
our criterion (e.g. ggplot) could be recast into JSON, we exclude them
because we strive only to understand the patterns of those DSLs that
have explicitly opted to use this representation—although the design of
visualization APIs more generally is intriguing future work.

Examples. To facilitate comparison between the DSLs in our survey
we collected representative samples of each language. For some DSLs
this involved collecting every single example available (such as Atom
and Cicero). For those with thriving communities (such as Highcharts
and Vega-Lite), we only gathered examples from documentation or test
repositories which provided sufficient examples for analysis. In some
cases (e.g. GoTree) the only examples available were those found in the
publications documenting those languages. While additional examples
would always be useful, the samples collected were sufficiently rep-
resentative to allow us to consider each of the axes of analysis. This
yielded 4395 examples, although a small number of DSLs dominate this
total. We present these materials as a DSL zoo [92] in our supplement
at vis-json-dsls.netlify.app and for download at osf.io/e9v8y.

Analysis Process. We conducted an analysis seeking to answer: What
are the design and implementation patterns in visualization DSLs rep-
resented in standard serialization formats? To do so, we analyzed
each surveyed language across a set of topics. Our initial selection of

topics was motivated by discussions of DSLs in general [17, 44, 53, 77],
visualization DSLs [44, 84], as well as related work on visualization
authoring systems [66]. We iteratively added and removed axes of
analysis (analogous to codes) until a theoretical saturation was reached.
Each axis was evaluated based on available documentation (such as a
paper describing the DSL), the found examples for the language, or
sometimes by reviewing the code itself. These results were grouped
into categories (Fig. 1). See the supplement for details.

Our observations and analysis are descriptive, and not evaluative.
Thus analyses such as locating DSLs within Satyanarayan et al.’s [66]
expressiveness-learnability spectrum are beyond the scope of this work,
as such comparisons would require experimental evaluation. We focus
on patterns relevant to visualization DSLs and refer to exterior sources
for those related to general DSL patterns [17, 31]. We forgo analysis
of living sources (such as interviews) because these artifacts are suf-
ficiently rich to conduct our analysis, although future work could be
augmented by such explorations.

4 ANALYSIS

We organize our discussion following our five concerns (Fig. 1) guided
by the information-gathering interrogatives for each DSL.

4.1 Domain: Why is it necessary?
We begin by considering the aims of our DSLs in order to identify the
problems they seek to solve and therein identify why they are necessary.

We found four purposes or domains for designing visualization
DSLs: creating standard charts, creating a particular chart, enabling a
specific interaction, and serving a certain task— as in Fig. 3. These
various purposes highlight a critical tension: why not just use something
that already exists? Indeed, many of the graphic types and domains
can be addressed using Vega or GoG [18] with enough manipulation.
This issue can be seen as a Turing tar pit [59] in which everything is
possible, but nothing is easy. The value of using DSLs is exactly to
avoid this pitfall: allowing some things to be easy by making some
things (that are not relevant to the domain) impossible.

Standard charts. Most DSLs focused on standard charts, such as bar
charts or scatter plots. Among these, the ostensible purpose varied, fea-
turing different levels of abstraction, contexts, means of expression, or
implementation affordances—each of which we discuss in subsequent
sections. For instance, Vega-Lite enables standard charting tasks using
a formal GoG-inspired approach, while ECharts employs a colloquial
chart-type model that uses its close connection to the browser to provide
responsive and progressive analytics features [40]. The purpose of such
languages is then the additional affordances brought to the design.

Chart Forms. Some DSLs focus on enabling a particular chart form or
genre. For instance, several languages support maps (such as Bertin and
deck.gl/json), while others focus on graphs (GraphML, GXL, CFGConf,
and SetCoLa). NEO enables confusion matrices. By focusing on a

https://vis-json-dsls.netlify.app/
https://osf.io/e9v8y
https://vis-json-dsls.netlify.app/


specific chart form a DSL can tailor its notation to the concerns of that
graphic. To wit, graphs specify node position as relationships between
entities and not in terms of spatial attributes. This allows languages
like GraphML to focus on only high-level attributes—although adding
notions of axial direction can be useful (which SetCoLa achieves by
encoding directional and relative properties as constraints).

Some chart families—like Gantt charts, Sunbursts, HOP Plots, or
Euler diagrams—can be constructed through visualization DSLs whose
notations are not well aligned with those charts. For instance, while
Gantt charts can be produced using general charting tools like Vega-
Lite (Fig. 4), they do so in a fashion that is not well matched with the
data. Gantt charts show the relationship between projects over time
in a DAG structure, sometimes featuring graph-based computations
such as critical path (maximum path length), neither of which are
well supported in the tabular data model used in many DSLs. The
result is that the user potentially needs to make tedious layout re-
computations and round-trips to the data. While this data type and
associated transformations could be embedded into Vega-Lite, doing so
would add to the growing complexity of that language.

We suggest that the creation of task-specific DSLs (or what Guzdial
and Shreiner [21] would call Teaspoon languages) that allow end-
users to author charts in the vernacular of a particular chart or data
form to be an important opportunity. Encodable addresses this problem
through a Vega-Lite-inspired component abstraction over arbitrary chart
forms—although this is done in such a way that binds the charts to the
JS-implementation (precluding portability) and requires a tabular data
structure (which can be at odds with the domain, as in Gantt charts).

Interactions. Most languages in our survey produced interactive vi-
sualizations that supported at least some simple interactions, such as
tooltips. However, some languages specifically focus on nuanced or
uncommon interactions. Some DSLs center animation, such as AniVis,
Gemini 1/2, and Canis. Cicero, ECharts, and ZingChart emphasize creat-
ing responsive visualizations. SVL supports some collaborative visual
analytics interactions. Focusing on a particular interaction allows the
language to surface attributes that are specific to that interaction, such
as Gemini 2’s use of keyframes as a first-class element of the language.

Careful balancing of novel and expected features is essential, as
having too many options can dilute the specificity of the DSL, however,
missing anticipated features can ruin its domain utility. For instance,
zooming is an interesting addition to abstract visualizations in Gosling,
while in map-focused DSLs it is all but required.

A number of DSLs focus only on the interaction of concern and
offload the remainder of the work to another DSL through compilation
(Sec. 4.3). This style of interaction injection is a valuable component
of some JSON-style DSLs. The restricted grammars allow simple
language composition, allowing each DSL to do one thing well. Sim-
ilar effects can be achieved with plugin architectures, however such
methods are usually inaccessible to end-users.

Nearly all interactions in these DSLs are transient, with only one
DSL (Glinda) supporting updates from their state into their specifica-
tion. While some interfaces (e.g. B2 [91]) provide mechanisms to
reify interactions into code, it is a missed opportunity that such bidi-
rectional interactions are relegated to external tools given JSON-like
DSLs computational malleability. For instance, tasks like annotation
may be easier to complete using direct manipulation as it does not re-
quire repeated round trips to code [79]. We suggest that such tasks may
be well-supported by DSLs that allow alteration of their specification
from their output in addition to from the code, such that changes to the
output are reflected in the input and vice-versa. Similar techniques have
been employed to allow bidirectional updates to SVG drawings formed
through functional programming languages [22, 24]. As JSON-style
DSLs can be manipulated more easily than most GPLs, we suggest that
future systems should explore this intriguing feature domain.

Mediums. The purpose of a number of systems is to enable use of a
particular medium, form of data, or set of tasks. As noted in Fig. 3,
these DSLs address a wide range of domains including SciVis, big data,
and data science/ML. This broad purpose highlights that visualization
tasks occur outside of the tidy small-data abstract-charting sandbox that

V
eg

a-
Li

te

H
yp

ot
h

et
ic

al
 

G
an

tt
 G

ra
m

m
ar

 {data: {values: [
      {task: "A", start: 1, end: 3},
      {task: "B", start: 3, end: 8},
      {task: "C", start: 8, end: 10}]},
  mark: "bar",
  encoding: {
    y: {field: "task", type: "ordinal"},
    x: {field: "start", 

type: "quantitative"},
    x2: {field: "end"}}}

{ data: {values: [
      {id: "A", deps: [],    dur: 2},
      {id: "B", deps: ["A"], dur: 5},
      {id: "C", deps: ["B"], dur: 2}]},
  encoding: {
    time: {field: "dur", offset: 1},
    deps: "deps", id: "id"}}

ta
sk

time

0 2 4 6 8 10

A

B

C

Nb: While windowing functions can ease recomputation for simple charts such as this one, 
more complex graphs can not be repeatably adjusted without substantial difficulty.

Fig. 4. While these Gantt chart specifications are similar in length and
complexity, the task-specific DSL does not require the user to manually
update the positions after a data update.

visualization DSLs (and systems [66]) often target, and moreover, that
conceptual adaptations can be usefully made to serve other use cases.

