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Abstract— Deep learning based latent representations have been widely used for numerous scientific visualization applications such
as isosurface similarity analysis, volume rendering, flow field synthesis, and data reduction, just to name a few. However, existing
latent representations are mostly generated from raw data in an unsupervised manner, which makes it difficult to incorporate domain
interest to control the size of the latent representations and the quality of the reconstructed data. In this paper, we present a novel
importance-driven latent representation to facilitate domain-interest-guided scientific data visualization and analysis. We utilize spatial
importance maps to represent various scientific interests and take them as the input to a feature transformation network to guide
latent generation. We further reduced the latent size by a lossless entropy encoding algorithm trained together with the autoencoder,
improving the storage and memory efficiency. We qualitatively and quantitatively evaluate the effectiveness and efficiency of latent
representations generated by our method with data from multiple scientific visualization applications.

Index Terms—Latent space, scientific data representation, deep Learning

1 INTRODUCTION

As machine learning techniques become increasingly more ubiquitous
for scientific visualization and analysis, latent representations generated
by autoencoders have attracted great attentions of researchers in recent
years. Latent representations have been successfully demonstrated to
retain essential information in the original data, and can be used for
similarity analysis [11, 12, 18, 25, 28], generation of visualizations [6],
synthesis of simulations [22, 42, 43], data reductions [26, 44], and have
been applied to multivariate volumetric data [28], streamlines and
stream surfaces [18], isosurfaces [12], and particles [25].

Although latent representations for large-scale scientific data have
been used extensively, there are still several challenges. First, domain
scientists have diverse interests in different data portions, but latent
representations trained using unsupervised approaches have limited
support for incorporating such domain interests. Given that scientific
data complexity varies across space and time [14], domain scientists’
interests should be taken into account during latent generation so that it
is possible to perform importance-driven scientific data explorations
as well as to reduce data that are not deemed important. To the best
of our knowledge, related works only support generating latent repre-
sentations associated with simulation parameters [22, 43], time [42],
and aggregated queries [41]. Second, how to represent diverse domain
interests in a unified way for latent generation is non-trivial. Domain
interest in scientific visualization can be defined in many ways, either
mathematically related to physical attributes or spatially/temporally re-
lated to particular ranges [16, 32–34, 36]. A generalized representation
is required to incorporate different types of scientific interests. Third,
the costs of importance-driven latent generation can be high. Previous
latent representations are tightly coupled with specific scientific visu-
alization applications [12, 18, 28]. If scientists change their interests
during exploration, re-training the model will be needed but can be
prohibitively expensive. Also, current latent generation methods cannot
adapt the size of the latent to the domain interest once neural network
architecture is determined, leading to high storage and I/O costs.

In this paper, to generate latent representations guided by scientific
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interests, we propose an Importance-Driven Latent generation method
(IDLat) based on a convolutional autoencoder to combine the power
of the convolution operations for extracting local features and the au-
toencoder for representation learning [5]. First, to incorporate domain
interests into latent representations, we extend the basic autoencoder
with a feature transformation network that takes domain interest as an
input to guide the mapping from scientific data to latent representations.
Second, based on the proposed network, we represent various types
of domain interests with discretized spatial importance maps. Every
element in the importance map is a real value indicating how vital this
spatial location is when generating the latent representation. The im-
portance values can be derived mathematically based on the domain or
heuristically based on distances, distributions, locations, etc., depending
on the underlying scientific applications. With the location-wise control
of spatial importance, we can flexibly represent various types of scien-
tific interests and use them to guide latent generation. Third, our model
only needs to be trained once for each dataset, and used even when
scientists change the definition of importance. The produced latents
are optimized in storage size with the help of feature transformation
networks and a lossless entropy encoding module. The motivation for
jointly pursuing importance-driven latent and compression can be sum-
marized into two aspects. The first is to further reduce the storage cost
of scientific data based on its importance. Latent representations are
compact, but their sizes are determined by the network architecture, not
the amount of information according to domain interest. To optimize
the usage of storage, we quantize and compress latent with importance
taken into account, i.e., reduce the size of latent for unimportant data.
The second is to improve the effectiveness of latent in representing sci-
entific features. The original data may contain unimportant information
such as noise or non-feature regions which compromise latent’s ability
to represent features. However, with importance control and entropy
constraint in the latent space, the model will optimize the utilization of
limited latent dimensions by preserving more important information
and sacrificing the unimportant information. As a result, each latent is
instructed to encode important information effectively.

Our latent generation workflow is as follows. First, spatial impor-
tance maps are generated based on scientific interests. Second, both
the original scientific data and importance maps are taken as input to
our model, which produces latent representations controlled by the
importance map. Third, we quantize the generated latents into discrete
symbols. Fourth, given that the entropy of discrete latents will be dif-
ferent under different importance settings, we apply lossless entropy
encoding on the discrete latent vectors to further reduce the latent size.
After the model is trained, we support visualization and analysis in both
latent space and data space. In latent space, the discrete latent represen-
tations are losslessly recovered through entropy decoding for scientific
analysis such as similarity comparison and feature exploration. In data



space, the discrete symbols are further decoded to obtain reconstructed
data through the autoencoder’s decoder.

Our latent representation is useful for scientific visualization and
analysis due to its compactness and effectiveness in preserving domain
interests. Each latent representation is forced to focus on representing
data of interest instead of all details of the raw data, which amplifies the
more salient information and reduces the effect of noise, resulting in
more salient and robust data representations. By transforming data into
compact latent representations, similarity comparison or distance com-
putation between data becomes efficient and robust. Also, it reduces
the storage cost by only saving the compressed latent representations
that can later be used for downstream scientific analysis tasks such as
projection, retrieval, feature exploration, clustering, query, etc.

We qualitatively and quantitatively evaluate the usefulness and effec-
tiveness of our importance-driven latent representations through data
reconstruction and latent space exploration tasks on three scientific
datasets. In summary, the contributions of our work are threefold:

• First, we present a novel and flexible pipeline for generating
importance-driven scientific data representation with an autoen-
coder model.

• Second, we utilize a location-based importance map to incorpo-
rate domain interests into the generation of latent representation.

• Third, we further reduce the size of latent representation through
entropy encoding to reduce the I/O and storage costs.

2 RELATED WORKS

Our study makes use of a deep learning based latent representation for
importance-driven data visualization and analysis. We summarize the
related works of these two fields.

