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ABSTRACT

Owners of data may wish to share some statistics with others, but
they may be worried of privacy of the underlying data. An effective
solution to this problem is to employ provable privacy techniques,
such as differential privacy, to add noise to the statistics before re-
leasing them. This protection lowers the risk of sharing sensitive
data with more or less trusted data sharing partners. Unfortunately,
applying differential privacy in its mathematical form requires one to
fix certain numeric parameters, which involves subtle computations
and expert knowledge that the data owners may lack.
In this paper, we first describe a differential privacy parameter selec-
tion procedure that minimizes what lay data owners need to know.
Second, we describe a user visualization and workflow that makes
this procedure available for lay data owners by helping them set the
level of noise appropriately to achieve a tolerable risk level. Finally,
we describe a user study in which human factors professionals who
were naı̈ve to differential privacy were briefly trained on the con-
cept of using differential privacy for data sharing and then used the
visualization to determine an appropriate level of noise.

1 INTRODUCTION

Owners of data may wish to share statistical data with others, but
they may not want to reveal the underlying data, which may be
sensitive. Rather, the data owner desires to keep the underlying data
private.

For example, during an epidemic, a government might wish to
share counts of disease state per village with various international
health organizations. However, the state of individuals is very sen-
sitive, and the government wants to keep these data private. Un-
fortunately, even if only aggregated data is released, there is still
a considerable chance that a seemingly anonymized dataset may
reveal the states of specific individuals. Even worse, information
about specific individuals can potentially be correlated with other
datasets, which might even be released in the future, causing the
released data to become increasingly vulnerable to re-identification.

In some cases, if privacy cannot be guaranteed, a data owner may
choose to forego data sharing all together. This unfortunate situation
leads to operational risks or lost opportunities that sharing the data
might have produced. How can we facilitate data sharing, while
ensuring that the underlying data remain private?

An effective solution to this problem is to employ provable pri-
vacy techniques before releasing the data to ensure that privacy is
sufficiently protected, even if additional datasets are released in the
future [20]. Differential privacy [9] is one such technique that can be
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used to protect shared statistical data by adding noise to the shared
statistics. It is designed with parameters that impose upper bounds
on the likelihood of guessing the underlying data by adding specific
amounts of noise to the statistics. The added noise provides a guar-
antee that the likelihood of guessing can be kept to a desired low
level.

In turn, the guessing probability impacts the risk of sharing data.
Data sharing risk is a combination of the sensitivity of the data, the
trust in the data sharing partner, and the guessing probability. Data
sensitivity is an assessment of the damage that could occur if the
data were exploited. Partner trust is an assessment of how likely that
data sharing partner is to exploit the data. For sharing a given set of
data with a given partner, the data owner needs to determine a noise
level and probability of guessing that leads to a tolerable level of
risk.

Adding noise to the shared statistics, makes the data potentially
less useful. The data owner must determine a level of noise that is
suitably high to keep the underlying data from being guessed but
suitably low to keep the data useful. Differential privacy can help
with this problem by calculating the guessing probability for a given
data set and then computing the required amount of noise to add to
the shared data to guarantee a desired low probability of guessing.
Data owners must then assess, and perhaps modify, the noise and the
guessing probability to achieve a balance between risk and utility.
Unfortunately, applying differential privacy in its mathematical form
requires one to fix certain numeric parameters, which involves subtle
computations and expert knowledge. This constraint has been noted
as a significant practical obstacle to differential privacys application,
as data owners often lack the necessary expertise to apply differential
privacy on their own.

Here, we describe a differential privacy parameter selection pro-
cedure for lay data owners. The main component of the procedure is
a visualization mechanism that depicts the consequences of making
a certain choice of parameters in terms that the data owner should be
able to understand. The data owner will be able to explore the space
of parameters and set the level of noise appropriately to achieve a
tolerable risk level, while, at the same time, give useful information
for the data sharing partner. This solution will enable data owners to
share statistical data, while remaining confident that the underlying
data remains private.

Hence, our set-up is the following. There is a data owner that
holds a database. He understands the collected data sufficiently well
to figure out its sensitivity1, i.e. the amount of damage caused by a
breach. There is an analyst that makes a query against this database.
The owner answers this query, but with the help of a differential
privacy mechanism. The owner knows the analyst well, and can
judge his trustworthyness. Importantly, the data owner also knows,
how the usefulness of the answer of the query to the analyst is af-
fected by the amount of noise added to the answer. Our visualization
mechanism allows the data owner to compare the amount of added
noise with the risk of data sharing. The computations behind the

1In differential privacy literature, sensitivity is a property of functions

between metric spaces. This notion will not play a significant role in this

paper. Our use of “sensitivity” is common in certain communities where the

sharing of data is a long-standing issue.
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visualization depend on the database schema and on the query, as
well as on the way of adding and measuring the noise, but the visu-
alization itself, including the manner in which the analyst interacts
with it stays basically the same for different datasets and queries.

We first provide an overview of differential privacy and a mecha-
nism that is appropriately designed as a back end for the visualiza-
tion. Then we describe a visualization to help data owners explore
the relationships between data sensitivity, trust, noise, and risk and
set an appropriate level of noise to achieve a tolerable level of risk
and utility. In particular, users will be able to modify the amount
of added noise and view the impact on guessing probability and
data sharing risk. Finally, we describe a user study in which human
factors professionals who were naı̈ve to differential privacy were
briefly trained on the concept of using differential privacy for data
sharing and then used the visualization to determine an appropriate
level of noise. Feedback from the participants was used to develop a
revised visualization design.