Focusing on domain allows selection of appropriate notation. For
instance, some domains use their own coordinate systems either by
convention or necessity. Genome Spy and Gosling include an idea of
genomic coordinates. ComicScript has a comic-specific notion of panels.
While generic approaches could achieve similar ends, they would not
match the expressivity found by localizing the syntax to the domain.
ComicScript has limited support for data exploration but enables interac-
tive data comics in a way that would otherwise be unmanageable [81].
As with DSLs in any domain, this may come at the cost of generality.

Surfacing domain-specific concepts allows the user to avoid the
Turing tarpit and directly address aspects relevant to the domain. How-
ever, JSON-style DSLs are most useful for tasks that specifically fit the
medium or that an end-user would wish to accomplish as a DSL (or
through a facade for one). For instance, several virtual or extended re-
ality systems (XR)—such as DXR, VR-Viz—use JSON-based grammars
as the basis of their syntax. We suggest the prevalence of this approach
may be because of XR’s need to pass between mediums (e.g. between
JS and Unity) is well matched with the portability of JSON-style DSLs.
Tasks with less structure may be better matched with free-text DSLs
(e.g. ViSlang [65]) as these allow for greater flexibility at the expense
of automation (e.g. GUIs or recommenders).

4.2 Models: What is it?
All languages are predicated on a model of what computation is exe-
cuted based on the commands written by the programmer. DSLs in
our survey used models that fell along axes of low to high abstraction,
and formal to colloquial. Drawing on prior work [84], abstraction level
refers to DSLs that are close to the data domain as “high-level” (e.g.
VizML or Highcharts) and those near the rendering context as “low-level”
(e.g. Vega or deck.gl/json). Model formality denotes a pervasive logical
structure in the DSL’s design.

Formal Models. Languages backed by overarching frameworks are an
important approach to visualization system design and are successful
in tools like Tableau and ggplot. These formal models can simplify the
expression of intent (within their scope) and aid potentially difficult
analyses, although possibly impeding flexibility. We observed a variety
of models whose purpose and intent varied.

The most prominent of these is Wilkinson’s GoG [83] model in
which data attributes are mapped to encoding channels and combined
through marks. These forms allow for expressive construction and
combination of visualizations allowing for the fluid creation of novel
forms without concern for chart type. Examples of this form include
Vega-Lite, Vega, VizML, JSOL, and Flex-ER. We suggest that this form is
a safe default model for many visualization systems, as it “expose(s)
the mechanics of good practice” [23]. Wilkinson has argued [63, 83]
that his Grammar of Graphics is the only grammar of graphics. While
this framing has been enormously successful in the development of
visualization systems and languages, it is far from the only conceivable
systematic model for creating visualizations. Others can be more tightly
tuned to support particular tasks. For instance, VizQL emphasizes data
exploration through the language of a data cube.



G
os

lin
g

{tracks: [{layout: "linear", width: 600, height: 400,
 data: {url: "<URL>", type: "multivec", 
   row: "sample", column: "position", 
   value: "peak", categories: ["sample 1"]},
 mark: "point",
 x: {field: "position", type: "genomic", axis: "bottom"},
 y: {field: "peak", type: "quantitative", axis: "right"},
 size: {field: "peak", type: "quantitative"}}]}
GoG-style languages can be augmented with domain specific content and 
abstractions, such as in the notion of tracks and genomic coordinates shown here.

P
lo

tl
y 

JS
O

N

[{x: [1, 2, 3, 4], y: [10, 11, 12, 13], mode: "markers",
  marker: {
    color: ["rgb(93, 164, 214)", "rgb(255, 144, 14)",  

"rgb(44, 160, 101)", "rgb(255, 65, 54)"],
    opacity: [1, 0.8, 0.6, 0.4],
    size: [40, 60, 80, 100]}}]
Properties (such as color) in series-models can be applied directly to the relevant 
component, giving a good closeness of mapping. 

{data: {url: "data/cars.json"},
 mark: "point",
 encoding: {
    x: {field: "Horsepower", type: "quantitative"},
    y: {field: "Miles_per_Gallon",

  type: "quantitative"}}}V
eg

a-
Li

te
A

to
m

GoG-style mappings (as here) provide a fast-flexible control over the chart design 
space allowing smooth exploration and clear documentation of intent.

Alternative formal models (such as the L-System inspired framing used here) can 
motivate alternative analyses and creation of novel chart forms.

{data: {url: "data/titanic3.csv"},
 layouts: [
    {type: "gridxy", aspect_ratio: "fillX",
      subgroup: {type: "groupby", key: "pclass"}},
    {type: "gridxy", aspect_ratio: "maxfill",
      subgroup: {type: "flatten"}, 
      size: {type: "uniform", isShared: false}}],
 mark: {shape: "circle", color: {key: "survived"}}}

Fig. 5. A DSL’s domain and model manifest themselves in its syntax.

While many DSLs expressively use a declarative mapping of data to
visual properties, other formulations can also be effective. For instance,
Atom uses an L-system-inspired model to describe unit visualizations
(see Fig. 5), whose graphical forms carry pivot sequences that are
well matched with the iterative stages of an L-system. CompassQL and
SetCoLa use constraints to generate programs that can act as a facade
for complex systems whose interface might not be easy to understand or
write (such as recommendation systems). Scholz 3D Vis Language, Shih
Volume Vis Language, and P4-6 use a sequential pipeline model. Pipeline
models seem to be especially suited to low-level graphics tasks (as in
Shih Volume Vis Language or shaders) or data manipulation (as in P5 or
Vega’s data model) as they may involve iterated stages whose results
must be produced sequentially. We highlight these alternative framings
because they may yield new approaches to various problems and enable
chart types or analyses which are impossible (or needlessly difficult)
in other framings. Alternative conceptual models are not unique to
our survey. For instance, the HiVE notation [73] eases exploration
of hierarchical orderings in treemaps. The development of DSLs for
particular chart types or aspects is an intriguing opportunity for this
genre of work, as are DSLs that surface novel semantic models as a
way to expose new framings for analysis.

While our survey criterion requires that every DSL have algebraic
qualities, several DSLs introduced explicit algebraic structures. Both
VizML and VizQL use table algebras to describe the way data is manipu-
lated prior to graphical display. Vega-Lite uses a simple data table model
but provides a view algebra that provides affordances for viewing per-
mutations and combinations. These algebras allow for rich expression
within their domains. Similar systematic models might be established
to serve other tasks or simply to surface alternate analysis approaches.
For instance, NEO uses an algebra specific to confusion matrices. The
visualization process has many interrelated steps, many of which might
be enriched through formal modeling.

Colloquial Models. The complement to formal models are those mod-
els that do not impose a framework over the structure of the interface.
These colloquial models are sometimes overlooked despite their ability
to adapt and accommodate real-world situations and problems.

These less structured DSLs typically utilize series-based models
in which data is mapped to aspects of particular chart forms (as in
templates), such as the x-axis of a scatterplot or the angles of a pie chart
(e.g. Plotly JSON in Fig. 5). Systems whose specification unit is a layer
(such as deck.gl/json and Bertin) can be seen as using a series model
in which the series are superimposed. They can be used at any level

{series: [{type: "treemap", data: […], layoutAlgorithm: "stripes",
  alternateStartingDirection: true,
  levels: […, {level: 1, layoutAlgorithm: "sliceAndDice",
    dataLabels: {enabled: true, align: "left"}}, …]}]}H

ig
h
ch

ar
ts

Fig. 6. Colloquial DSLs can enable specification of chart attributes
without modeling those attributes through the entire system.

of abstraction, such as high-level DSLs like AniVis (which focuses on
high-level chart templates) or low-level DSLs as in deck.gl/json (which
can give access to shader-level manipulations).

While these approaches are sometimes denigrated for their perceived
lack of expressivity [18, 83], the close connection between their inputs
and outputs forms a closeness of mapping that can make them simple
to understand and easy to verbally describe (aspects which formal ap-
proaches may fall short on). This closeness can make the process of
switching to a conceptually related (but visually distinct) chart form
more viscous, as the two syntaxes may be highly different. They are
more likely to allow unusual graphics as they can be created without
respect to a formal model, such as Bertin’s multiple forms of cartograms
or ZingChart’s funnel charts. These interfaces can be tuned to specifi-
cally support the domain, as in Highcharts’s treemaps (Fig. 6). However,
their design is often ad hoc and may be inconsistent with other parts
of the system, rendering them harder to learn or understand. This ap-
proach allows for simple local styles to be applied without needing to
map those properties through top-level language concerns, as well as
hierarchical styling which can be difficult to apply in systems whose
data model requires tabular normalization for rendering (as in Vega).