2.1 Latent Representations in Scientific Visualization
In scientific visualization, there are three main usages of autoencoders.
The first, and the most related one to our work, is to use autoencoders
for user-controlled data synthesis. Wiewel et al. [43] converted raw
volume data into latent representations and controlled data properties
such as velocity or density through different latent dimensions. Berger
et al. [6] proposed to learn the mapping from transfer functions to
rendered volumes with an encoder-decoder architecture. By traversing
the latent space and generating rendered images of the volume under
various viewpoints and transfer functions, scientists can get a better
understanding of the volume features efficiently. Kim et al. [22] pro-
posed a latent space integration network to learn the mapping of latent
representations from the current time step to the next time step. Second,
latent representations are also used as feature descriptors of the raw
data to select representatives. FlowNet [18] proposed to identify repre-
sentative flow lines or surfaces in the lower dimensional latent space by
applying density-based clustering on latent representations. To select
representative time steps for volumetric time-varying data, instead of
using handcrafted features, Porter et al. [28] adopted autoencoders to
learn a representation for each volume and selected representations in
the t-SNE projection. The third usage of autoencoders is data reduction.
AE-SZ [26] and multi-branch decoder network [44] demonstrate the
effectiveness of autoencoders for scientific data reduction.

However, existing autoencoder-based works assume every data ele-
ment is equally important without considering scientists’ interest when
generating the latent. Also, from a data reduction point of view, know-
ing which region scientists have low interests and thus can afford to
have a lower quality will help achieve a better trade-off between the
size and the quality of the latent representation. Therefore, we extend
the basic autoencoder into one conditioned on user interest.

2.2 Importance-Driven Visualization and Analysis
For different scientific applications, it is well advised to consider the
varying importance throughout the dataset during visualization and
analysis. Importance-driven techniques can be classified into two cate-
gories: with and without direct user interaction.

Studies that involve user interaction usually require users to decide
the importance. Driven by the visualization goal, Peng et al. [27] pro-
posed to define mesh importance using transfer functions for interactive

isosurface rendering. Burger et al. [9] proposed to control the shape and
density of particles so that scientists can focus on the important regions
where the region of interest is either user-defined or feature-based. Vi-
ola et al. [32] defined the object of interest through user selection and
smoothly modifies viewpoint and visual parameters when changing
the object of interest. Viola et al. [34] proposed importance-driven
volume rendering by manually assigning different importance to the
pre-segmented objects in the data to maximize the visual information
in the rendered results. Wang et al. [40] proposed a feature-preserving
data reduction method that allows users to magnify regions according
to the degree of interest for focus+context visualization.

Importance-driven visualization without user interaction has pre-
defined importance based on the domain knowledge or is totally data-
driven. Wang et al. [36] incorporated domain knowledge, e.g., salient
isosurface and defined the importance of data based on the inverse
distance to the surface of interest. To reduce massive visual information
during particle tracing, Viola et al. [33] utilized the object importance to
define the sparseness level of each feature for controlling opacity values
and rendering styles of the feature. Other works define data importance
based on statistical models. For example, Wang et al. [35] defined
importance through conditional entropy by measuring the amount of
entropy one block remains given blocks of neighboring time steps.
Gosink et al. [16] introduced a statistical framework to explore variable
trends and identify important variables for different regions.

Our work is related to importance-driven visualization and analysis.
The difference is that we use the importance to generate a controlled
latent representation.

3 BACKGROUND

Our importance-driven latent generation framework is based on an
autoencoder with a quantizer in the latent space. In this section, we
introduce this model.

3.1 Non-linear Transform Coding using Autoencoders
A recent work [1] indicates that compared with linear transform coding,
nonlinear transform coding is more flexible and can better adapt to the
source signal distribution. In our work, we utilize nonlinear transform
coding via a convolutional autoencoder. The autoencoder contains
two parts, an encoder f which converts the raw data x into a latent
representation y and a decoder g which decodes the latent y and gets
a reconstruction x̂ of x. The latent size is often smaller than the raw
data, which forms a bottleneck to restrict the information flow from the
encoder to the decoder. For example, as shown in Fig. 2, after several
convolutional layers, the original data are converted to a latent of size
K×3×3×3, where K is the number of filters in the last convolutional
layer, also known as channel size of the latent. The bottleneck forces
the latent to preserve only the most vital information in the data. Thus,
the autoencoder is suitable to generate compact data representations.
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Fig. 1. Autoencoder with a quantizer Q in the latent space.

3.2 Quantized Latent Space for Data Reduction
To get a better data reduction performance, unlike a basic autoen-
coder which only minimizes the reconstruction loss, Ballé et al. [3]
further quantize the latent representation by a quantizer Q, as shown
in Fig. 1. Then, the discrete symbols themselves are losslessly com-
pressed through entropy coding. The optimization goal of this autoen-
coder is to minimize both the reconstruction loss and the entropy of the
quantized latent representations, formulated as:

Ex[− log2 pŷ(ŷ)]︸ ︷︷ ︸
R

+λ Ex[‖x− x̂‖2
2]︸ ︷︷ ︸

D

(1)



where the quantized latent ŷ=Q( f (x)), the reconstructed data x̂ = g(ŷ),
and Q is the quantizer. Equation 1 is aligned with the rate-distortion
theory. R is the rate that determines the number of bits per symbol for
data reduction; in our case, it is the latent entropy. D is the distortion
between the original and the reconstructed data, i.e., reconstruction loss.
λ is a tradeoff parameter. A larger λ will focus more on reducing the
distortion D during optimization. As a result, more bits are required to
maintain the reconstruction quality, and we will have a larger rate R.

However, the quantization is not differentiable. To make quantization
differentiable and incorporate the quantization error during training,
Ballé et al. [2] replace the quantizer with additive uniform noise. Now
instead of the quantized representation ŷ = Q( f (x)), we have a “noisy”
representation ỹ = f (x)+∆y, where ∆y∼U(− 1

2 ,
1
2 ). The optimization

goal changes into [3]:
Ex,∆y[− log2 pỹ(ỹ)]︸ ︷︷ ︸

R

+λ Ex,∆y[‖x− x̃‖2
2]︸ ︷︷ ︸

D

(2)

where x̃ = g(ỹ) is the reconstruction. To remove the constraint on the
input size, a non-parametric distribution is used to model the probability
density for channels of latent pỹ, as shown in Fig. 2 (left). During
testing, the actual quantization, such as rounding is applied. After
that, a lossless entropy encoding on the quantized latents is applied to
convert latents into bitstreams. More frequent data will be represented
by shorter bits than less frequent data.
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Fig. 2. The probability estimation for every latent channel (left), and
probability estimation for every latent dimension (right).