It takes several steps to arrive at the mechanism suitable for visu-
alization, and also matching our expectations of privacy and utility
properties. These steps switch back and forth between considering
achievable privacy and utility properties, and their connections to
differential privacy properties and mechanisms. The chosen mecha-
nisms are related to the desired privacy and utility properties, and
different desiderata may lead to different mechanisms (still, the vi-
sualization and the data owner’s workflow stays the same), but our
privacy properties are standard, and utility properties likewise, hence
the differential privacy mechanism that we use is also one that could
be expected to turn up in many scenarios. These steps, which should
be considered as a separate contribution of this paper, are given in
Sec. 2.

Running Example. In our example database, there is a table
about residents of some country, containing the attributes ID and
disease state. A disease state is represented by an ENUM datatype
which can take one of the four values: S (susceptible), I (infected),
R (recovered), D (deceased). There is also a list of villages, and an
assignment of residents to villages. This assignment is assumed to
be public. The communications officer desires to share counts of
disease state per village. Characteristics of the data set, including
its size and sparseness, determine how much the attacker can learn
about underlying data from the observed counts. Our running exam-
ple is specific, and is based on discrete inputs, but the considerations
that lead to the design choices of the DP parameter selection tool are
general.

2 DIFFERENTIAL PRIVACY AND DATA SHARING RISK

Differential privacy (DP) [9] is used to quantitatively define privacy
losses coming from answers to statistical queries about data collec-
tions. Roughly speaking, if two databases are sufficiently similar,
then the attacker should not be able (up to a certain extent, defined
by a special privacy parameter ε) to distinguish between them after
observing the query output.

Definition 2.1 (Differential Privacy [9]) Let X be the set of all
possible databases to which a query may be applied. Let ε ≥ 0.
A mechanism M is ε-differentially private if, for any two database
instances x0,x1 ∈ X, and for any subset Y ⊆M(X) of outputs, we
have Pr[M(x0) ∈ Y ]≤ eε·d(x0,x1) ·Pr[M(x1) ∈ Y ].

The distance d(x0,x1) in Definition 2.1 can be defined in different
ways. For example, it can be the number of different rows in two
tables. In our running example of an SIRD count histogram, we care
about the disease state of residents, so we can define d(x0,x1) = k iff
there are exactly k residents in x0, whose disease states are different
from the states that they have in x1.

A general method for making an information release mechanism
with numeric output ε-differentially private is to add random noise

of appropriate magnitude to the output of M(x). This magnitude
depends not only on ε , but also on the query sensitivity of the mech-
anism, i.e., the amount of change of its output when its input is
changed by a unit amount. For example, ε-DP can be achieved ap-
plying Laplace mechanism (described e.g., in [10]), which samples

noise from Laplace distribution Lap(Δ f
ε )(x) ∼ ε

2Δ f · e−
ε|x|
Δ f , where

Δ f is the query sensitivity.
The more noise we add, the more private the data release becomes,

but at the same time, the utility of the data released in this way may
decrease. The question is how to find the ε for which privacy and
utility are balanced.

Consider the running example of an SIRD count histogram. It
may seem that releasing just an aggregated statistic is safe if the
analyst, the data sharing partner, only observes the aggregated counts.
However, this is not always the case. If the analyst already knows
the disease state of many residents in the dataset (e.g., if the data
table represents a small village), then it will be easier for the analyst
to guess which disease state a particular person in this dataset may
have. In an extreme case, if the analyst knows in advance that
there are m people already infected, the total count is m+ 1, and
the only person whose disease status is so far unknown is Alice,
then the count histogram will release the disease state of Alice
completely. The goal of differential privacy is to protect even against
such knowledgeable attackers.

2.1 Estimating the risk
Intuitively, differential privacy quantifies how much the distribution
of query outputs changes if the disease state of some individual
has changed, and smaller ε means more similarity. Hence, it is
closely related to the ability of an analyst to guess the disease state
of a particular user. However, the definition of DP allows ε to be
arbitrarily large, and does not give enough intuition concerning how
small ε would give enough privacy. Therefore, we want to convert
this definition to a more intuitive leakage metric.

A useful construct is data sharing risk. Across multiple industries
and fields of study, risk is defined as

risk = value of asset · chance of loss . (1)

In the context of data sharing, the value of the asset is the sensitivity
of the data and the degree to which the exploitation of that data could
harm the organization that shared the data. The chance of loss is
based on the (dis)trust in the data sharing partner. That is, the chance
of loss is low for a trusted data sharing partner, but the chance of
loss is high for a distrusted data sharing partner. The risk of sharing
data, then, can be defined as

data sharing risk = data sensitivity · (1−partner trust) . (2)

For differential privacy, we further multiply this risk with the prob-
ability that the data sharing partner can guess the underlying data.
If the probability is one, then the partner can guess the data and we
have the standard risk formulation (2). If the probability is lowered,
via use of differential privacy, then the overall data sharing risk is
lowered, as well.