Colloquial models can support particular features without forming
themselves around that concept. For instance, only a handful of DSLs
have top-level annotation support (e.g. Plotly JSON, Highcharts, and
ApexCharts), however most of these are industry-driven efforts that do
not use a formal model—P4 and Cicero excepted, as they explicitly
model annotation. Similarly, only a small set of mostly industry-led
DSLs provide their own accessibility features (Highcharts, Vega-Lite,
ECharts, and FusionCharts). This dearth may be due to the fact that such
practicalities are often viewed as mere implementation details rather
than being central to usability [57, 76], which may be compounded by
a lack of research incentives to provide usable artifacts.

Beyond explicitly modeling features, formal models can pro-
vide these model-breaking behaviors through escape hatches to non-
declarative programming or other points of extension (Sec. 4.5). How-
ever, doing so requires that such hatches be pre-placed in a manner
relevant to the new feature—which is difficult to predict. Exploration
of DSL malleability in a manner that allows for undesigned features
without becoming unapproachably complex for end-users (a concern
for the deeply malleable Varv [2]) is a valuable opportunity.

Formal models may have colloquial components. These are often
found at interfaces with other systems. Styling is one such common
leaky abstraction. The manner in which a chart is rendered may leak
into the formalism without being modeled. For example, Vega-Lite’s
concept of styling is guided by its downstream SVG and canvas render-
ers. Colloquial DSL components are not inherently detrimental. If the
leaked feature is large or complex, it may be appropriate to embed that
language rather than model it, although this can lead to inconsistent
interfaces that are hard to adapt to new forms. Consideration of these
properties in DSL design may be valuable, such as by designing with
leaking in mind or by separating external concerns into separate DSLs.

Despite their academic stigma, we suggest that colloquial models
may be valuable to consider. Among series-based DSLs we observed
306 distinctly named series types, although there was significant overlap
in this list due to synonyms or simple modifiers (e.g. “3D” or “drag-
able”). The design space of name and modifier-based specification
appears to be a rich one, although an analysis of which is beyond the
scope of this work. Developing a better understanding of these forms
and the way they are used by system designers and domain experts
is intriguing work—especially in light of the decades-long popularity
of this specification style (cf. SpotFire, ChartML, XML Charts). As
researchers and tool-smiths [5], we suggest that we should meet people
where they are, which may mean working to enrich colloquial models.



Iv
y V

eg
a-Lite

V
eg

a

V
R

IA

{data: {…} , mark: "bar",
  y: 0.2, z: -0.5, yrotation: 45,
  encoding: {
    x: {field: "keyword", type: “ordinal"},
    y: {field: "count", type: "quantitative",
      axis: {face: "back"}},
    z: {timeUnit: "year", 
      field: "Year", type: "temporal"}}}

{data: [{name: "table", values: […]}],
  scales: [{name: "xscale", type: "band",
      domain: {data: "table", field: "keyword"},
      range: "width", padding: 0.05, round: true},
    {name: "yscale", nice: true, range: "height",
     domain: {data: "table", field: "amount"}}],
  axes: [
    {orient: "bottom", scale: "x"},
    {orient: "left",   scale: "y"}],
  marks: [{type: "rect", from: {data: "table"},
    encode: { enter: {
        x:     {scale: "x", field: "keyword"},
        width: {scale: "x", band: 1},
        y:     {scale: "y", field: "count"},
        y2:    {scale: "y", value: 0},
        fill: {value: "steelblue"}
  }}}]}

Extends

Compiles 
to

Wraps

{data: {name: "myData"}, 
 transform: [{filter: "datum.year == [filter]"}], 
 mark: {type: "bar", color: "[color]"}, 
 encoding: { 
   x: {aggregate: "sum", field: "[xDim]"}  
   y: {field: "[yDim]", type: "ordinal", 
       sort: 
          {if: "sort.includes('true')", true: "-x"}}}}

{data: {…}, 
 transform: [{filter: "datum.year == 2009"}],  
 mark: {type: "bar", color: "purple"}, 
 encoding: { 
     y: {field: "keyword", type: "ordinal"}, 
     x: {aggregate: "sum", field: "count" }}

Adds variables related to 
GUI via compilation

Extends the syntax  to 
address 3D concerns 

Compiles the syntax 
into a low-level  

rendering syntax

Vega Expression language 
embedded into the syntax 

Vega-Lite syntax is 
literally presented 
(and augmented)

Extensions can allow for 
domain specific additions, 
such as XR additions

Ivy allows embedding JS 
snippets as conditionals, which 
typically lose syntax highlighting 
in the process

Fig. 7. Annotated examples of the relationships between several DSLs.

4.3 Relationships: How does it relate to other DSLs?

Languages rarely exist in a language vacuum. For instance, many
languages support regular expressions in a syntax unrelated to their
own. We found that our DSLs are related to each other by Compiling,
Wrapping/Embedding, or Extending/Contracting. The way a language
relates to others determines numerous details about its implementation
(particularly its execution model), although each relation has tradeoffs—
the main tension residing between language customization and reuse.

Language composition can allow DSLs to be developed without
requiring re-implementation or invention of abstractions. Yet, this
comes at a cost as the new system is limited by the design choices of
the old. For instance, compiling into Vega-Lite ensures that Cicero does
not require the design of a visual encoding system, however, doing so
means that it is restrained to the mark types available in Vega-Lite (and
by a similar composition, Vega); impeding forms such as cartograms
or treemaps. While such tradeoffs can be navigated, compositions
that surface nested DSLs to the end user, as in Scholz 3D Vis Language
use of Vega specifications, may diminish the value of a language style
API, As they may necessitate frequent reference to documentation of
the nested-DSLs rather than providing a single coherent expression
language—yielding language cacophony.

Compile. Among external DSLs, there are two evaluation mechanisms:
compilation and interpretation [17]. We refer to compilation as a
process that generates code, while interpretation evaluates it directly.
Internal languages are embedded into their host which carries with
them all of the benefits and drawbacks associated with the more generic
DSL design decision of internal vs external.

Compiled languages allow the language to gain all the strengths—
and weaknesses—of its compile-target (often an interpreted or internal
DSL), such as with Cicero. Compilation does not require a direct
translation but can be used to embed computations into the resulting
system. SetCoLa uses this strategy to create circular layouts which
are not present in its compile-target WebCoLa [14]. In addition to
offloading rendering, this gives access to potentially hard-to-achieve
functionality, such as accessibility features.

Compilations may be chained together in a compile tower in a man-
ner supported by targeted languages that do one thing well (akin to the
Unix credo). For instance, our Gantt chart example in Fig. 4 might use-
fully target Vega-Lite to gain features such as tooltips without requiring
implementation of nuanced details. As the ecosystem of JSON-style
DSLs continues to grow it may be advantageous to select designs that
re-use as much work of the previous DSLs as possible.

These benefits do not come for free. While Vega-Lite provides ARIA-
accessibility features, it currently cannot provide some accessibility-
enhancing encodings (e.g. texture) because its compile target, Vega,
does not support them. More generally, errors may be harder for the
end-user to understand if they are generated by the target’s interpreter,
whose concerns and conceptual model may be different from the source
language. Ivy, which is a wrapping language that uses compilation,
exemplifies this duality. It is language-agnostic and can be used over
any JSON language, however, doing so precludes the surrounding
application from providing contextual hints because it is unaware of the
languages over which it is executed. Despite this, we argue that while
compile towers are not always applicable, they should be employed
more often. They can simplify implementation, improve usability, and

D
ep

en
d

en
ci

es
 g

o 
u

p
w

ar
d

s
D

ep
en

d
en

ci
es

 g
o 

u
p

w
ar

d
s

Cicero CompassQLMulticlass 
Density Maps

Scholz 3D Vis 
Language

Ivy Gemini 2Genome SpyGoslingSVLVRIAP6

P4 Vega

Atom
Gemini 1

PapARVis

Vega-LiteP5 VizGrammar

Gemini 2 Wraps Vega

P5 Compiles to P4

P6 Extends P
5

Compiles to Extends WrapsExplicit Language Relations
Some languages were inspired by other DSLs (as in ComicScript with Vega-Lite and DataTheater) without a 
specific relationship and so are not shown here. Others had no connection.

Fig. 8. DSLs can hold a variety of relationships with one another that
allow them to reuse implementations, syntax, or concepts.

reduce reinvention. They are well suited to research systems (whose
contribution is not based on implementation) as they can rely on another
system for repeatability and defense against bit-rot.

In contrast, interpretation allows for rich customization that can be
helpful in specialized contexts. Kyrix-S supports large data sets for
zooming visualizations. Data Theater uses an unusual data model (the
output of an end-user specified Python script) to create explorable ex-
planations. This approach can enable construction of contextual error
messages (and other usability features) that are relevant to the local do-
main as they are not predicated on layers of indirection. However, this
approach pushes rendering, data manipulation, and usability features
onto the language implementer. Medium-focused DSLs tend to use this
approach, possibly because their value is related to their customization
to that medium (the main exceptions to this are XR-focused DSLs).