One limitation of the above method is that the entropy estimation of
the latent representation is not accurate. Entropy encoding relies on the
probabilistic distributions of discrete latents to decide which codeword
will represent which quantized symbol so that the average bit length
is minimal. The better the probabilities are modeled, the closer the bit
rate approaches the optimal lower bound. However, the above method
does not consider spatial and raw data dependencies when estimating
the probability [4], due to the reason that it only models a channel-wise
latent distribution for an ensemble of input.

To improve entropy estimation, one follow-up work [4] introduces a
hyperprior network to extract side information to assist latent probabil-
ity estimation. The hyperprior network takes side information as input
to predict a prior on the parameters of latent’s probability distribution.
As shown in Fig. 2 (right), each latent dimension is modeled as a Gaus-
sian where the scale and mean of each Gaussian are predicted by the
side information [4].

With the quantized latent space and improved entropy estimation, we
can achieve a better data reduction performance. In the next section, we
will present our latent generation method based on a quantized autoen-
coder which achieves the data reduction goal, and more importantly,
takes domain interest into consideration during latent generation.

4 OVERVIEW AND ALGORITHM REQUIREMENTS

Algorithm Requirements: We summarize three algorithm require-
ments to generate domain-interest-guided latent representations.

• The generated latent representations need to respond to different
domain interests.

• The algorithm needs to be adaptive to different types of domain
interests such that scientists do not need to train multiple neural
network models when they vary their interests.

• The algorithm needs to generate compact latent representations
whose size depends on the domain interest, i.e., low domain
interest means a more compact latent representation.

Overview To generate latent representations for scientific data
guided by scientists’ interests, we propose an importance-driven latent
generation algorithm. An overview of the proposed method is shown
in Fig. 3. The first stage of our method is to properly represent various
scientific interests with spatial importance maps, which can be inter-
preted as, for each spatial location, how much information scientists
want to preserve when generating the compact latent representation.
Then the second stage is to generate scientific interest-guided latent
representations through our autoencoder model. We take a block-wise
processing strategy. Volumetric data and corresponding importance
maps are divided into blocks and then processed by the model. Condi-
tioned on the importance map, the data blocks are non-linearly encoded
and transformed by the autoencoder’s encoder into compact latent rep-
resentations. The third stage is a lossless data reduction component
in the latent space. Inspired by autoencoders used for image com-
pression [3, 4] as discussed in Sect. 3.2, our latent representations are
further quantized into discrete symbols. After that, an entropy encoding
algorithm, e.g., Asymmetric Numeral Systems (ANS), is adopted to
losslessly compress quantized latents into bitstreams for saving.

Analyses can be done in either latent space or the original physical
space. Importance-driven latent space has a simpler structure, and
therefore tasks like feature extraction can be easily performed in this
space. When the precise visualization of the dataset is needed, latent
representations can be decoded back into the physical space for various
visualization tasks.
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Fig. 3. Our proposed method to generate importance-driven latent rep-
resentations conditioned on the input importance maps. The resulting
latent representation will be entropy encoded into bitstreams for saving.

5 METHOD

There are three main issues to address when generating domain-interest-
guided latent representations: (1) how to define a unified representation
to incorporate various domain knowledge and avoid training multiple
models when scientists vary their interests, (2) how to fuse domain
knowledge during latent generation, and (3) how to control the latent
size and make trade-offs between latent size and latent quality. In this
section, we discuss how we address these issues.

5.1 Importance Driven Latent Generation

5.1.1 Domain Interest Representation

This section discusses how to represent diverse domain interests with a
unified representation. Our latent generation method is domain-interest-
guided, meaning not all data are treated equally important during latent
generation. This strategy is commonly used for many scientific data
analysis applications. Given a massive amount of scientific data, scien-
tists often try to identify features of interest by narrowing down their
search space, which is defined by how data are relevant to the important
features. Generating latent representations for scientific data according
to the data importance can not only reduce the size of data, but also
allow scientists to focus on the most salient portion of the data.

In our method, we utilize data importance to assist the process of
latent generation. To create a unified representation of importance that
can be taken by our autoencoder for a variety of needs, we summa-
rize commonly used importance definitions in scientific visualization
literature as below:



• Location-based: Scientists assign an importance value for every
spatial location based on whether it is in the pre-selected region
of interest [32–34]. For example, hurricane eye regions are of
high interest for hurricane and tropical cyclone research scientists,
and as a result, those regions will have higher importance values
than non-hurricane eye regions [33].

• Distance-based: To enhance the understanding of features of
interest, scientists define the importance of each data element
based on its distance to the feature of interest. For example, based
on the distance to object of interest [33] or salient isosurfaces [36].

• Value-based: Scientists define the importance based on the dif-
ferences between a pre-selected reference value and data values or
based on transfer functions [27,40]. If the value of a data element
is close to the values of interest, high importance will be assigned.
We note that here the value can take a variety of forms: scalars,
vectors, and tensors, to name a few.

• Time-based: To effectively visualize and analyze large-scale
time-varying data, scientists assign different importance values
for time steps. For example, based on the relative information a
time step contains about its temporal neighbours [35] or assign
salient time steps with high importance values.

• Multivariate-based: For a multivariate dataset, the importance
can be derived from the joint distribution of variables [16]. For
instance, to locate interesting regions for turbulent combustion
data, multiple variables such as Mixture Fraction (MIX), Mass
Fraction of the Hydroxyl Radical (OH), and Heat-Release Rate
(HR) are jointly considered.

• Statistical-based: Importance can be defined based on statistical
properties of data such as conditional entropy [35], correlation,
or value histogram [7].

In the core of our method, we define a unified representation, i.e., a
real-valued spatial importance map, to incorporate various importance
definitions. The map is defined in the same domain as the data, and
each value in the importance map indicates the scientific interest at that
spatial location. Importance maps are taken as an additional input to the
neural network model to control the latent representation generation.

There are two obvious advantages in using spatial importance maps.
First, spatial importance maps can inform the neural network which
regions are more important so that their information needs to be better
preserved in the latent space, and for those regions with low impor-
tance, their latents can be simplified or smoothed out during encoding.
Second, because we are using a unified representation for various do-
main interests and our latent generation is conditioned on the input
importance map, as a result, we do not need to retrain different neural
network models when scientists change their definition of spatial im-
portance. In our paper, the importance value at every spatial location is
calculated through a scientist-specified importance mapping function
Ψ, mathematically defined as:

Ip := Ψ(p,F(p)) (3)

where Ψ : R3 → R is a mapping from spatial location p ∈ R3 to an
importance value Ip given the location and its data value F(p). F(p) ∈
R if it is a univariate data, and F(p) ∈ Rn if it is a multivariate data
with n variables. We evaluate Ip on all voxel locations to obtain an
importance map I.

