
Visilence: An Interactive Visualization Tool for Error
Resilience Analysis

Shaolun Ruan1, Yong Wang2, Qiang Guan1

1. Kent State University, USA
2. Singapore Management University, Singapore

Introduction
As the HPC systems keep scaling up, the chance of the systems encounter-
ing soft errors also increases. Though many soft errors can be detected and
corrected by hardware-level mechanisms, some errors escape these mech-
anisms and further propagate to the application-level. However, error re-
silience analysis for HPC applications is often known as a “Black Box” anal-
ysis: the user can estimate the resilience characteristics via fault injection
to an application, which usually lacks explainability on a case-by-case basis.
The conventional preceding studies rarely analyze error propagation and re-
silience through visualization methods and symbols turning inflexible HPC
programs trace data into graphical representations and providing interac-
tive analysis modes. We propose a novel control-flow based visualization
tool to explore the error resilience of HPC applications. Furthermore, we
showcase the error propagation pattern along with the basic blocks of an ex-
ample faulty run of CoMD and demonstrate the usage of Visilence to identify
the critical sections of the applications.

Visilience

 Program

Fault
injection 

Dynamic
Trace

Loop Sensitive Graphs
(LSGs)/Critical Vector Graph

(CVG)
Visualization Engine

(a) (d)(b)

if(..){

f(x)

}

for (..){

call for f(x)

}

Dynamic
TraceDynamic
TraceDynamic
Trace

Dynamic T racing

Fault
injection 

Fault
injection Fault
injection 

... ...

(c)

(c)

Figure 1: An overall workflow of Visilence. (a) Binary code: the input of ResilienceVis; (b) Dynamic tracing
part contains both fault injection and tracing; (c) Loop Sensitive graph (LSG) generated from the dynamic
traces and Critical Vector Graph (CVG) generated based on the accumulation of multiple LSGs; (d) Visualiza-
tion engine shows the results to users visually and interactively.

Fig. 1 shows an overall workflow of proposed tool Visilence. At a high level,
Visilence needs three levels of abstractions: (a) a model that can keep the
static and dynamic program states, (b) a format to allow systematic analysis
of the program states, and (c) a visualization tool that offers a friendly inter-
face to identify the code regions that are sensitive to the errors for the users.
We define Loop Sensitive graph (LSG) generated from the dynamic traces
and Critical Vector Graph (CVG) generated based on the accumulation of
multiple LSGs. The workflow of Visilence proceeds as follows: (i), it takes an
HPC program as input and conducts a statistic fault injection campaign on
the application to generate a set of dynamic execution traces; (ii), it creates
LSGs/CVGs based on the obtained dynamic traces of the application, and
(iii) it implements a novel visualization system that takes the LSGs/CVGs
as the data source and provides a fine-grained representation of error prop-
agation and resilience characteristic for the application.

Data Source

Parse Layout

Parse Diff

Initial Graph Updated Graph

render

Data Mapping

Layout Generation

Figure 2: The visualization workflow of Visilence. The workflow of our visualization system consists of two
stages.

We implement a user-friendly interface to visualize error propagation and
functions interactively (Fig. 3). The interface consists of four parts:

• Function View (Fig. 3a) is a sequence of functions which are represented
by dots. These functions are placed in the order of where they are defined.
A green dot means it matches exactly like the golden run‘s, or it would
be rendered in red when they are different in weights. The triangle on the
sequence is a marker labeling the function where the fault is injected.

• Graph View (Fig. 3b) shows the Loop Sensitive Graph/Critical Vector
graph. The vertices of the graph are basic blocks and the head (in yel-
low) and tail (in red) nodes are the entry and exit of the function respec-
tively. The edges represent the connections between two basic blocks in
the CFG, and the weights are the absolute values between the faulty traces
and golden runs. The edge is gray when its weight is zero and is red oth-
erwise. There are two options above: Global view and Filter.

• Weight Threshold (Fig. 3c) is used to filter the edges. When we slide the
bar in Weight Threshold, the value would be adjusted, and the edges with
smaller weights below the threshold would be assigned into gray.

• Function List (Fig. 3d) lists all the functions in the program with specific
name in the same order in Function View. We can click on it to select the
function to be shown in Graph View.

Case Study
Error Propagation Visualization
When soft errors occur in the running process of the program, this error may
affect the subsequent control flow. Our tool can intuitively indicate how this
error propagates.
Fig. 3 presents an example of LSG for the function ’setVcm omp fn.o’ in
benchmark program CoMD. The function starts from the ‘head’ basic block
′0x407f80′ and ends in the ‘tail’ basic block 0x4080a8, in total 12 basic blocks.
The weights are the difference in executed times between the golden run
and the faulty run. The biggest difference in this function is 351 on the
edges from basic block 0x408000 to 0x408030. The path from the basic block
′0x408000′ to ′0x408030′ maps to the source code of ‘initAtoms.c’ at Lines 126
to 129 inside a for loop. We observed that 64 functions were affected by the
injected fault.

Loop Sensi�ve Graph

Informa�on of 
Basic Blocks

Func�on Marker of Fault Injec�on Weights Threshold

a

b

c

d

Figure 3: The interface of Visilence.

Weight Thresholding
Fig. 4 illustrates an example use of this functionality. In Fig. 4 (a), all the
weights on the edges range from 0 to 1000 in this LSG. When we set the
weight threshold to 100, as shown in Fig. 4b, the edges with a weight less
than 100 automatically become gray and no longer within the scope of our
analysis of resilience. We can see this works for different values of the thresh-
old.

(a) Weight Threshold = 0 (b) Weight Threshold = 100

(c) Weight Threshold = 300 (d) Weight Threshold = 500

a b

c d

Figure 4: Weight Threshold examples. Weight Threshold is used to eliminate edges whose weight is lower
than the threshold. From (a) to (d), the threshold is set to 0, 100, 300, 500; correspondingly, the CVG (21 basic
blocks) is split into two disconnected red zones (2 basic blocks and 3 basic blocks).

This functionality brings convenience for the users when there is a constraint
in resources to protect the program from being affected by errors. When
the resources are limited, our tool can help the user visually prioritize the
choices to protect code regions that differ the most from the golden run, i.e.
more sensitive to errors.

Conclusion
We proposed Visilence, a control-flow graph based visualization tool for er-
ror resilience analysis, which provides human analysts with detailed facets
of error propagation for further decision making. Visilence addresses the
issue of understanding how the applications are affected by the errors via
a graph-based abstraction to represent the affected program states and the
reason for the error propagation across different error scenarios.