Wrap/Embed. Wrapping or embedding languages provides function-
ality extensions by literally containing other languages. For instance,
Gemini 2, allows users to describe keyframes of an animation by explic-
itly including Vega and Vega-Lite specifications. Scholz 3D Vis Language
allows the inclusion of entire Vega and Vega-Lite charts in a 3D context.
There is overlap with compilation (as it can be used as a wrapping
mechanism, as with Ivy), however we delineate this as a separate pat-
tern to highlight the particular form of re-use. This approach allows for
language-level separation of concerns as well as the use of the imported
DSL’s externalities (e.g. documentation or community support). This
approach’s main risk (beyond language cacophony) is that the embed-
ded language might not match the domain and lead to inconsistencies.

A less extreme example of this approach is to embed language
snippets—such as in the manner that SQL snippets are represented as
strings in GPLs. These snippets address common tasks, such as control-
flow or formatting (often via the d3-format language) as well as model-
specific issues. Vega has a purpose-built JS subset for interacting with
event streams. FusionCharts permits HTML snippets in tooltips. This
common DSL pattern [17] allows for rich expression of intent, but may
come at the cost of tooling, yielding some usability features (e.g. syntax
highlighting) unavailable. There may be hidden dependencies within
the snippet, as in the often numerous signals in Vega expressions [25].

Extend/Contract. An associated relationship is extension, in which
a DSL is contracted or extended to form a new DSL. This usually
comes in conjunction with syntactic extensions or modifications to
the execution strategy. Genome Spy and VRIA contract the syntax of
Vega-Lite behind custom renderers, and extend it with some genome
and XR-specific affordances, respectively. PapARVis wraps and extends
Vega with augmented reality enhancements. This approach can be
useful as it allows for porting of ideas to new domains (e.g. Genome
Spy’s reuse of Vega-Lite syntax in genomics). However, it does so at the
expense of creating a new backend for that system. Given the variety of
functionality developed across these DSLs, enabling their composition
to allow greater reuse and increase their long-term impact.

Language elements are sometimes extended or reused in an ad
hoc manner, a pattern which is more closely aligned with influ-
ence than extension. Some languages (such as Encodable, Flex-ER,
or DXR) explicitly mold themselves on the thin mapping style of
Vega-Lite or Vega without actually reusing the specific syntax or
rendering systems. Other DSLs include only minor syntactic ele-
ments, such as P4 and Ivy’s use of MongoDB-style operators (e.g.
{field: {$not: {OPERATOR-EXPRESSION}}}). At other times this influence



is conceptual. GoTree includes a spacing system related to the CSS box
model, while ZingChart and Cicero include responsive-design features
inspired by CSS media queries. Familiar syntax and concepts may
aid learnability—possibly reducing the negative effects of language
cacophony—however not every domain will fit every imported idea.
For instance, CSS-style declarative rules are unlikely to handle the
iterative stages of a data transformation pipeline well.

4.4 Language Affordances: Who is the end-user?
Each language has at least a general idea of its users, which motivates
what features to include. We saw three user types based on the way
they are expected to use the DSL, whose interests are naturally in
tension. Some users simply use the DSL (end-users), others can mod-
ify the system which houses the DSL (system-builders), while others
automatically manipulate and analyze the DSL (automated agents).

Syntax. A common first choice is whether to create an internal or exter-
nal DSL. This is covered at length in other venues [17,53] but in essence,
it can be seen as a question of language invention or embedding. The
languages in our survey do not demonstrate any substantial divergences
from the common benefits and limitations of each of these patterns.
External DSLs offer richer expressivity but can be harder to construct
and learn. Internal DSLs are easier to use within a host language but
can force a notation that is poorly matched with the domain.

Internal languages seem to be most useful to interface-builders [84]
as opposed to end-users. For instance, they do not by default facilitate
automated analysis, and as such analysis can require dedicated high-
complexity tools (such as AST-analyzers). These components are often
beyond the design goals of tools meant only to support web-based
presentations (e.g. Chart.js). Notebook-based analysis is a notable
exception as it blurs end-user and system-builder. Internal bindings
to external DSLs (e.g. Altair [78]) seem well matched to such hybrid
users. However, such an analysis is beyond the scope of our study.

Among external languages, JSON is sometimes chosen for being
end-user friendly. Scholz [70] notes that JSON was selected because
it is human-readable and easy to transfer on the web. DeLine valued
“YAML’s declarative, hierarchical syntax” [10]. In contrast, a common
criticism of XML as a carrier language is that it is verbose, which is
seen as poorly matched with human usage [17, 83]. JSON’s syntax,
which is terse, appears to overcome this hurdle and may account for
this style of DSL’s growing popularity (Fig. 2).

Several end-user-focused systems expose their syntax to the end-user
in applications. StructGraphics uses a custom GUI, whereas others (e.g.
Ivy and Glinda) use plain text extended by modern editor affordances
(e.g. autocomplete). Other DSLs have editors that support their use
(without being required), such as Gemini 1-2 or Vega. Constructing
an environment around a DSL allows debugging tools and other end-
user supportive features, however, this can (and has [90]) led to a
constellation of small applications that repeatedly reimplement similar
functionality. We suggest that it may be beneficial to consider how these
efforts may be consolidated for this language style more generically.

Shih et al.’s [72] rationale for selecting JSON for their scientific
visualization grammar was more focused on machine usability, noting
that they selected “JSON because it is a widely used standard, is easy
to parse, and it has sufficient expressiveness for hierarchical structures”,
an attitude shared in the design of GoTree [41]. Wu et al. [89] note that
this interface style allows for manipulation by humans and autonomous
users. While true for any executable language, manipulations are
easier in serialization formats due to their restricted form. The limited
grammar allows for exhaustive design space exploration, enabling
recommendation (as in CompassQL and Cicero [32]) and enumeration
of novel chart forms (as in Atom [57] and GoTree [41]).

An often discussed benefit of external DSLs [53] is that they expose
a notation local to a domain—as in Diderot’s [7] explicit use of tensor
operators (e.g. ∇ and ~). While JSON-like languages can abstract
over various domains, few domains use it as their primary notation
(API design and data definition are clear exceptions). The selection of
these carrier languages as syntax is then a compromise. In exchange
for benefits like portability and simple machine operability, domain
experts encounter a less familiar notation.

C
om

ic
Sc

ri
p
t […, {trigger: "click", condition: ["total",  "> 0"], 

 operation: "loadLayout", element: "day5", 
     layout: [["congrats"]], after: "day4”, group: "g1"}, …]

Ivy{…sort: {$if: "sort.includes('true')", true: "-x"}…}

P
4

{…{$interact: {event: "brush", condition: {x: true}, from: ["c3"], 
   response: {

c1: {unselected: {color: "gray"}}, 
c2: {unselected: {color: "gray”}}}}}…} SetC

ola

[…, {name: "additional spacing", 
 forEach: [{constraint: "padding", amount: 18}],
 sets: {partition: "type", exclude: ["unknown", "dwnstream genes"]}}, …]

Fig. 9. Many languages feature logic or control flow operators.

Abstraction Mechanisms. Creating abstractions is an important part of
any programming language. In GPLs features like variables, functions,
if-else structures, loops, and a host of others serve this purpose. Some
languages in our survey utilized these elements (Fig. 8) allowing ab-
straction on syntactic, data, output, or contextual levels. Those that did
not, likely did so to limit scope, because their domain did not require
it, or relied on their host for such features (a benefit of internal DSLs).
The tendency to forgo abstraction in DSLs is well known [17], but we
highlight it to explore the particularities exemplified in this context.

Control flow operators (as in Fig. 9) were common. These condi-
tionals can address a range of program aspects including the data (as
in Vega-Lite’s conditional marks), the graphic (as in the query selectors
found in Canis), interactions (as in ComicScript), or container state (such
as in languages rooted in GUIs like Ivy). Some focused on modifying
graphics based on interactions (as in P4) while others focused on syn-
tactic transformations (as in Ivy). Some languages, such as Vega, use
another language to evaluate their condition (via embedded snippets),
while others, like ComicScript, construct the logic through explicit op-
erators. While it is not necessary to be able to query or conditionalize
every element, each of them can be beneficial depending on the domain
although not every situation necessitates such facilities. Cicero uses a
powerful query language that gives access to data, graphic, and spec-
ification, which is necessary for its responsive and annotation tasks,
although it appropriately has no concept of its surrounding context (be-
sides aspect ratio). Embedding snippets offers greater expressivity [17]
(potentially at the price of portability and diminished usability features),
while explicit operators allow the user and their tooling to keep a single
consistent mental model (potentially introducing unfamiliar syntax).