During training, we randomly generate importance maps with dif-
ferent spatial variations such as distance ramps, Gaussian distributions
with various centers, data gradients, and random uniform maps. During
testing, the trained model is applied to various importance maps de-
rived from different scientific interests. In our evaluation in Sect. 6, we
demonstrate that these predefined importance maps are effective to train
a generalized model which does not constrain a scientist’s importance
map specification during testing.

5.1.2 Autoencoder with Condition Network
To generate reduced data representations, we utilize a convolutional
autoencoder model which converts input data into a latent representa-
tion through an encoder and decodes the latent back to data through a

decoder. We utilize autoencoder for the reason that, as also discussed in
Sect. 3.1, compared with linear coding methods such as discrete cosine
transform (DCT), the non-linear coding ability of autoencoders makes
them suitable and powerful to represent data.

To properly fuse domain knowledge into latent representations, we
utilize Spatial Feature Transform (SFT) layers which are widely used
in computer vision for image super-resolution [10, 17, 39], conditional
generation [37, 38], compression [30], and segmentation [24]. In these
works, SFT layers are used to incorporate conditional knowledge by
generating affine transformation parameters for feature modulation.
We adopt a similar method as Song et al. [30] which performs image
compression given a classification or text-preserving task.

In our work, we utilize SFT layers to fuse domain knowledge into
latent representations. The reason for using SFT layers is that they
can capture rich spatial prior information from prior knowledge, e.g.,
regions of interest, to modify the intermediate feature maps of the data
in the autoencoder. For example, smoothing out details in regions
where scientists have low interest. More specifically, we adopt the
autoencoder model by connecting it with two SFT-layer-based feature
transformation networks. The transformation network connected to the
encoder is shown in Fig. 4 who takes domain interest (i.e., a spatial
importance map I) as input to extract conditions of different resolutions
to have a layer-by-layer control of the encoder. Each condition Ω

produces two sets of affine transformation parameters (i.e., α for scaling
and β for shifting) for each encoder layer, formulated as:

Ω = conv(I) (4)

Φ(Ω) = (α,β ) (5)

where conv are the convolutional layers. Φ is a mapping function from
condition Ω to the scaling parameter α and the shifting parameter β . α

and β are used to transform the intermediate feature map F generated
by the autoencoder:

F ′ = SFT(F |α,β ) = F�α +β (6)

Then, the transformed feature map F ′ is taken as input to the next
encoding layer. α and β are of the same size as the feature map F , and
� denotes element-wise multiplication. Applying multiplication and
addition on feature maps is a simple and effective way to gradually fuse
two sources of information (i.e., importance and data) from different
levels. Scaling the feature map is like gating so that information in
regions with high importance are preserved and others are suppressed.
Shifting the feature map has a similar effect. Combining these two, we
have the flexibility to leverage importance maps for latent generation.
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Fig. 4. Spatial Feature Transform (SFT) [39] layers take the condition Ω

generated from the importance map as input and output affine transfor-
mation parameters to scale (α) and shift (β ) feature map F of data.

5.2 Entropy Encoding in Latent Space
To optimize the size of the latent representation, we apply lossless
entropy encoding to the latent vectors generated from the autoencoder.
We adopt the entropy model widely used for neural-network-based
image compression [4], as discussed in Sect. 3.2.

Our proposed importance-driven latent generation method is shown
in Fig. 5. After layers of non-linear coding using autoencoder’s encoder



f , the input data x is converted into a latent representation y, controlled
by a scientist-specified input importance map I, so we have:

y = f (x,Tf (I)) (7)

where Tf is the transformation network connected to the encoder f .
Following the technique in Sect. 3.2, we quantize the latent vector y and
apply the entropy encoding algorithm, Asymmetric Numeral Systems
(ANS) [13], on latent vectors. The resulting bitstreams are saved into
the disk. During decoding, the saved bitstreams are entropy decoded
into discrete latent ỹ and sent to the decoder to get the reconstruction
x̃. As shown in Fig. 5, to save storage and mainly reduce unimportant
information in the latent representation, we do not use importance maps
to modulate information during decoding. The decoder only takes latent
ỹ as input to the transformation network connected to the decoder to
incorporate conditions during reconstruction, formulated as:

x̃ = g(ỹ,Tg(ỹ)) (8)

where Tg is the transformation network connected to the decoder g.
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Fig. 5. Our proposed importance-driven latent generation method. Our
model is a combination of an autoencoder and entropy encoding model.

5.3 Loss Functions
To make trade-offs between latent size and quality based on domain
interests, we formulate our importance-driven latent generation as an
optimization problem of minimizing the rate-distortion Lagrangian as
discussed in Sect. 3.2, formulated as:

L = LR +λLD (9)

where LR is the quantized latent entropy loss, LD is the reconstruction
loss, and λ is the Lagrangian multiplier, a hyperparameter to balance
between reconstruction quality and latent size.

To force the generated latent representation to be guided by scientists’
spatial interests, instead of a reconstruction loss with equal importance
on every spatial location like a basic autoencoder, we use an adaptive
reconstruction loss between the input data x and reconstructed data x̃:

LD = Ex,∆y[
N

∑
i=1

wi(xi− x̃i)
2] (10)

where wi is the distortion weight at index i derived from the importance
map I by an exponential function with a hyperparameter a, i.e., wi =
eaIi . The goal of exponential weighting is to have a finer distortion
control across different spatial locations such that different importance
values will have significantly different contributions to LD. N is the
number of data elements in x. ∆y is the additive uniform noise to relax
quantization.

The entropy loss for discrete latent ỹ is:

LR = Ex,∆y[− log2 pỹ(ỹ)] (11)

where pỹ is the latent probability distribution for entropy coding.

5.4 Latent Space Analysis
In this section, we discuss how we use block-wise latent representation
for feature-related analysis and briefly introduce the visual exploration
tool for latent spaces. Feature-related analysis in the latent space
originated from the observation that similarity defined in the latent
space can better represent the similarity of higher-level features than
the similarity of the raw data [5]. Our latent vector generation method

considers domain knowledge provided as an importance map to neural
networks. As a result, latent space distribution is conditioned on the
provided importance map. Even though the structure of the full latent
space of the dataset is complicated and requires a sophisticated tool [25]
to explore, importance-driven latent space is easier to understand and
to be made into use for feature analysis.