The trust and sensitivity parameters must be estimated subjec-
tively by the data owner. This estimation process is out of scope
of this paper, but it would occur prior to setting the noise level for
differential privacy. One approach for producing these estimates
is to break partner trust and data sensitivity into underlying factors
that can be evaluated more objectively and then combining these
factors back into overall scores. For example, Mayer et al. [19]
broke trust in a partner organization into three factors: their ability
to keep a secret, the benevolence of their organization toward ours,
and their general integrity. Both the data sensitivity and partner
trust parameters will thus receive a value between 0 and 1.
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On the other hand, the probability of guessing is something that
depends on the query type, as well as the DP mechanism in use. In
particular, it can be tuned by the parameter of differential privacy.
Formally, the attacker’s goal is to guess the categorical attribute of a
certain record in the database, e.g., learn the disease state of Alice.
Differential privacy protects against strong attackers who already
know the disease states of all other residents in the dataset, and, if
we aim to use DP as our privacy protection mechanism, it makes
sense to consider such attackers. Before the attacker has observed
the output, he has already formed some opinion on the disease state
of Alice, and has assigned some probability to the “correct” state of
Alice. Let us call this the prior probability. Observing the output
may change the attacker’s opinion about the inputs and increase this
probability. Let us call this the posterior probability. We can state
our privacy measure as one of the following:

1. How large is the posterior probability?

2. How much larger is the posterior probability compared to the
prior probability?

These privacy metrics in the context of differential privacy have
been considered in [17]. Let us give formal definitions these two
quantities. Let X be a random variable representing possible inputs
from which the attacker may choose (i.e. possible choices for the
underlying database), and let supp(X) be the support of X . Let
α : supp(X)→ [0,1] be the adversary’s prior belief on X . Let M be
a differentially private mechanism, and let γ ∈M(supp(X)). The
posterior belief βγ : supp(X) → [0,1] on X after observing γ is
defined as follows.

Definition 2.2 (Posterior belief on X = x [17]) For each possible
choice x ∈ supp(X), the adversary’s posterior belief on x is defined
as

βγ (x) := Pr[X = x | γ] =
Pr[M(x) = γ]

∑x′∈supp(X) Pr[M(x′) = γ]
.

In general, supp(X) may be the set of all possible states of the
entire database, and x be any possible instance of the database. We
are assuming a strong attacker who already knows all database
records except the one that he is trying to guess. In the running
SIRD example, this makes supp(X) a set of four possible choices of
the disease state for the victim individual. The quantity βγ (x) can
be viewed as the probability of disclosing x after seeing γ .

The adversary issues a query against the database and gets a noisy
answer. After seeing the query response, the adversary computes the
posterior belief for each possible choice x∈ X . Finally, the adversary
selects one x with the highest posterior belief as the “best guess”.

Definition 2.3 (Posterior guessing probability) The adversary’s
posterior probability of guessing the value of X is defined as

max
γ∈M(supp(X)),x∈supp(X)

βγ (x) .

Definition 2.3 quantifies the probability of guessing directly,
which seems a quite intuitive definition. The problem of this choice
is that the same number can denote different severities of leakage,
e.g., a posterior probability βγ (x) = 0.90 is clearly bad if the prior
probability has been α(x) = 0.01, but it is fine for α(x) = 0.89,
where observing the output has almost not made any difference.
Also, if α(x) is already large, then increasing noise magnitude
will never make the guessing probability smaller than α(x), which
may result in a high reported risk even if no data is released at all.
In our running SIRD example, if we set data sensitivity = 1 and
partner trust = 0, the risk will never descend below 0.25 regardless
of the added noise. It is more relevant to estimate how much the pos-
terior belief βγ (x) has been increased compared to the prior belief
α(x).

Definition 2.4 (Guessing advantage) The adversary’s advantage
in guessing the value of X is defined as

max
γ∈M(supp(X)),x∈supp(X)

(βγ (x)−α(x)) .

Definition 2.4 fixes the lower bound of resulting privacy measure
to 0, but the upper bound will not exceed 1−minx∈supp(X) α(x), and

can be hard to perceive, as it will be different for different priors α .
We can normalize the latter value and get a value from the segment
[0,1] scaling the guessing advantage by 1−minx∈supp(X) α(x). In

this case, 0 will mean “no additional information gain”, and 1 “full
leakage”.

For a given ε , we can estimate an upper bound on the posterior
belief β (x) as described in [17, 18]. The following discussion is
specific to our running example, but it can be easily adapted for
other database schemas and queries. In our example, we want to
hide the disease state of a particular user, i.e., which of the four
aggregated counts his record contributes to. Let us define the under-
lying distance as d(x′,x) = k iff the disease states of some k users
are different for the databases x and x′. Such distance is reasonable
for any categorical data.

First, let us consider one count query output, which allows us to
directly use the results of [17]. As shown in Sec.5.1 of [17], for all
x ∈ supp(X), we have

βγ (x) =
1

1+
∑x′∈supp(X)\{x} Pr[Z=γ− f (x′)]

Pr[Z=γ− f (x)])

(3)

where f is the query (without adding noise), γ is the noisy output,
and Z is the random variable representing added noise.

The probability distribution of noise depends on the used DP
mechanism. As shown in [17], for Laplace mechanism we have

Pr[Z = γ− f (x′)]
Pr[Z = γ− f (x)]

≥ e−
εΔv
Δ f

where

• Δ f is the query sensitivity, i.e., how much (at most) the
query output would be different for another input x′ such that
d(x,x′) = 1. We have defined d(x,x′) = 1 iff the tables x and
x′ differ in some users disease state. Modifying a users disease
state may change the output of a single histogram bar at most
by 1, so Δ f = 1.