A variety of other abstraction mechanisms were used. Some systems
included notions of variables, although their purpose varied. Flex-ER
and Vega use FRP-style signals as variables. Canis uses variables as
a form of textual-macro replacement. Ivy and Vega-Lite use variables
as a way to reference GUI controls exposed to the end-user (although
Vega-Lite’s are a mask for Vega’s signals). Variables can help reduce
the cognitive load on the user by reducing diffuseness, but it can also
increase it if the references become difficult to follow. SetCoLa was the
only language to include loops. While an appropriate syntactic choice
for their domain (simplifying constraint generation) it is common for
DSLs to not provide loops as this can cause DSLs to accidentally “slide
into generality” [17]. None of the external DSLs had SQL-style end-
user definable functions. Varv [2] takes extensibility to an extreme
via a fully end-user editable application creation external DSL (that
includes simple macros); demonstrating that this level of malleability
is achievable in external DSLs.

The selected abstraction gradient should cater to a designed audi-
ence. Loops and variables can help readability, which supports humans
but does not generally affect automations. Functions and control flow
operators can aid in reuse, but if programs are generated on the fly
in a GUI and not meant for reuse, their utility will be limited. If the
intended user’s interests are not aligned with multiple such user types
then a different interface may be preferential to a JSON-style DSL.
For instance, a DSL solely focused on humans using notebooks will
likely be better served by not imposing the grammatical limitations of
a serialization language, while an automatically generated language for
facilitating chart recommendations need not be human readable.



4.5 Practicalities: Where is work done?

There are a number of places within a DSL where a given feature can
be implemented. As in Fig. 10, these include explicit and implicit
modeling as well as internal and external placement. This modeling
describes where the user is expected to do work to use those features.

Each strategy has advantages and disadvantages. Internal features
give deep control over implementation. However, that entity must be
clearly represented or risk visibility errors. Explicit modeling can allow
the user to address a task directly, but it can require the development
of new (potentially inconsistent) syntax. External features can push
burdens to other systems, reducing portability and potentially inducing
hidden dependencies. Implicit modeling can be deeply expressive, but
carrying out such intentions can yield hard mental operations.

Integration and State. Most DSLs manage state and interactivity
through a runtime inside the system. This allows them exact con-
trol over the way a feature is delivered, and is thus favored by internal
and interpreted DSLs. Similarly, internal DSLs allow rich integration
with web pages through affordances like callbacks—typically in ex-
change for a lack of end-user control. Other systems manage state by
integration with an external application. StructGraphics, for instance,
provides a visualization builder interface that maps spreadsheet data to
graphics. Embedding state into a housing application allows graphics
to be synchronized with and used to control the UI, enabling deeply
integrated experiences, although this may impede portability. Some sys-
tems (typically compiled DSLs) pass control to an external system, as
in Vega-Lite or SetCoLa. This simplifies system construction, however,
it may impede interactions outside the target’s model.

These approaches only have value when appropriately coordinated
with their purpose. For instance, Atom uses a custom interpreter in-
tegrated into an application. While this approach allows Atom to be
closely integrated with its editing environment, it makes it difficult
to portably reuse specifications in other contexts and precludes them
from being integrated into other applications. Given its position as an
academic artifact whose value is not related to its renderer, we suggest
that DSLs like Atom may be well matched with a compile tower-style
strategy to alleviate implementation burden and facilitate portability.

Some DSLs provide mechanisms for interactions and integration
with their environment, although this can require coupling with those
systems (as does binding to any external system). For instance, Encod-
able explores creating Vega-Lite-style facades over arbitrary JS visual-
izations. However, this causes those little languages to be inextricably
linked to JS. We suggest that portability and contextual integration are
opposing goals, as surfacing integrations as first-class aspects of the
language creates a context dependence. Both are reasonable design
choices, but favoring integration may reduce some of JSON-style DSLs’
utility (e.g. portability). Yet, language-level integration in these DSLs
is unexplored, so it may be useful to consider visualizations as part of a
system rather than singular units.

Alternate language APIs. Some DSLs are used in host languages
through internal bindings. This type of tool can enable work-arounds
for DSL limitations by externalizing these needs to a host language, as
in the Gos Python-wrapper for Gosling [45] or Altair [78] for Vega-Lite.
For instance, some facet and layer combinations create data ambiguities
that can prevent Vega-Lite from rendering. This can be resolved by
manually pivoting data and combining Altair charts in Python.

Beyond providing workarounds for language issues, this can sim-
plify program specification for users with limited familiarity with the
DSL. For instance, it may be easier for an Elm programmer to use
elm-vega [87] than to a write a corresponding Vega specification. This
is analogous to the value of object relational mappers for manipulation
of SQL databases. Users can write and reason about their database
in their chosen language rather than being required to utilize SQL’s
sometimes idiosyncratic or unfamiliar form. We emphasize that con-
sideration of the environments in which a language will be used is a
valuable component of language design as it may surface components
and strategies that guide the design, such as expecting faceting to be
done outside of the DSL.

Internal to system

External to system

Explicit modeling

Implicit modeling

C
on

ta
in
er

La
n
g
u
ag

e

Ex: control state from within a 
runtime to give access to language 
level variables and data 

Ex: use features external to the DSL 
to address a task, such as using 
HTML for chart composition 

Ex: push a feature into the conceptual 
model, such as using XR’s spatial 
properties for composition

Ex: surface a feature in the DSL, such 
as a domain-specific data 
transformation

Fig. 10. Features can be built in a variety of places across the DSL.

Extensibility. Wilkinson notes that any closed system will have missing
pieces [83]. For instance, his VizML has limited support for nested or
data-driven layouts (e.g. sets or cartograms) or mixed data and aesthetic-
driven tasks (such as annotation). Some DSLs approach extensibility
by designing places where external elements can be introduced into
the system through an API. This can allow for the introduction of new
transforms (as in Vega-Lite), user-defined marks (as in DXR), renderers
(as in Vega), as well as chart types or events (as in Chart.js). Extensions
typically occur in explicitly modeled features within the system, pre-
cluding end-user modification of system concepts (e.g. new coordinate
systems). Open source software can allow for a slower but less limited
form of extension. Yet this is not always the case. Some systems are
no longer maintained, might be resistant to external changes, or might
require too high a technical barrier to contribution from domain experts.

A form of extension available in some formal model-based DSLs
is the creation of ad hoc mark types within the language itself. Wong-
suphasawat [85] explores how end-users of some systems can construct
composite marks, such as candlesticks, although there are boundaries to
this imposed by the form of the language model. For instance, Vega-Lite
allows some custom glyph creation (via image marks), which enables
unit isotypes but not aggregates—as such encodings fall outside its
model. Some extensions are not possible without external modeling, as
in our Gantt example (Fig. 4). This extension style is powerful but is
limited by its model and so can be well paired with external extension.

Combination and Data Strategy. A DSL’s approach to image compo-
sition (e.g. layering or juxtaposition) and handling data exemplify the
stratification of where work is done.

We observed a spectrum of strategies for image composition ranging
from specification above the language (in the container), explicitly
modeling within the language, to below it implicitly in the conceptual
model. Many DSLs do not provide a mechanism for combination,
either because it is not relevant to their domain (as in graph DSLs) or
by making use of awareness of their medium as the implied context
through which conjunction happens. For instance, ECharts relies on the
browser for spatial arrangement and the user for data partitioning. This
can be simple to construct but pushes implementation onto the user.

Some formal models feature a composition algebra, as in Vega-Lite’s
layer, facet, and concat operations. These operators typically focus
on data partitions (to facilitate small multiples), however, Wu also
describes an under-explored notion of parameter-based faceting [90].
Some languages include a combination mechanism unique to their
domain, such as ComicScript’s panels or Gosling’s notion of tracks.
These approaches are useful, but typically require explicit modeling in
the language, which can take up limited conceptual real estate.

Some DSLs push feature description into their conceptual model,
such as by using spatial position for combination (as in map and XR
DSLs). While powerful, these should be used cautiously as implicit
operations can yield hard mental operations.

The selection of how and where data is handled is critical, as it
determines how a DSL can interact with its environment and compose
with other DSLs. Most DSLs hold all their data inside the system, a
simplistic model which is adequate for many use cases, however some
externalize that task. For instance, Kyrix-S uses a custom back-end
that sits on top of a database to allow exploration of large datasets via
zooming. While sometimes useful, a complex data strategy is unlikely
to work with a system that does not share that strategy: Kyrix-S is
unlikely to be interoperable with Multiclass-Density-Maps despite sharing
a domain interest in aggregating heatmaps. Similarly, DSLs exhibit
no manipulation strategy (ignoring it or externalizing to the host),
rudimentary language manipulations such as filters, or a richer domain-
relevant expression or transformation system explicitly modeled within



the language (as in Genome Spy’s genome-focused transformations).
These carry similar tradeoffs as composition in placement stratification.
Unlike composition, there are well-implemented libraries that support
this task. Yet, many DSLs implement their data processing features
themselves [90]. These recreations may be motivated by domain. For
example, most data libraries do not support the genomic coordinates
required by Gosling—although this is more often done needlessly when
more robust implementations are available. Consideration of how and
where to place features such as these is critical for DSL usability.