On the saved latent representations for each data block, we perform
a hierarchical clustering algorithm to identify blocks that are similar
to each other. These clusters can be either used to extract a subset of
data for further analysis or for feature-driven visualization like the one
presented by Cheng et al. [11]. It is worth noting that the data block
size is a hyperparameter we should choose based on the feature size,
data complexity, and desired representation storage size.

Our latent space visual analysis tool is based on the one designed by
Li and Shen [25], where clustering is performed on block-wise latent
vectors and cluster results are visualized in latent, and physical space
for feature-related analysis. There are three main views in our tool,
hierarchical clustering view, latent space view, and physical space
view, demonstrated in Fig. 9. Hierarchical clustering view presents
each cluster as a node in a tree graph, where clusters can be modified
by interacting with the nodes. Latent space view shows projected latent
vectors into 2D using t-distributed stochastic neighbor embedding (t-
SNE) projection [31]. This view is updated when the clustering result
is modified. Finally, physical space view visualizes data in the selected
cluster. Spectral clustering is used in our latent analysis approach since
it adapts well to complex spaces with unknown cluster shapes [29],
which is usually the case for latent spaces generated by neural networks.

5.5 Implementation
5.5.1 Block-based Processing
Processing large-scale scientific data requires a big convolutional neural
network model which has high computational cost and memory con-
sumption. Another problem is that we need a large collection of data
for training, but building such training data is prohibitive for scientific
simulations due to the high cost of generating and saving large-scale
data. To meet GPU memory constraints, some prepossessing steps such
as downsampling or cropping [18,19] are applied to data. However, the
drawback of downsampling is that it inevitably introduces errors and
uncertainties in the downsampled data.

To address the above problems, we adopt a block-based processing
strategy, i.e., volumetric data are divided into blocks for the neural
network model to process. Data blocks can be processed in parallel
with a large batch size for speedup. To reduce the reconstruction error at
the block boundary introduced by zero-padding or reflection-padding,
we pad each block with the actual data for the network to process.
During reconstruction, we crop the reconstructed data, and only the
central data regions are attached to reconstruct the whole volume. For
instance, if the block size is 243 and we have a padding size equal to 4,
then the data size each latent represents is 163.

5.5.2 Training Data Sampling
The most intuitive way to build the training data is to randomly sample
large amounts of data blocks to ensure a good coverage of different
patterns for training. However, this data size will grow proportionally to
the size of the original data and make the training extremely ineffective.
To solve this and to force the model to learn complex patterns, we adopt
a complexity-aware training data sampling strategy, i.e., the training
dataset is designed to include more complex (high entropy) blocks
and less homogeneous (low entropy) blocks. For the Hurricane Isabel
dataset, the sampling ratio between high and low entropy blocks is
10:1 to ensure the complex data regions are covered in the training data
given that a large portion of the original data is homogeneous.

6 RESULTS

In this section, we evaluate the Importance-Driven Latent generation
method (IDLat) both quantitatively and qualitatively from four differ-
ent perspectives: (1) the quality of latent representations; (2) the size
of latent representations; (3) the influence of different important maps;
and (4) the use of latent representations for latent space analysis.



Table 1. Dataset name, variable name, data resolution, training epochs and time, training data size (number of blocks), encoding and decoding time
on each volume (seconds). Encoding and decoding time do not induce the time used for writing/reading bitstreams files into/from disk.

Dataset Variable Size Epochs Training time # Training blocks Enc. time Dec. time

Vortex vorticity magnitude 128×128×128 600 4h 20m 1000 0.0232s 0.0105s
Nyx log density 256×256×256 100 3h 14m 5000 0.2272s 0.0794s

Isabel pressure 512×512×96 200 5h 30m 5500 0.2000s 0.1191s

6.1 Dataset and Training Parameters

We evaluated our importance-driven latent generation method using
three scientific datasets for multiple scientific applications.

Vortex is a simulation of vortex structures with spatial resolution
128×128×128 across 30 time steps. We used the vorticity magnitude
scalar field for experiments. We randomly sampled 1000 data blocks
from 5 time steps as the training data. Nyx is a cosmological simulation
produced by Lawrence Berkeley National Laboratory. We used the log
density field with resolution 256×256×256. 5000 data blocks from 5
ensemble members were randomly sampled for training. Hurricane
Isabel is a simulation of Hurricane Isabel, produced by the Weather
Research and Forecast (WRF) model, courtesy of NCAR and the U.S.
National Science Foundation (NSF). The data were sliced along the
z dimension to remove the special value 1× 1035 representing ”no
data” (the land region). In our experiment, the resolution of data is
512×512×96 with 48 time steps. We chose the pressure field for
evaluation. Training data contain 5500 data blocks from 5 time steps.

Our work consists of two main components: the IDLat model and
a latent space visual analysis tool. The IDLat model is implemented
based on PyTorch1 and trained with a single NVIDIA Tesla P100
GPU. For all datasets, we use Adam optimizer [23]. The learning rate
for the autoencoder model and the entropy model is 10−4 and 10−3,
respectively. Total training time for each dataset is listed in Table 1.
Based on a fully convolutional model with block-based training and
inference strategy, we can apply IDLat on data of any resolution. The
hierarchical clustering view and latent space projection view from the
latent space exploration tool are implemented with Vue.js2 as the front-
end framework and Flask3 as the back-end framework. VTK APIs4 are
used to visualize the extracted blocks.

6.2 Quantitative Evaluation

In this section, we quantitatively evaluate the size and the quality of
latent representations generated by IDLat.

6.2.1 Evaluation Metric

To evaluate the size of latents, we use the ratio between the original
data size and the saved bitstream file size, i.e., latent size ratio (LSR):

LSR =
original data size
bitstream file size

(12)

To evaluate the quality of importance-driven latent representations,
we analyze how well the important regions are preserved during re-
construction under various importance maps. We compute the error
between the decoder’s reconstruction and the raw data. Because we
focus more on the quality of important regions, we utilize a weighted
Mean Squared Error (wMSE) defined as:

wMSE(x, x̃) =
1

∑
N
i=1 Ii

N

∑
i=1

Ii(xi− x̃i)
2 (13)

where xi, x̃i are the original and the reconstructed data at position i,
respectively. N is the number of data elements in x. Ii is the impor-
tance at position i in range [0, 1] defined by Equation 3 for different
applications. Locations with a larger importance value will have higher
weights in the error estimate. The peak signal-to-noise ratio (PSNR) is
defined based on wMSE:

1https://pytorch.org
2https://vuejs.org
3https://flask.palletsprojects.com
4https://vtk.org

PSNR(x, x̃) = 10log10
v2

wMSE(x, x̃)
(14)

where v denotes the value range in the original data.