• Δv is the maximum difference between f (x) and f (x′) for all
pairs (x,x′) of inputs that the attacker considers possible as the
true input [17]. As we assume a strong attacker that already
knows all database records except the one that he is trying
to guess, the possible inputs x and x′ may differ only in one
record. With our definition of distance for categorical data, we
always have d(x,x′) = 1 for such x and x′, so Δv = Δ f = 1.

In particular, for uniformly distributed X , for all x ∈ supp(X),
γ ∈M(supp(X)), we get an upper bound on posterior belief

βγ (x)≤ q :=
1

1+(n−1) · e− εΔv
Δ f

,

where n = |supp(X)| is the number of choices that the attacker has
(in our example, n = 4 for the states S, I, R, D).

We can generalize the result to several observed noisy outputs
γ1 . . .γm. In (3), instead of probabilities Pr[Z = γ− f (x′)], we get

Pr[Z1 = γ1− f1(x′)∧ . . .∧Zm = γm− fm(x′)] .
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Since noise is sampled for each histogram independently, this equals

Pr[Z1 = γ1− f1(x′)] · . . . ·Pr[Zm = γm− fm(x′)] .

As in the single output case, assuming that the same Laplace mecha-
nism is applied to each output, for all 1≤ i≤ m we have

Pr[Zi = γi− fi(x′)]
Pr[Zi = γi− fi(x)]

≥ e−
εΔv
Δ f ,

hence,

Pr[Z1 = γ1− f1(x′)] · . . . ·Pr[Zm = γm− fm(x′)]
Pr[Z1 = γ1− f1(x)] · . . . ·Pr[Zm = γm− fm(x)]

≤ e−
mεΔv

Δ f .

Overall, for n possible input choices and m outputs, we get an upper
bound on posterior probability

q =
1

1+(n−1) · e− mεΔv
Δ f

. (4)

From [15], we see that the same upper bound can be obtained not
only for Laplace mechanism, but also any other mechanism that
ensures ε-differential privacy.

For our running example, we can actually get a better bound.
Since changing one persons disease status changes at most 2
histogram bars (the person is removed from one and added to
some other), we have fi(x′) = fi(x) and f j(x′) = f j(x) for some

1≤ i 
= j ≤ k. This gives us e−
2εΔv
Δ f instead of e−

mεΔv
Δ f .

2.2 Estimating the noise
2.2.1 Absolute error
In addition to risk, we need to take into account the amount of noise.
A value sampled from the Laplace distribution is unfortunately un-
bounded, so the added noise can be arbitrarily large. However, there
exists a finite span within which the added noise stays with some
confidence p. While p = 100% would keep the error magnitude
unbounded, we can fix in advance some reasonable probability, e.g.,
p = 90% or p = 99%, and report the quantity A below which the
added noise stays with probability p. Such A has to satisfy the equal-

ity
∫ A
−A g(x)dx = p, where g(x) := Lap(1/ε)(x) = ε

2 · e−ε|x| is the
probability density function of the Laplace distribution with scaling

1/ε . This equation has a nice solution A =
− ln(1−p)

ε , which allows

the computation of ε =
− ln(1−p)

A as the DP parameter that gives an
error of magnitude A.

In some cases, we may still need strictly p = 100%. While
Laplace distribution is unbounded, we can use truncated Laplace
distribution, chopping off the distribution tails and fitting the range
of noisy outputs into a finite span. While we cannot achieve pure
ε-DP, we can instead achieve (ε,δ )-DP, which will also give us
bounds on posterior guessing probability.

Definition 2.5 (Approximate Differential Privacy [10]) Let X be
the set of all possible databases to which a query may be applied.
Let ε,δ ≥ 0. A mechanism M is (ε,δ )-differentially private if, for
any two database instances x0,x1 ∈ X, and for any subset Y ⊆M(X)

of outputs, we have Pr[M(x0) ∈ Y ]≤ eε·d(x0,x1) ·Pr[M(x1) ∈ Y ]+δ .

If δ = 0, then the mechanism is just ε-differentially private as
in Definition 2.1. Intuitively, pure ε-DP fails with a small error
probability, given by δ . Extending this idea to guessing advantage,
it is possible (with a small probability) that the noisy output is “bad”,
and leaks everything about the input. We show that, using (ε,δ )-DP
mechanism based on truncated Laplace distribution from [11], we
can choose ε in such a way that the observed noisy output keeps the

Figure 1: Noise probability density function of the truncated Laplacian
mechanism [11]. Here A is the upper bound on noise magnitude, B
the normalization factor, and Δv = Δ f ·d(x0,x1) the maximum possible
change in the output.

attacker’s posterior guessing advantage below a certain bound with
probability 1−δ .

Probability density function of truncated Laplace noise is depicted
in Figure 1 (the image is taken from [11]). Let x be the true input,
and let x′ be another possible choice. Without loss of generality,
let f (x′) ≤ f (x) . The output f (x′) can be at most Δv apart from
f (x), so the distribution Lap(1/ε)(x′) is the same as Lap(1/ε)(x)
shifted at most by Δv. If the output gets into the range [A−Δv,A],
the attacker will clearly see that the input could not have been x′.
However, for Z ∈ [−A,A−Δv], we have

Pr[Z=γ− f (x)]
Pr[Z=γ− f (x′)] ≥ e−

εΔv
Δ f , so

for γ ∈ [ f (x)−A, f (x)+A−Δv] we can compute an upper bound
on βγ (x) using (4).