5 DISCUSSION

In this study, we surveyed JSON-style DSLs for visualization from
across academia, industry, and open source efforts spanning a period of
more than 20 years. In doing so we examined both the state of the art
for this domain (such as the role of DSL compilation vs interpretation
or abstraction in DSLs), and introduced new concerns (including the
tension between colloquial and formal visualization models), patterns
(like the role of composition), and practices (e.g. supporting both
computational and human users). We observed a wide variety of tasks
and domains that this style of language seeks to serve, indicating its
pliability to a large collection of concerns and highlighted many avenues
for future work (such as designing languages that can be bidirectionally
updated). From our results, we are optimistic about this style’s future.
However this is not without caveats nor enticing avenues of exploration.

Study Limitations. We sought to understand the design and implemen-
tation of JSON-style DSLs through analysis of artifacts, documentation,
and scholarly works. While this revealed a number of intriguing pat-
terns, it did not capture the entirety of visualization DSLs or APIs.
For instance, we excluded a variety of visualization languages (e.g.
ggplot) and JSON-based languages outside of visualization (e.g. Varv).
Exploration of design patterns and tradeoffs found in these and other
languages, libraries, and APIs is warranted in future studies.

Computer languages, like spoken languages, are often living entities
whose design changes over time and can be driven by individuals’
undocumented ideas or influences. In future work, this analysis might
be enriched through interviews with DSL authors to better understand
language design choices and life cycles.

Our survey was biased in several ways. Our survey was biased to-
wards more recent open source and academic works, and away from
older or privately-produced DSLs, as it is easier to find public contem-
porary systems. As such, there are likely additional DSLs that were not
observed during our search. While additional data would be useful, we
believe our sample sufficiently captures the tendencies of this language
form, although sample size and biases are known issues [92]. Some
codings were based on limited documentation as we were unable to
locate some DSL artifacts (e.g. due to URL-rot or closed-source). We
intend to continue expanding the corpus of examples in our supplement
to facilitate further empirical investigation of this language genre. This
may reveal patterns hidden from our qualitative lens. Finally, our anal-
ysis is limited by our own biases, which we sought to reduce through
iterative theming and reflection.

Language Design and Tooling. The design of an effective DSL for
achieving any of the nuanced tasks that visualization DSLs seek to
solve is a thorny problem. Novel languages and notations have the
potential to serve as foundations on which to “think the unthinkable”
[80], but also can add needless complexity and cacophony. How to
build powerful tools that do not result in confusion which can be applied
to an ecosystem that has a competing set of users? Per the tensions and
tradeoffs we highlight throughout this study, there is no one answer.
We suggest that developing mechanisms for design evaluation and
improving the DSL tool ecosystem may fruitfully guide future DSLs.

DSL evaluation is a long-running topic [3, 61]. However, these
methods are not extensively used for visualization DSLs [63]. Only two
works [11,69] offered a formal CDN analysis, while others provided ad
hoc reasoning [83]. Poltronieri et al. [61] suggest that DSL evaluation
may be more effective if done in a contextual and non-generic manner
(as in Jakubovic et al.’s [29] work on programming systems or Elavsky
et al.’s work on visualization accessibility [15]). Such a call might be

answered with evaluatory heuristics, like “What tasks does this DSL
address?”, “What form of model is it using?”, “How are non-data
elements described?”, “Who is the intended user?”, or “What is meant
by data?” A notable experiment in this regard is Pu et al.’s [62] use of
Algebraic Visualization [34, 49] as a sibling to CDN, suggesting the
applicability of visualization theory to DSL evaluation.

JSON DSLs have been described as being intended for use by end-
users [50]. However, there has been little formal usability analysis.
Hoffswell et al. [25] studied debugging in Vega. Naimipour et al. [54]
explore social science teachers’ perceived usability of Vega-Lite. These
works demonstrate this approach’s utility. However, future work should
investigate which language form is best matched with end-users.

We believe that some of the usability issues found in JSON-style
visualization DSLs [44] can be addressed through careful enhancements
to end-user tooling. Merino et al. explore this in their system for
creating notebooks tuned to individual DSLs [52]. Hoffswell et al. [25]
augment textual representations of Vega programs with in-situ state
visualizations. As JSON-style DSLs continue to be developed, it may be
useful to explore language workbenches [17], which are a form of tool
for designing, composing, and using (often domain-specific) languages.
Some work has been done in this direction by JSON Schema structure
editors [2]. However, they focus on data validation and not language
design. Some DSLs provide formal syntax definitions. However, none
formalize their semantics, although this may be because a visualization
semantics language does not exist. We suggest that a metalanguage for
such descriptions would be valuable future work.

JSON-style DSLs can be error prone through silent errors or over-
rides, such as those caused by invalid or misspelled properties. This
can be confusing to the end-user who then receives little feedback
on why execution is not carried out as they expect. Tools like JSON
Schema can be useful to reduce this type of error, but they are only
able to capture syntactic errors. Analysis tools like linters [6, 27, 51]
can help capture semantic errors, although the configuration of which
may present non-trivial complexities. Future designs should explore
encoding invariants as syntax so that invalid expression is impossible.

The Next 10k Visualization Grammars. If our survey prompts any
prediction, it is that new visualization languages will continue to be
developed—some of which may be in the JSON-style. There are many
forms, shapes, and purposes these languages may take. Hogräfer et
al. [26] argue for a map grammar. Lau et al. [38] call for a compu-
tational notebook grammar that would enable task-specific notebook
forms. Hullman and Gelman call for a grammar that enables statistical
model checks [28]. Following the trend of developing DSLs to support
complex data tasks in genomics [39, 45] or ML [43], other languages
could be developed for other data-intensive contexts, such as multi-scale
analysis, temporal data, or textual data. Tuning computation-heavy
algorithms or processes involving randomness (as in force direction)
can be clumsy and error-prone, suggesting that an end-user-centered
DSL enhancing those operations might be valuable. The volume of
XR DSLs suggests that JSON-style DSLs may be useful for other
uncommon mediums. For instance, a sonification grammar (such as
briefly explored by Highcharts and DXR) might make non-visual data
experiences easier and more accessible to produce.

Park et al. [57] argue that efforts should be made to “find a definitive
grammar that can unify many of these existing grammars”. However,
Greenspun’s tenth rule [19] quips that any sufficiently complicated
program contains an ad hoc, informally specified, bug-ridden, slow
implementation of half of Lisp. Less satirically Fowler notes that one
of the biggest dangers in DSL design is “Sliding into generality.” [17]
While tools like Vega-Lite are probably not in danger of becoming Lisp,
we suggest that consideration of small modular language components
may be helpful in the continuation and extension of this ecosystem.

There are many tasks, and no one DSL will be able to capture all of
them without compromising essential parts of its domain design. That
is, there is no grammar to rule them all.

ACKNOWLEDGMENTS

We thank our reviewers, as well as Ravi Chugh, Arvind Satyanarayan,
Brian Hempel, Will Brackenbury, and Michael A. McNutt.

https://vis-json-dsls.netlify.app/


REFERENCES

[1] A. Blackwell and T. Green. Notational Systems–the Cognitive Dimen-
sions of Notations Framework. HCI Models, Theories, And Frameworks:
Toward An Interdisciplinary Science. Morgan Kaufmann, 2003.

[2] M. Borowski, L. Murray, J. B. Bagge, Rolf Kristensen, A. Satyanarayan,
and C. N. Klokmose. Varv: Reprogrammable Interactive Software As a
Declarative Data Structure. In Conference on Human Factors in Comput-
ing Systems, pp. 492:1–492:20, 2022. doi: 10.1145/3491102.3502064

[3] H. S. Borum, H. Niss, and P. Sestoft. On Designing Applied DSLs for
Non-programming Experts in Evolving Domains. In Conference on Model
Driven Engineering Languages And Systems, pp. 227–238, 2021.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-driven Documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[5] F. P. Brooks Jr. The Computer Scientist As Toolsmith II. Communications
of the ACM, 39(3):61–68, 1996.

[6] Q. Chen, F. Sun, X. Xu, Z. Chen, J. Wang, and N. Cao. VizLinter: a
Linter And Fixer Framework for Data Visualization. IEEE Transactions
on Visualization and Computer Graphics, 2021.