6.2.2 Evaluation on Different Importance Maps
As discussed in Sect. 5.1.1, there are various criteria focusing on rep-
resenting regions of interest for importance-driven visualization. In
this section, we evaluate IDLat’s quality and quantity under different
importance definitions.

To evaluate the effectiveness of the entropy encoding module in
IDLat, especially its ability to generate the latent representation of
optimal size with the presence of an importance map, we compare
IDLat with a baseline method, i.e., a basic autoencoder without the
importance map, quantization, entropy module, and the entropy loss.
We train this baseline model with the same training data and parameter
setting as IDLat, but only with the reconstruction loss.

Distance-based importance maps: We evaluate importance-driven
latent’s quality and quantity conditioned on distance-based importance
maps through the Vortex dataset. Vortex data contains vortex structures
that have been widely used for isosurface tracking to analyze vortex
core regions over time [20,21]. In this evaluation, the importance maps
are defined based on distances to the selected isosurfaces where the
importance value Ip for each spatial location p defined in Equation 3
can be specified as:

Ip := ΨVor(p) = e−0.2|SDF(p,S)| (15)

SDF(p,S) represents the signed distance from location p to surface
S. We use a negative exponential function to convert absolute SDF
distances into importance values in [0, 1] for the model to process.
The importance will decrease exponentially as p becomes far from the
surface. 0.2 is a parameter that we choose to have a proper slope of the
exponential curve. We can also use other functions to convert distances
into weights, e.g., the inverse distance function.

To evaluate the influence of different distance-based important maps,
we chose a time step in Vortex data and pre-selected several vorticity
magnitude values (e.g., 5.0, 6.0, 7.0, and 8.0) as salient isovalues to be
preserved in the latent representations. We used ΨVor in Equation 15 to
convert the volumetric data into importance maps for IDLat to generate
importance-driven latent representations.

We report the quantitative results, i.e., PSNR and latent size ratio
(LSR), of applying different distance-based importance maps on Vortex
data in Table 2. From the table, we found that IDLat indeed can
generate importance-driven latent representations for Vortex. Given
the same data but different importance maps, IDLat generates latents
with different quality and size, as shown in the PSNR (IDLat) and LSR
(IDLat) columns. As for the baseline model, because the latent size is
determined by the input data size, the latent size ratio for the baseline
model is fixed at a very small number (7.3143) as shown in LSR (Base).
It is clear in the table that the proposed IDLat can largely decrease
the latent size (i.e., increase LSR) based on different importance maps
without losing much quality. We also found that IDLat can achieve
increased latent size ratios as we increase the target isovalue. This is
because IDLat is designed to have higher quality on regions with high
interests, and as the isovalue increase, the important regions are getting
smaller for this dataset, and as a result, LSR is getting larger.

Value-based importance maps: Given value-based importance
maps, we evaluate the size and quality of latents generated by IDLat
on Nyx data. One important post-hoc analysis task for Nyx simulation
is to find dark matter halos which are related to the high-density field
in the data [15]. In our experiment, the importance value Ip of each
spatial location p is defined based on the log density value F(p) and a
reference log density value Fre f as follows:



Table 2. Reconstruction PSNR and latent size ratio (LSR) for IDLat with
different importance maps and for the baseline model.

Data Imp. Def. PSNR
(IDLat)

PSNR
(Base)

LSR
(IDLat)

LSR
(Base)

Vortex

iso 5.0 34.3987 35.4927 107.3825

7.3143

iso 6.0 33.9121 35.2154 109.8901
iso 7.0 33.2551 34.5266 111.849
iso 8.0 33.9757 34.2463 113.6767

Nyx (m1)
log den > 9.9 33.8422 35.2382 209.4241
log den > 10.2 30.9899 31.0386 218.8783
log den > 10.5 28.2268 27.1545 225.6700

Nyx (m2)
log den > 9.9 31.3774 32.2409 172.5998
log den > 10.2 29.0695 29.2020 179.3722
log den > 10.5 26.761 26.1568 188.2353

Isabel hurricane eye 44.9749 44.6605 199.1288

Ip := ΨNyx(p,F(p)) =

{
1 if F(p)> Fre f
0 else

(16)

To evaluate the effect of different value-based importance maps,
driven by the domain interests of the Nyx data discussed above, we
conduct experiments on two ensemble members of Nyx with different
reference values. In our experiment, we select 9.9, 10.2, and 10.5 as
log density reference values and utilize ΨNyx defined in Equation 16 to
compute value-based importance maps.

We report the quantitative results in the second and the third blocks
of rows of Table 2. The two blocks of rows represent experiments on
two different ensemble members, denoted as Nyx (m1) and Nyx (m2).
As we can see, for each ensemble member, the latent size ratio (LSR
(IDLat)) increases as we increase the log density reference value (i.e.,
reduce the number of important voxels), but the quality (PSNR (IDLat))
is kept comparable to the baseline (PSNR (Base)). Another thing we
notice is that PSNR drops as we increase the log density reference value
for both baseline and IDLat models. A possible reason can be that these
high-value regions are harder to model due to high data complexity.

Location-based importance maps: We also evaluate the latent
representations’ size and quality given location-based importance maps
using the Isabel dataset. For this dataset, one task that scientists are
interested in is to identify and analyze the hurricane eye region. So the
importance maps are built based on the hurricane eye locations where
voxels inside the interested region C will have high importance values.
The importance value for each spatial location p is defined as:

Ip := ΨIsa(p) =

{
1 if p ∈C
0 else

(17)

We use the first time step of Isabel and draw a bounding box of the
hurricane eye as the region of interest C. Based on the importance
mapping function in Equation 17, we compute the importance map.

Table 2 shows the quantitative results of Isabel data given a location-
based importance map using IDLat and the baseline model. Compared
with the baseline, the latent representation generated by IDLat with a
location-based importance map is more compact (higher LSR) with
slightly higher quality (higher PSNR) than the baseline.

Essentially, the baseline model is a special case of our IDLat with
λ →∞ in Equation 9, which achieves an upper bound for reconstruction
error and a lower bound for the latent size ratio. Instead of a static
model with a fixed latent size, the proposed IDLat can achieve various
quality and latent vector sizes based on target scientific applications.

6.3 Qualitative Evaluation
We qualitatively evaluate the proposed IDLat by visualizing the recon-
structions with volume and isosurface rendering.