Differently from (4), this upper bound is not directly applica-
ble for any other mechanism that gives (ε,δ )-DP. However, it is
applicable to any mechanism that satisfies

∀y ∈ R,x0,x1 ∈ X : Pr

[
pd fx0

(y)
pd fx1

(y)
≥ eε·d(x0,x1)

]
≤ δ , (5)

where pd fx is the probability density function of M(x). It has been
shown in [5, Theorem 5 and condition (2)] that (5) is a sufficient
condition for obtaining (ε,δ )-DP, and it is satisfied also by the
Gaussian mechanism [5].

If the query result consists of m outputs, it is safe to assume that
we are having the “bad” case if at least one output is “bad”, which
happens with probability 1− (1−δ )m. Hence, when sampling the
noise for the i-th output, it suffices to take

δ ′ := 1− m
√

1−δ , (6)

which is the same for all outputs of the query result.
The construction of [11] allows us to compute the error upper

bound A from ε and δ for truncated Laplace noise, assuming δ < 1
2 .

We now need to decide how to choose these two parameters, and
there are several possible ways to do it.

So far, we aimed to achieve the desired upper bound on guessing
advantage for any noisy output γ , which was a free variable in
Def. 2.2. Using truncated Laplace mechanism, we fail to achieve this
property for every possible γ , because certain output may exclude
every input except one, and hence the posterior guessing probability
will be 1. We will hence consider γ as a random variable, depending
on the prior distribution α and the randomness of the added noise.

We may ask for a negligible probability of getting such γ that
causes an upper bound for the posterior guessing probability to be
violated. The probability of getting such γ is upper-bounded by δ .
Since we consider the case where the attacker only gets a single
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output, it is fine to take δ = 2−40. We then compute ε for the given
guessing advantage as we did it for ordinary Laplace mechanism. A
disadvantage of this approach is that fixing a negligible δ may result
in high upper bounds on the error, even though the highest errors
will actually come with negligible probability.

Truncated Laplace mechanism of [11] gives us the upper bound

A :=
log(1+ eε−1

2δ )
ε on the absolute error. In the visualization tool, we

also need to compute ε from A and δ , i.e. solve

eε −2δeAε ≤ (1−2δ )

for ε . This can be solved numerically, or a safe approximate solution
can be computed.

Since the noisy output γ is itself a randomized value, instead of
trying to protect the data for any γ , we could bound the average
guessing advantage over the distribution of γ . This approach leads
to smaller error magnitude.

2.2.2 Relative error
The noise estimate computed in either way can be arbitrarily large,
and hence its goodness is difficult to interpret. The badness of A
depends on the query, its result, and its further use by the recipient
of the query result. For example, for “reasonable” use cases, the
additive noise ±5 would almost have no effect on the actual count
y = 1000, but it would be destructive for y = 10. We assume that
the data owner has a pretty good idea how the recipient is going to
use the query result; hence he also knows the acceptability of each
level of noise.

Instead of the absolute error, we may use the relative error. For
a single count, the relative error is defined as A/|y|, where y is the
true output. For a query result with m outputs, we can generalize
this estimate to vectors as ‖A1, . . . ,Am‖/‖y1, . . . ,ym‖, where ‖ · ‖ is
the Euclidean norm. We note that we need to know the actual data
to get the outputs y1, . . . ,ym, and if the data is not available, we have
to use the absolute error. Even the relative error still does not have a
fixed upper bound, as the noise may be several times larger than |y|.
In fact, it is unbounded, as it approaches ∞ in the process ε → 0; this
process is a consequence of the process q→ 0. That is, an output
that does not leak anything at all would in general be random noise
itself.

We do not want to have the data owner fix an unbounded value, as
there is no impression on how much error is bad enough. A possible
solution here is to discretize the possible choices of q and set the
smallest guessing probability to a fixed value, e.g., 0.01. This choice
determines the largest possible relative error that the data owner may
get so that any error above that value is considered extremely high
and unreasonable. This solution results in asking the data owner to
choose a relative error that has an upper bound of 100%. We may
agree to bound the error by 100%, marking it as “very high”, since
a larger error would mean e.g., a query could return a response with
a negative value for a count. In practice, a much lower upper bound
of 50% might be a meaningful limit.

2.3 Summary
So far, we have described how to convert between the relative error
and the desired probability of guessing (which in turn depends on
the desired risk). The data owner’s workflow would be to assess
trust and sensitivity, then asses the maximum tolerable risk and noise
to maintain utility, and then find a noise level that satisfies those
constraints. In this workflow, there is a step where data owner has to
convert the noise level to utility loss (or vice versa). This conversion
is very much dependent on the underlying data, on the query, as
well as on the usage of the results of the query by the analyst (as we
discuss in Sec. 1). When all these quantities have been fixed, then
the conversion could perhaps be automated. Right now, however,
for the increased generality, we do not attempt to automate it, but

assume that the data owner is by himself able to convert between the
scales of added noise, and utility.

Let us summarize the discussion above in Table 1 as a collection
of parameters that need to be defined in advance.