[7] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and N. Seltzer. Diderot:
a Parallel DSL for Image Analysis And Visualization. In Programming
Language Design and Implementation, pp. 111–120, 2012.

[8] K. Compton, B. Kybartas, and M. Mateas. Tracery: An Author-Focused
Generative Text Tool. In International Conference on Interactive Digital
Storytelling, pp. 154–161. Springer, 2015.

[9] M. Conlen and J. Heer. Idyll: a Markup Language for Authoring And Pub-
lishing Interactive Articles on the Web. In Symposium on User Interface
Software and Technology, pp. 977–989, 2018.

[10] R. A. DeLine. Glinda: Supporting Data Science with Live Programming,
GUIs And a Domain-specific Language. In Conference on Human Factors
in Computing Systems, pp. 1–11, 2021.

[11] S. Devkota, M. Legendre, A. Kunen, P. Aschwanden, and K. E. Isaacs.
CFGConf: Supporting High Level Requirements for Visualizing Control
Flow Graphs. arxiv, 2021.

[12] Dhall. Design Choices. https://docs.dhall-lang.org/

discussions/Design-choices.html, 2021. Viewed 1/3/21.
[13] T. Duplantis, I. Karth, M. Kreminski, A. M. Smith, and M. Mateas. A

Genre-Specific Game Description Language for Game Boy RPGs. In
IEEE Conference on Games, 2021.

[14] T. Dwyer. WebCola. https://github.com/tgdwyer/WebCola.
Viewed 3/5/2022.

[15] F. Elavsky, C. Bennett, and D. Moritz. How Accessible Is My Visu-
alization? Evaluating Visualization Accessibility with Chartability. In
Eurographics Conference on Visualization, p. 14, 2022. To Appear.

[16] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language Composition Untan-
gled. In Workshop on Language Descriptions, Tools, And Applications,
pp. 1–8, 2012.

[17] M. Fowler. Domain-specific Languages. Pearson Education, 2010.
[18] M. Friendly. Colorless Green Graphs Sleep Furiously: a Conversation

with Leland Wilkinson. Nightingale, March 2022.
[19] P. Greenspun. 10th Rule of Programming. http://philip.greenspun.

com/bboard/q-and-a-fetch-msg?msg_id=000tgU, 2003. Viewed
1/3/2022.

[20] S. Günther, T. Cleenewerck, and V. Jonckers. Software Variability: the
Design Space of Configuration Languages. In Workshop on Variability
Modeling of Software-Intensive Systems, pp. 157–164, 2012.

[21] M. Guzdial and T. Shreiner. Integrating Computing Through Task-specific
Programming for Disciplinary Relevance: Considerations And Examples.
In Computational Thinking in Education, pp. 172–190. Routledge, 2021.

[22] B. Hasimoto. Glisp. https://github.com/baku89/glisp, 2021.
[23] K. Healy and J. Moody. Data Visualization in Sociology. Annual Review

of Sociology, 40:105–128, 2014.
[24] B. Hempel, J. Lubin, and R. Chugh. Sketch-n-Sketch: Output-Directed

Programming for SVG. In Symposium on User Interface Software and
Technology, pp. 281–292, 2019. doi: 10.1145/3332165.3347925

[25] J. Hoffswell, A. Satyanarayan, and J. Heer. Augmenting Code with in Situ
Visualizations To Aid Program Understanding. In Conference on Human
Factors in Computing Systems, pp. 1–12, 2018.

[26] M. Hogräfer, M. Heitzler, and H.-J. Schulz. The State of the Art in Map-
Like Visualization. In Computer Graphics Forum, vol. 39, pp. 647–674.
Wiley Online Library, 2020.

[27] A. K. Hopkins, M. Correll, and A. Satyanarayan. VisuaLint: Sketchy in

Situ Annotations of Chart Construction Errors. In Computer Graphics
Forum, 2020. doi: 10.1111/cgf.13975

[28] J. Hullman and A. Gelman. Designing for Interactive Exploratory Data
Analysis Requires Theories of Graphical Inference. HDSR, 2021.

[29] J. Jakubovic, J. Edwards, and T. Petricek. Technical Dimensions of
Programming Systems. 2022.

[30] E. Jun, M. Daum, J. Roesch, S. Chasins, E. Berger, R. Just, and K. Rei-
necke. Tea: a High-level Language And Runtime System for Automating
Statistical Analysis. In Symposium on User Interface Software and Tech-
nology, pp. 591–603, 2019.

[31] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Völkel.
Design Guidelines for Domain Specific Languages. arxiv, 2014.

[32] H. Kim, R. Rossi, F. Du, E. Koh, S. Guo, J. Hullman, and J. Hoffswell. Ci-
cero: a Declarative Grammar for Responsive Visualization. In Conference
on Human Factors in Computing Systems, pp. 600:1–600:15, 2022. doi:
10.1145/3491102.3517455

[33] Y. Kim, K. Wongsuphasawat, J. Hullman, and J. Heer. GraphScape: a
Model for Automated Reasoning About Visualization Similarity And
Sequencing. In Conference on Human Factors in Computing Systems, pp.
2628–2638. ACM, 2017. doi: 10.1145/3025453.3025866

[34] G. Kindlmann and C. Scheidegger. An Algebraic Process for Visualization
Design. IEEE Transactions on Visualization and Computer Graphics,
20(12):2181–2190, 2014. doi: 10.1109/TVCG.2014.2346325

[35] L. C. Klopfenstein, S. Delpriori, and A. Ricci. Adapting a Conversational
Text Generator for Online Chatbot Messaging. In International Conference
on Internet Science, pp. 87–99. Springer, 2018.

[36] A. Ko. Tweet, November 2021. https://twitter.com/amyjko/
status/1458537839939895299.

[37] Y. S. Kristiansen and S. Bruckner. Visception: An Interactive Visual
Framework for Nested Visualization Design. Computers & Graphics,
92:13–27, 2020.

[38] S. Lau, I. Drosos, J. M. Markel, and P. J. Guo. The Design Space of
Computational Notebooks: An Analysis of 60 Systems in Academia And
Industry. In Visual Languages And Human-Centric Computing, pp. 1–11.
IEEE, 2020.

[39] K. Lavikka. Grammar-Based Interactive Genome Visualization. Master’s
thesis, Helsingin yliopisto, 2020.

[40] D. Li, H. Mei, Y. Shen, S. Su, W. Zhang, J. Wang, M. Zu, and W. Chen.
ECharts: a Declarative Framework for Rapid Construction of Web-based
Visualization. Visual Informatics, 2(2):136–146, 2018.

[41] G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan. Gotree: a Grammar
of Tree Visualizations. In Conference on Human Factors in Computing
Systems, pp. 1–13, 2020.

[42] J. K. Li and K.-L. Ma. P4: Portable Parallel Processing Pipelines for
Interactive Information Visualization. IEEE Transactions on Visualization
and Computer Graphics, 26(3):1548–1561, 2018.

[43] J. K. Li and K.-L. Ma. P6: a Declarative Language for Integrating Machine
Learning in Visual Analytics. IEEE Transactions on Visualization and
Computer Graphics, 27(2):380–389, 2020.

[44] Z. Liu, C. Chen, F. Morales, and Y. Zhao. Atlas: Grammar-based Proce-
dural Generation of Data Visualizations.

[45] S. L’Yi, Q. Wang, F. Lekschas, and N. Gehlenborg. Gosling: a Grammar-
based Toolkit for Scalable And Interactive Genomics Data Visualization.
IEEE Transactions on Visualization and Computer Graphics, 2022.

[46] J. Mackinlay. Automating the Design of Graphical Presentations of Rela-
tional Information. Acm Transactions on Graphics, 5(2):110–141, 1986.

[47] N. Makrynioti and V. Vassalos. Declarative Data Analytics: a Survey.
IEEE Transactions on Knowledge And Data Engineering, 2019.

[48] A. McNutt. On the Potential of Zines As a Medium for Visualization. In
IEEE Visualization Conference, pp. 176–180. IEEE, 2021.

[49] A. McNutt. What Are Table Cartograms Good for Anyway? An Algebraic
Analysis. In Computer Graphics Forum, vol. 40, pp. 61–73. Wiley Online
Library, 2021.

[50] A. McNutt and R. Chugh. Integrated Visualization Editing Via Param-
eterized Declarative Templates. In Conference on Human Factors in
Computing Systems, pp. 1–14, 2021.

[51] A. McNutt, G. Kindlmann, and M. Correll. Surfacing Visualization Mi-
rages. Conference on Human Factors in Computing Systems, 2020. doi:
10.1145/3313831.3376420

[52] M. V. Merino, J. Vinju, and T. van der Storm. Bacatá: Notebooks for
DSLs, Almost for Free. In International Conference on Art, Science, And
Engineering. ACM, 2020.