In Fig. 6, we show isosurface rendering of the reconstructed Vortex
data generated by the baseline and by IDLat with isosurface-distance-
based importance maps. In Fig. 6, in each row from left to right are
isosurface rendering for isovalue 5, 6, 7, and 8. Comparing isosurface
rendering of IDLat’s reconstruction (third row) with the ground truth
(first row) and the baseline (second row), we found that our latent
representations can capture the structure and also the details in the
ground truth, even though they are much smaller in size as discussed

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

GT

iso 5 iso 6 iso 7 iso 8

IDLat

Baseline

iso 5 iso 6 iso 7 iso 8

G
T

B
as
el
in
e

ID
La
t

Fig. 6. Comparison of isosurface rendering results of Vortex at time
step 6 between ground truth (top row), baseline (middle row) and IDLat’s
reconstruction (bottom row). The four importance maps for IDLat are
defined based on distances to isosurfaces 5, 6, 7 and 8.

in Sect. 6.2. In some regions, IDLat can have slightly better reconstruc-
tion quality compared to the baseline, as shown in the zoom-in regions
in Fig. 6. These results demonstrate that our importance-driven latent
representations can capture spatial importance information and have
high reconstruction quality in important regions.

Fig. 7 displays volume rendering images of ground truth (first col-
umn), baseline, and IDLat’s reconstruction based on value-based im-
portance maps for two ensemble members of the Nyx dataset. The
second and the third columns are volume rendering images of the base-
line’s reconstruction and difference maps between the original and the
reconstructed data. Other columns are IDLat’s results based on three
different value-based importance maps. The reference values are 9.9,
10.2, and 10.5, respectively. In the first two rows, each row shows the
result for one ensemble member. We use the same transfer function for
each row to ensure the volume rendering difference is caused by the
reconstructed data but not the transfer function difference. The transfer
function for volume rendering of the reconstructed and ground truth
data is the vertical colorbar and for difference map is the horizontal
colorbar. From volume rendering images, we found the latent repre-
sentation has high reconstruction quality on every importance map.
From left to right, we can see the differences in the difference map
spreads out more when we increase the reference value, which matches
the observation that as the reference value increases, the important
regions in the dataset are getting smaller and unimportant regions are
enlarged so that the difference at unimportant locations becomes more
obvious. The third row of Fig. 7 shows zoom-in of ground truth (A),
baseline (B) and IDLat’s reconstruction (C and D). As shown in the
figure, when the reference value increases from 9.9 in Fig. 7 (C) to 10.5
in Fig. 7 (D), the reconstruction loses more details of the unimportant
data compared to the ground truth and the baseline, e.g., the red dashed
circled regions are more smoothed out in Fig. 7 (D). The zoom-in of
difference maps also shows more obvious spread-out differences in the
unimportant regions. The pattern of difference maps and high-quality
volume rendering results demonstrate that IDLat is under the guidance
of spatial importance when generating latent representations.

Fig. 8 shows volume rendering images of Isabel dataset. From left
to right, they are ground truth, baseline’s, and IDLat’s reconstruction.
IDLat utilizes a location-based importance map where the hurricane
eye is the region of interest, as shown in the selected bounding box.
Comparing the ground truth and baseline with IDLat’s reconstruction,
we can see the quality of the hurricane eye is highly preserved, although
IDLat has a smaller latent size as discussed in Sect. 6.2.

The above quantitative and qualitative results validate that IDLat
is under spatial importance guidance when generating compact latent
representations with high quality in important spatial regions.

6.4 Latent Space Exploration and Analysis
As discussed in Sect. 5.4, our method produces latent representations
that can be used for feature-related exploration and analysis. To show
that the proposed importance-driven latent representations are succinct
and suitable for representing features of interest, we perform latent
space exploration and analysis on Vortex data with two case studies.
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Fig. 7. Volume rendering of ground truth, baseline and IDLat’s reconstructions on two ensemble members of Nyx data with value-based importance
maps. Reference values are 9.9, 10.2 and 10.5. The difference map for each reconstruction is shown on its right. From left to right, in the difference
map, the difference spreads out more when we increase the reference value, which matches the fact that as the reference value increases, the
important regions are getting smaller and unimportant regions are enlarged so that the difference at unimportant regions becomes more obvious.
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Fig. 8. Volume rendering of ground truth, baseline and IDLat’s recon-
struction on Isabel data with a location-based importance map where
the hurricane eye in the bounding box is the region of interest.

Fig. 9. Latent space projection and hierarchical clustering results given
importance map based on distances to isosurface 8.0. Volume rendering
and isosurface (isovalue = 8) for the ground truth data (GT), for blocks
from cluster A (A) and for child clusters of cluster A (bottom left), where
isosurfaces are shown in red for cluster A1 and green for cluster A2.

6.4.1 Case Study 1: Obtain Insight of Features in Latent Space

In the first case study, we show the effectiveness of importance-driven
latents in identifying features by exploring the latent space. We compare
block-wise latent representations generated by a uniform importance
map and by a distance-based importance map in Sect. 6.2.2.

First, we show the exploration results for the importance-driven
latent space. The importance map is defined based on distances to the
isosurface with isovalue = 8, which reveals the interest features of the
vortex cores. In Fig. 9, we can easily identify four distinct clusters in
the t-SNE projection of the latent vectors. The users can also modify
the hierarchical clustering view to investigate the detail related to each
cluster. On the right side of Fig. 9, we show the hierarchical clustering
results of latent vectors. Cluster A consists of the blocks that contain
the vortex cores and can be further separated into two child clusters (A1,
A2) based on the separation in the t-SNE projection. The difference
between cluster A1 and cluster A2 will be discussed later. Cluster C

consists of blocks that do not intersect with the isosurface of interest.
Cluster B contains some boundary blocks (e.g., blocks on the edges
and in the corners).

To further investigate cluster A, we show images of volume render-
ing and isosurfaces for the ground truth data in Fig. 9 (GT) and the
blocks from cluster A identified in latent space in Fig. 9 (A). It can be
observed that Fig. 9 (A) and Fig. 9 (GT) reveal the same isosurfaces
(ignoring the fuzzy region in the ground truth image, which is not part
of the isosurface), indicating that our latent representations allow us to
preserve the important regions with good quality and in the meantime
enable us to visualize and separate the features easily in the latent space.