As an input, the system takes the maximum tolerable absolute
noise A. There is a query being analyzed, with certain Δv and
Δ f computed once for the query. Assuming that δ has been fixed
(e.g. δ = 2−40), the system computes internally the DP parameter
ε . If relative noise A′ is provided instead of absolute noise A, then
the system should first evaluate the actual output y and compute
A = A′ · ‖y‖. The system then estimates the resulting risk value as

r = s · (1− t) · 1

1+(n−1) · e−mε Δv
Δ f

,

where m is the number of numeric outputs of the query, e.g., the
number of histogram bars. As we have shown above, for some
queries we can take a smaller value of k, resulting is smaller risk for
the same ε . If the risk is assessed as tolerable, then ε is a suitable
parameter, and noise sampled from Lap(Δ f/ε) will be added to the
query output. The quantities Δv and Δ f depend on the query. For
categorical data, we always have Δv = Δ f , so Δv/Δ f = 1, and we
do not need to compute these quantities. We have not yet defined the
parameter n anywhere, which is the total number of possible choices
that the attacker may have. Ideally, this value should be read from
the database schema, where categorical data is defined as an ENUM
datatype of n possible values. If the query is defined over multiple
data tables containing sensitive data, then we need to access privacy
risk of each of these tables separately.

3 DIFFERENTIAL PRIVACY POLICY TOOL

We have developed a user interface called the differential privacy
policy tool (DPP) that incorporates our new differential privacy
mechanism. The visualization is designed to help a data owner
decide how much noise to add to shared statistical data in order to
protect the underlying data from being guessed, while still preserving
the utility of sharing the data, all while remaining easy for a lay user
to understand and use. This tool is part of a larger tool for assisting
an officer responsible for setting up the information sharing policies
of a large enterprise. The policy creation tool in turn is a part of
a large experimental system for controlled information sharing in
coalition operations. The tool enables the creation of unambiguous
policies for sharing specific data with specific data sharing partners.
These data sharing partners can then make queries, and those queries
are evaluated against all current data sharing policies. Acceptable
queries are then allowed to proceed. The DPP adds to the system the
ability to make data sharing policies that include differential privacy.

To determine the appropriate level of noise for a differential
privacy policy, the data owner must first establish the level of trust in
the data sharing partner to not exploit the data and the sensitivity of
the data underlying the counts. The data owner must also determine
the maximum level of risk that can be tolerated and the maximum
level of noise that can be tolerated while keeping the data meaningful
and useful.

Here, trust, sensitivity, and risk are treated as qualitative assess-
ments, running from very low to very high (mapped to values be-
tween 0 and 1, as in (2)), based on a variety of factors. It is assumed
that the data owner has already determined the level of trust they
have in their data sharing partner and the level of sensitivity of the
underlying data. It is also assumed that the data owner has already
assessed the maximum level of noise that can be tolerated while
keeping the data useful and the maximum risk that can be tolerated.
All that is left to consider is what percentage of noise to add to the
shared data to meet the constraints on risk and utility.

In our running example of sharing SIRD counts, the underlying
data, the SIRD state of individuals in each village is considered
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Table 1: Differential privacy and data sharing risk parameters

Parameter Lower Bound Upper Bound Meaning Limitations

trust (t) 0% 100% Subjective estimate of how much the
party allowed to execute a DP query is
trusted.

data sensitivity (s) 0% 100% Subjective estimate of how sensitive is
the underlying data.

maximum tolerable
absolute noise (A)

0 ∞ How far the noisy output is allowed to
get from the true output.

There is no general reasonable
upper bound.

maximum tolerable
relative noise (A′)

0% 100% How far the noisy output is allowed to
get from the true output. Compared to
absolute error, 100% can be treated as a
reasonable upper bound.

Need to know (an approximate)
true query output to estimate.

probability of pri-
vacy failure (δ )

0% 50% Probability that the added noise is sam-
pled badly and does not protect sensitive
data. Fixed to a statistically negligible
value, e.g. 2−40.

highly sensitive because individuals could be persecuted. Therefore,
using differential privacy to share the counts is recommended in
order to limit the guessing of that underlying data. Second, the
communications officer has assessed that the nations, overall, are low
trust. Third, the maximum tolerable noise is about 5-10% because
costly medical supplies need to be staged appropriately, and the
maximum tolerable risk is low. Consequently, the communications
officer needs to set an appropriate noise level, no higher than 10%,
that achieves a data sharing risk of no more than low risk.

Figure 2 shows the DPP user interface. The data owner has
selected low trust and high sensitive data on the left hand sliders
and zero noise to add on the middle slider. The noise or relative
error is translated into percent added noise on the user interface
under the assumption that percent added noise is easier for a lay
user to understand. The graph shows trust on the X axis, sensitivity
on the Y axis, and risk on the Z axis. The surface in the graph
shows the relationships among trust, sensitivity, and risk for the
given percentage of noise added to the data.

The probability of guessing is not shown in the graph, but it is
displayed as text below right of the graph. Changing the percentage
of noise added to the counts changes the probability of guessing and
the slope of the surface. In effect, adding more noise lowers the
slope and results in lower probabilities of guessing and lower risk.

Given the selected levels of trust and data sensitivity, and no noise
added, the risk of sharing the counts and having the underlying data
guessed and exploited is medium. The yellow dot on the surface
indicates this point in the space of trust, sensitivity, and resulting
risk.