[53] M. Mernik, J. Heering, and A. M. Sloane. When And How To Develop

https://docs.dhall-lang.org/discussions/Design-choices.html
https://docs.dhall-lang.org/discussions/Design-choices.html
https://github.com/tgdwyer/WebCola
http://philip.greenspun.com/bboard/q-and-a-fetch-msg?msg_id=000tgU
http://philip.greenspun.com/bboard/q-and-a-fetch-msg?msg_id=000tgU
https://github.com/baku89/glisp
https://twitter.com/amyjko/status/1458537839939895299
https://twitter.com/amyjko/status/1458537839939895299


Domain-specific Languages. ACM Computing Surveys, 37(4):316–344,
2005.

[54] B. Naimipour, M. Guzdial, and T. Shreiner. Engaging Pre-service Teach-
ers in Front-end Design: Developing Technology for a Social Studies
Classroom. In Frontiers in Education Conference, pp. 1–9. IEEE, 2020.

[55] A. Narechania, A. Srinivasan, and J. Stasko. NL4DV: a Toolkit for Generat-
ing Analytic Specifications for Data Visualization From Natural Language
Queries. IEEE Transactions on Visualization and Computer Graphics,
27(2):369–379, 2020.

[56] D. Orchard. The Four Rs of Programming Language Design. In Proceed-
ings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, And
Reflections on Programming And Software, pp. 157–162, 2011.

[57] D. Park, S. M. Drucker, R. Fernandez, and N. Elmqvist. Atom: a Grammar
for Unit Visualizations. IEEE Transactions on Visualization and Computer
Graphics, 24(12):3032–3043, 2017.

[58] W. C. Payne, Y. Bergner, M. E. West, C. Charp, R. B. B. Shapiro, D. A.
Szafir, E. V. Taylor, and K. DesPortes. DanceON: Culturally Responsive
Creative Computing. In Conference on Human Factors in Computing
Systems, pp. 1–16, 2021.

[59] A. J. Perlis. Special Feature: Epigrams on Programming. ACM Sigplan
Notices, 17(9):7–13, 1982.

[60] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. Foundations
of JSON Schema. In Conference on World Wide Web, 2016. doi: 10.
1145/2872427.2883029

[61] I. Poltronieri, A. C. Pedroso, A. F. Zorzo, M. Bernardino, and M. d.
Borba Campos. Is Usability Evaluation of DSL Still a Trending Topic? In
International Conference on Human-Computer Interaction, pp. 299–317.
Springer, 2021.

[62] X. Pu and M. Kay. A Probabilistic Grammar of Graphics. In Conference
on Human Factors in Computing Systems, 2020.

[63] X. Pu, M. Kay, S. M. Drucker, J. Heer, D. Moritz, and A. Satyanarayan.
Special Interest Group on Visualization Grammars. In Conference on
Human Factors in Computing Systems, pp. 1–3, 2021.

[64] X. Qin, Y. Luo, N. Tang, and G. Li. Making Data Visualization More
Efficient And Effective: a Survey. VLDB, 29(1):93–117, 2020.

[65] P. Rautek, S. Bruckner, M. E. Gröller, and M. Hadwiger. ViSlang: a System
for Interpreted Domain-specific Languages for Scientific Visualization.
IEEE Transactions on Visualization and Computer Graphics, 20(12):2388–
2396, 2014.

[66] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical Reflections on Visualization Authoring
Systems. IEEE Transactions on Visualization and Computer Graphics,
26(1):461–471, 2020. doi: 10.1109/TVCG.2019.2934281

[67] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
a Grammar of Interactive Graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2016.

[68] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: a
Streaming Dataflow Architecture for Declarative Interactive Visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, 2016. doi: 10.1109/TVCG.2015.2467091

[69] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative Interaction
Design for Data Visualization. In Symposium on User Interface Software
and Technology, pp. 669–678, 2014.

[70] D. Scholz. A Modular Domain-Specific Language for Interactive 3D
Visualization. Master’s thesis, TU Wien, May 2021.

[71] L. Shen, X. Chen, R. Liu, H. Wang, and G. Ji. Domain-Specific Language
Techniques for Visual Computing: a Comprehensive Study. Archives of
Computational Methods in Engineering, 28(4):3113–3134, 2021.

[72] M. Shih, C. Rozhon, and K.-L. Ma. A Declarative Grammar of Flexible
Volume Visualization Pipelines. IEEE Transactions on Visualization and
Computer Graphics, 25(1):1050–1059, 2018.

[73] A. Slingsby, J. Dykes, and J. Wood. Configuring Hierarchical Layouts
To Address Research Questions. IEEE Transactions on Visualization and
Computer Graphics, 15(6):977–984, 2009.

[74] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen.
Languages As Libraries. In Programming Language Design and Imple-
mentation, pp. 132–141, 2011.

[75] J. Tran O’Leary, K. Lee, and N. Peek. A Grammar of Digital Fabrication
Machines. In Conference on Human Factors in Computing Systems, pp.
1–6, 2021.

[76] T. Tsandilas. StructGraphics: Flexible Visualization Design Through
Data-Agnostic And Reusable Graphical Structures. IEEE Transactions
on Visualization and Computer Graphics, 27(2):315–325, 2021. doi: 10.

1109/TVCG.2020.3030476
[77] A. Van Deursen, P. Klint, and J. Visser. Domain-specific Languages: An

Annotated Bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.
[78] J. VanderPlas, B. E. Granger, J. Heer, D. Moritz, K. Wongsuphasawat,

A. Satyanarayan, E. Lees, I. Timofeev, B. Welsh, and S. Sievert. Altair:
Interactive Statistical Visualizations for Python. Journal of Open Source
Software, 3(32):1057, 2018. doi: 10.21105/joss.01057

[79] B. Victor. Drawing Dynamic Visualizations, May 2013.
[80] B. Victor. Media for Thinking the Unthinkable. http://worrydream.

com/MediaForThinkingTheUnthinkable, April 2013.
[81] Z. Wang, H. Romat, F. Chevalier, N. H. Riche, D. Murray-Rust, and

B. Bach. Interactive Data Comics. IEEE Transactions on Visualization
and Computer Graphics, 2022.

[82] H. Wickham. A Layered Grammar of Graphics. Journal of Computational
And Graphical Statistics, 19(1):3–28, 2010.

[83] L. Wilkinson. The Grammar of Graphics. In Handbook of Computational
Statistics, pp. 375–414. Springer, 2012.

[84] K. Wongsuphasawat. Encodable: Configurable Grammar for Visualization
Components. In IEEE Visualization Conference, pp. 131–135. IEEE, 2020.

[85] K. Wongsuphasawat. Navigating the Wide World of Data Visualization
Libraries. Nightingale, September 2020.

[86] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting Visual
Analysis with Partial View Specifications. In Conference on Human
Factors in Computing Systems, pp. 2648–2659. ACM, 2017. doi: 10.
1145/3025453.3025768

[87] J. Wood, A. Kachkaev, and J. Dykes. Design Exposition with Literate Vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
25(1):759–768, 2019. doi: 10.1109/TVCG.2018.2864836

[88] wso2. VizGrammar. https://github.com/wso2/VizGrammar, 2018.
Viewed 6/10/22.

[89] A. Wu, Y. Wang, X. Shu, D. Moritz, W. Cui, H. Zhang, D. Zhang, and
H. Qu. AI4VIS: Survey on Artificial Intelligence Approaches for Data Vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
2021.

[90] E. Wu, L. Battle, and S. R. Madden. The Case for Data Visualization
Management Systems: Vision Paper. VLDB, 7(10):903–906, 2014.

[91] Y. Wu, J. M. Hellerstein, and A. Satyanarayan. B2: Bridging Code And
Interactive Visualization in Computational Notebooks. In Symposium on
User Interface Software and Technology, pp. 152–165. ACM, 2020. doi:
10.1145/3379337.3415851

[92] V. Zaytsev. Grammar Zoo: a Corpus of Experimental Grammarware.
Science of Computer Programming, 98:28–51, 2015.

[93] J. Zong, D. Barnwal, R. Neogy, and A. Satyanarayan. Lyra 2: Design-
ing Interactive Visualizations By Demonstration. IEEE Transactions on
Visualization and Computer Graphics, 2021.

http://worrydream.com/MediaForThinkingTheUnthinkable
http://worrydream.com/MediaForThinkingTheUnthinkable
https://github.com/wso2/VizGrammar

	Introduction
	Related Work
	Domain Specific Languages
	Visualization DSLs

	Survey Methodology
	Analysis
	Domain: Why is it necessary?
	Models: What is it?
	Relationships: How does it relate to other DSLs?
	Language Affordances: Who is the end-user?
	Practicalities: Where is work done?

	Discussion