In the t-SNE projection, cluster A consists of two child clusters
A1 and A2. We show the isosurfaces corresponding to these two
clusters in Fig. 9 (A1, A2). Cluster A1’s isosurface is in red and
cluster A2 in green. We found that except for two boundary vortices
(a1, a2), all other vortices are split into two clusters (red and green).
The splitting reveals the internal structures of the vortices. Since the
splitting happens along one axis, we suspect one possible reason for this
is the differences of the scalar values in the block along this direction.
For this dataset, in the core of vortices, it has high scalar values and
the value is decreasing and the isosurface is getting enlarged from
inside vortex core to outside. They are classified into different clusters
probably due to the opposite direction of value decreasing on this
axis, which is related to the gradient of the values. To validate this
hypothesis, we calculate the average gradient distribution along the
x-axis using Gaussian kernel density estimation for each data block
from these two clusters as shown in Fig. 10, where we can identify the
apparent gradient distribution difference among these two clusters. The
further separation of the feature clusters helps visualize and understand
the internal structures of the data of interest.

We also perform latent space exploration for latent vectors generated
using a uniform importance map. The t-SNE projection of their latent
space is shown on the left side of Fig. 11. We did not find any visual
clusters in the t-SNE projection, and the clustering of the latent vectors
splits all blocks into clusters of high and low average values, which is
not helpful in feature-related analysis. The process of further splitting
of the clusters is tedious and did not bring us anything interesting.

By comparing the structures of importance-driven and uniform la-
tent spaces, we found that the importance-driven latent space is highly
related to the features of interest and is easier to explore. From the clus-
tering result, scientists can reduce the effort of similarity comparison
between blocks by quickly filtering out unimportant regions, resulting
in fast and scalable data analysis.

6.4.2 Case Study 2: Representative Isosurface Selection

In the second case study, we show the usefulness of the importance-
driven latent for representative isosurface selection.
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Fig. 10. Gradient distribution for data blocks from two clusters.

Fig. 11. Latent exploration of latent vectors generated using uniform
importance map. No visual clusters are identified in the t-SNE projection.

To quantify and visualize similarities between isosurfaces, Bruckner
and Möller [8] proposed the isosurface similarity map. Each element
in this map is the similarity value between two isosurfaces. They use
distance fields, i.e., the minimal distance of each point to the surface, to
represent isosurfaces and use mutual information between two distance
fields as the similarity measure. However, one limitation of this method
is the high computation cost. First, representing isosurfaces as distance
fields is expensive without acceleration such as approximations. Sec-
ond, generating the isosurface similarity map needs to calculate mutual
information between every pair of isosurfaces, which requires building
a joint histogram of every two distance fields. A more effective surface
representation and efficient similarity computation is desired.

To solve this, we utilize IDLat with value-based importance maps
to generate isosurface representations. We use value-based importance
maps for two reasons. First, the spatial information of each voxel inside
each block is encoded in the latent representation, so we do not need
implicit distance fields to indicate surface locations. Second, when
generating importance-driven latent representations, voxels with higher
importance values will have a higher contribution, and voxels with
low importance will be suppressed, which helps encode the surface
information and zero out non-surface information. These two proper-
ties eliminate the heavy computation of distance fields. After we have
latent representations for all blocks, we concatenate them into a single
latent to represent the whole isosurface. We note that compared to the
encoding time reported in Table 1, we have 8 times more blocks due to
smaller block size (83 instead of 163 as in Table 1), so representation
generation is about 8 times slower. By changing the value-based impor-
tance maps, we can generate compact isosurface representations use
different isovalues as the importance measure. Then, isosurface sim-
ilarities are efficiently computed through cosine similarities between
the isosurface-drive latent representations.

In the isosurface similarity map, we can find clusters of isovalues to
select representative isovalues. Given surface similarities, we use the
same isosurface selection algorithm as Bruckner and Möller’s [8] to au-
tomatically identify representative isovalues. Fig. 12 shows isosurface
similarity maps and selected isosurfaces computed by Bruckner and
Möller’s method [8] and by ours. Compared to Bruckner and Möller’s,
our method can generate better results of the top four representative
isosurfaces to reveal the structure of Vortex data. The selected isosur-
face (number 3) in our result is missing in theirs. They may identify it
later but need to increase the number of selections. In Table 3, we show
the performance of these two methods. Compared to Bruckner and
Möller’s [8], our method is much more efficient in both representation
generation stage (rep) and similarity computation stage (sim).

Table 3. Selected isovalues, time (seconds) for all isosurface represen-
tation generation and for computing the isosurface similarity map using
Bruckner and Möller’s [8] and importance-driven latent representations.

Method Selected Isovalues Time (rep) Time (sim)

Bruckner and Möller’s [8] 4.1, 5.5, 8.5, 9.7 523.0288 824.9641
IDLat 3.7, 5.7, 7.0, 9.1 183.8828 0.4095
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Fig. 12. Top Row: Bruckner and Möller’s [8] isosurface similarity map
(left) and four selected isosurfaces (right). Bottom Row: Our results of
of isosurface similarity map (left) and four selected isosurfaces (right).

7 DISCUSSION AND FUTURE WORK

Even though we have demonstrated that the proposed IDLat can gener-
ate latent representations of compact size and correspond well to the
importance definition, there are still several limitations to our work.

First, the generalizability of our method has not been fully investi-
gated. Our evaluation results demonstrate that a model trained using
data blocks from several time steps can generalize well to other time
steps and is sensitive to different importance maps. However, to what
extent our model can generalize is not fully understood.

Secondly, in the practical use of our method, the importance defini-
tion and dataset itself may not always be in the same resolution. For
example, in our isosurface-based importance definition, importance
is continuously defined, while scalar data are only defined in the grid
points, which forces us to sample the importance field to match the data
resolution. How we interpolate and sample the importance field or the
dataset can largely influence the latent representation quality.

Finally, the full potential of latent representation for scientific data
analysis has not been extensively studied in this work. For example, the
usage of importance-driven latent vectors on time-varying data analysis
and feature tracking is one of our future studies.

8 CONCLUSION

In this paper, we present an importance-driven latent generation method
(IDLat) based on an autoencoder model which tightly relates latent
representations to specific data of interest, such as salient regions or
features of interest. We represent data of interest by spatial importance
maps and utilize the location-wise importance information to guide
latent generation. With a trained model, scientists can flexibly define
various importance criteria and obtain different latent representations.
We further reduce the latent size through a lossless entropy coding
model. In addition, we develop a visual exploration tool for latent space
analysis and demonstrate the efficiency of identifying and analyzing
feature regions with importance-driven latent representations. Through
quantitative and qualitative evaluations, we validate the effectiveness
of our importance-driven latent generation method in representing data
under domain interests control.
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