Figure 3 shows the effect of adding 10% noise to the shared data.
The slope of the surface falls, the probability of guessing is reduced,
and the risk from sharing these data drops to very low. This level
of noise means that for a count of 100, the shared value would be
some value between 90 and 110. If this level of noise is tolerable
for maintaining the utility of sharing the data with the responding
nations, then the communications officer has found an acceptable
level of noise that keeps data sharing risk very low while maintaining
data sharing utility. The officer could then accept this choice and
complete the data sharing policy definition. In this way, users can
modify the level of noise added and view the impacts on guessing
probability and risk.

4 FOCUS GROUP ASSESSMENT

The design of the DPP tool was assessed by a focus group of human
factors professionals. The objective was to evaluate both the concept

and its meaningfulness to a naı̈ve user as well as assess the tool
designs usability.

Participants Eight human factors professionals participated in
a series of three focus groups of 2-3 participants per group. The
professionals were recruited from [Company affiliated with some of
the authors], a human factors company, but they were all naı̈ve to
the project and user interface. The participants were each paid $40.

Materials The DPP tool was programmed in R and the R ex-
tensions Shiny and Plotty [21]. Three example situations were
constructed where using differential privacy to share counts was
plausible. The first example was the epidemic. The other examples
varied the context (epidemic, genetic predictors, disaster evacuation)
and the trust, sensitivity, noise tolerance, and risk tolerance.

Procedure Participants were introduced to the concept of dif-
ferential privacy from the practical perspective of reducing the prob-
ability of the data sharing partner guessing the underlying data. They
were then introduced to the DPP tool and led through the three exam-
ple situations. Participants were encouraged to interact with the tool
by trying different percentages of noise and observing the resulting
levels of risk. They were also encouraged to explore different data
sharing partners having different trust ratings. This idea was that
perhaps an acceptable level of risk could be obtained if a better
trusted partner were chosen.

Following the three examples, the participants were asked a short
set of questions about the utility and understandability of the DPP
tool. These questions opened up a discussion of design features,
workflow, and usability. Finally, participants completed a system
usability scale [7].

Results The participants offered a wide variety of feedback on
the design of the tool and potentially better designs for supporting
the data owner setting an appropriate level of noise. The mean SUS
score was 71, and the scores ranged from 53 to 85. Designs having
scores above 70 are considered acceptable [6].

The most critical feedback was to include a simpler 2D graph
that would allow data owners to view the relationship between noise
and risk directly, allowing the users to find a maximum tolerable
level of risk and read off a percentage of added noise that would
achieve that level of risk. This alternative graph better matches the
users goal, and workflow, of determining a level of noise, while the
current 3D graph is better conceived as a tool for further exploring
the relationships of trust, sensitivity, noise, and risk. Participants
also offered a variety of design suggestions. A major suggestion was
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Figure 2: The interactive DPP tool with low trust, high data sensitivity, and no noise selected. The reticule indicates where the point hits each axis.
The yellow hover-over call-out provides a read out of the trust, data sensitivity, and risk at the point where the mouse is located as it is moved
around the surface.

Figure 3: The interactive DPP tool with 10% noise added. The resulting risk for this combination of trust, sensitivity, and noise is very low.
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to make the surface in the 3D graph translucent so that it would be
easier to see the reticle and where it hits each axis, even if it were
below the surface. Some participants were confused that the yellow
color of the dot meant the point was medium risk, and they suggested
that a more neutral color would be better. Another suggestion was to
provide examples of what adding a percentage of noise means and a
short, written summary of the chosen values and the resulting risk.
These explanations could help naı̈ve users better understand what
their chosen percentage of noise meant, both in terms of what data
values would be shared and what was the risk of the data sharing.

Discussion The feedback was used to develop a version 2.0
DPP tool. Most importantly, this tool incorporated the 2D noise x
risk graph and better laid out the users workflow. The original 3D
graph was maintained as a tool for further exploring trust, sensitivity,
noise, and risk trade-offs. The design of the 3D graph was improved
in accord with the feedback.

Version 2.0 of the DPP tool is shown in Figure 4. The upper
left enumerates the sequence of steps for the data owner to follow:
selecting trust and data sensitivity ratings, and choosing a maximum
tolerable level of risk. The tool then calculates and graphs the trade-
off between percent added noise and risk for the given data set. The
graph also indicates the level of noise associated with the maximum
tolerable risk. The data owner can then adjust noise to any desired
level and see that point on the graph. The original 3D graph is
available at the bottom of the display. The amount of noise chosen
is explained in a tool tip, and a written summary of the chosen trust,
data sensitivity, and noise was presented in the lower left. Once the
data owner is satisfied with the level of noise added and the resulting
data sharing risk, the data owner accepts the choices and proceeds
to the next step in the data sharing policy creation process.

Four of the original eight participants were asked to review ver-
sion 2.0. The participants were refamiliarized with the concept of
the tool and walked through the first example, then they rated version
2.0 on the system usability scale. The average SUS score for version
2.0 was 89, a large improvement over version 1.0. The improvement
was significant by a paired, one-tail t-test, t(3) = 0.02.

5 COMPARISON WITH RELATED WORK

This paper is obviously not the first one to propose a manner in
which good differential privacy parameters are chosen. The existing
approaches [1, 12, 17] follow a common pattern. They cast both
the privacy loss and utility loss in a common currency, and then
minimize the total loss. This may indeed be the only tractable way,
if the query is over data with a large number of owners. Our approach
is different, in that we do not attempt to express the sharing risk and
the amount of the noise in the same units. Instead, we present the
Pareto-optimal choices to the data owner, who will be able to decide
himself, which one he prefers the most.

We do express the sharing risk and the amount of noise in cer-
tain units; these or similar units have appeared before in the litera-
ture. The (average) posterior guessing probability, and the guessing
advantage are the same as the conditional min-entropy, and the
min-entropy leakage [23]. These quantities have been studied for
differentially private mechanisms [4] showing relations very simi-
lar to Sec. 2.1. One considers the answering of the query and the
subsequent addition of a noise as a channel from the set of inputs
to the set of outputs, defined by giving for each possible input and
each possible output the probability of getting this output under the
condition that we start from the given input. Hence this approach
naturally applies only to finite sets of possible inputs and outputs.
To contrast this, in this paper, the set of possible outputs for our
noised query is R. Even though our set of possible inputs is discrete
(though not technically finite), our approach is also applicable to
continuous inputs, see Sec. 6.1 for discussion.

In the studies of min-entropy leakage, gain functions have been
introduced, showing how valuable an “actual” guess or result is

for a given “ground truth”. The gain functions are used for both
inputs [23], where they characterize the success level of a guessing
adversary, as well as outputs [4], where they characterize the use-
fulness of the outcome for the analyst. The latter use is obviously
related to the noise level. Alvim et al. [4] give an upper bound for
utility, if the noise is added to the actual answer to the query, and
the gain function for outputs is either Kronecker delta or at least
highly symmetric. In this paper, we are using the same kind of noise,
but our gain functions are different (and over a continuous domain).
In fact, the proposed visualization mechanism could handle a wide
variety of gain functions.

The min-entropy leakage has been computed or upper-bounded
for various systems [8, 13, 22] and their classes. Rather less studied
are the trade-offs between the bounds on min-entropy leakage of
a mechanism, and the utility provided by this mechanism, as well
as the optimization of one of those quantities under the bounds
for the other one. Indeed, for optimization, there needs to be a
(family of) parameters, the values of which affect the performance
of the mechanism. In this paper, these are the parameters of the
truncated Laplace mechanism. Ah-Fat and Huth [2, 3] have studied
the optimization of min-entropy leakage under accuracy constraints.
Their methods compute the “best” noise distribution for the given
prior and the query using heavyweight optimization methods.

6 FUTURE DEVELOPMENTS

6.1 From discrete to continuous data

While [17] allows easy estimation of q for categorical data and
for a uniform prior, we can use the extended results of [15] to do
the same for continuous data and different priors. In the case of
continuous data, it does not make sense to let the attacker guess
a value precisely, and guessing close enough can be bad as well.
Instead, we need to define this sufficiently bad guessing radius as an
additional parameter. While the radius is in general an unbounded
quantity whose goodness is difficult to justify, we could normalize
it, dividing by the maximum possible difference in two values. Such
a relative radius would be a value ranging from 0 to 1, where 0 can
be interpreted as a precise guess, and 1 as guessing nothing. This
would require more inputs from the user, and we already have a lot
of tuning parameters even for the simpler case.

Developing a user interface for privacy of continuous data could
be viewed as a future work. This could be a two-step process,
where the data owner first describes the sensitivity of the data. Such
description basically introduces the gain functions also for inputs.
The mechanism of the description could follow the structure of the
database, building up a metric on it, perhaps using the notions of [16].
The second step would be similar to the procedure in this paper.

6.2 From one to several queries

So far, we have discussed how to quantify data leakage for a single
query. In practice, the same analyst could make several queries
to the same data. Similarly to generalizing a single output to a
histogram, we could generalize the previous results even more, to
multiple queries. For a fixed data disclosure risk, the magnitude of ε
would be inversely proportional to the number of queries, similarly
to the differential privacy sequential composition theorem [14]. To
find a proper ε , we in general would need to know the number of
queries in advance. If the data itself changes with time, then at some
point it may become sufficiently independent from the old data,
which may allow the use of less noise to achieve the same privacy
guarantees. At the same time, if the data changes, then we need
to clearly define the attacker goal for several database snapshots,
e.g., is the attacker targeting a particular snapshot, or should we
consider an attack successful if the private data has been guessed
for at least one of the data snapshots. Details of generalization to
several queries remains out of scope of this work.
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Figure 4: The revised DPP tool.

7 CONCLUSIONS

Differential privacy is a powerful technology for improving privacy
while still sharing data. It may even promote additional data sharing
because data owners can be more confident that the data they share
will not be guessed and exploited.

The difficulty has been that differential privacy mechanisms re-
quire sophisticated, knowledgeable users to understand and set pa-
rameters. The goal of this research was to determine ways to mini-
mize this burden so that even lay users would be able to configure
and apply differential privacy technology in their data sharing prac-
tices.

This minimization required innovative thinking about the differen-
tial privacy mechanism and careful user interface design to employ
that mechanism and procedure. The result is a usable user interface
that requires little training, but that brings the power of differential
privacy to practical use.

While the data owner must still make several subjective assess-
ments about trust, data sensitivity, tolerable risk, and tolerable noise,
the work represents an important step toward making provable data
privacy techniques usable by the public.
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