
Towards Visual Analytics Dashboards for Provenance-driven
Static Application Security Testing

Andreas Schreiber* Tim Sonnekalb† Lynn von Kurnatowski‡

German Aerospace Center (DLR)

Figure 1: Interactive web-based dashboard, which allows to analyze and overview the results of security analyses of the source code
(“Static Analysis Warnings” and “CWE Breakdown”) based on the provenance information of the software development process
(“Entities Timeline”).

ABSTRACT

The use of static code analysis tools for security audits can be time
consuming, as the many existing tools focus on different aspects
and therefore development teams often use several of these tools to
keep code quality high and prevent security issues. Displaying the
results of multiple tools, such as code smells and security warnings,
in a unified interface can help developers get a better overview
and prioritize upcoming work. We present visualizations and a
dashboard that interactively display results from static code analysis
for “interesting” commits during development. With this, we aim to
provide an effective visual analytics tool for code security analysis
results.

Index Terms: Human-centered computing—Visualization—
Visualization application domains—Visual analytics; Security and
privacy—Software and application security—Software security en-
gineering

*e-mail: andreas.schreiber@dlr.de
†e-mail: tim.sonnekalb@dlr.de
‡e-mail: lynn.kurnatowski@dlr.de

1 INTRODUCTION

Static code analysis attempts to predict potential runtime behavior
of software without necessarily executing the software; and without
using any input data [2]. It can help to improve software by finding
weaknesses early in the software development process.

Software development is a highly complex process, in which
usually a team of software developers use numerous tools to develop
a software as error-free as possible in a short time. To understand
the software development process and to be able to make statements
about quality, reliability and trustworthiness of the software product,
one can record and analyze the provenance [14] of the development
process or the produced software artifacts.

To better understand the relationships between the development
process and code quality based on static code analysis, we combine
the two data sources—provenance information and results of static
code analysis tools—and evaluate them using analytical and visual
methods. With the result of such analysis, we aim to assess the
reliability of software systems with high criticality (e.g., space mis-
sion control systems) or the trustworthiness of software with high
societal relevance (e.g., COVID-19 contact tracing apps).

The basic principle of our provenance-driven code security anal-
ysis is to find and select relevant or “interesting” activities in the
development process by making queries on provenance information
and then evaluating the results of static code analysis at the times of
these activities [25, 27].

42

2021 IEEE Symposium on Visualization for Cyber Security (VizSec)

2639-4332/21/$31.00 ©2021 IEEE
DOI 10.1109/VizSec53666.2021.00010

Our main contribution is a first visual dashboard for provenance-
driven security analysis. The use of provenance from all relevant
processes, which are stored in a standardized provenance data model,
distinguishes our approach from other approaches to security analy-
sis and auditing.

We describe our current status towards being able to efficiently
and effectively perform provenance-driven security analysis using
visual methods and interactive dashboards in the following structure:
We briefly describe which methods and tools we use for static code
analysis (Sect. 2). We give some basic information about provenance
and specifically how we record and store provenance of software
development processes (Sect. 3). We show our first visualizations
and a dashboard we are developing to perform interactive visual
analytics for code security analysis (Sect. 4). Finally, we summa-
rize related work, especially on visualization of software artifacts
(Sect. 5).

2 STATIC APPLICATION SECURITY TESTING (SAST)
Static code analysis—or Static Application Security Testing
(SAST)—is a static software testing procedure performed at com-
pilation time to detect certain types of errors in the source code.
Continuous use of this method during the software development
process can reveal early indicators of bugs, code smells, defects, or
vulnerabilities [18]. There are various tools, ranging from linters,
which check the occurrence of textual or syntactical information on
pre-defined code rules, up to full-fledged verification tools, which
formally prove specific criteria in the code. These criteria cover
multiple aspects of source code, including cryptography checks,
taint-related problems (e.g., data and resource leaks), use of hard-
coded credentials or null-pointer errors. Typical obstacles for using
static code analysis tools in practice are the false positive ratio, un-
derstandable and actionable analysis results or the integration in the
development process, making their use by software developers work-
intensive [10]. Usually, it is not enough to use only one tool [20].
With our approach, we want to address parts of these issues, making
these tools more user-friendly.

For our analyses we use several tools for Java; both tools with an
open source license and commercial tools (Table 1).

Table 1: Used static analysis tools.

Static analysis tool Tool category

Flowdroid taint analysis

Xanitizer taint analysis

Infer formal verification

Spotbugs/FindSecBugs coding rules

PMD linter, code smells

OWASP Dependency Check dependencies

3 PROVENANCE IN SOFTWARE ENGINEERING

Provenance describes the people, institutions, entities, and activities
involved in creating, processing, or providing data [16]. Provenance
can be formally expressed in different ways. We use the W3C
specification PROV [15], which among other definitions defines
the provenance data model PROV-DM [16]. The core structure of
PROV-DM relies on the definition of the model class elements
entities, activities, and agents that are involved in producing a piece
of data or artifact and on definitions of relations to relate these class
elements.

For software development processes based on git repositories,
we extract retrospective provenance [13] with data mining on the
repositories; in the case of GitHub and GitLab, this also includes
provenance information from the respective issue trackers and re-
lease systems. The resulting provenance data then contains all
activities (e.g., commits, issues changes, releases), the generated

or changed entities (e.g., source code files or issues), and involved
agents (e.g., developers, testers, or users) along with their relations.
Our tool GITLAB2PROV [3, 24] uses the GitLab API to generate
the provenance information in the form of the text representation
PROV-JSON, which is converted to other formats for further analy-
sis and visualization and imported as a property graph into the graph
database Neo4j (Fig. 2).

4 VISUALIZATION AND INTERACTIVE DASHBOARD

As a case study, we illustrate our approaches to interactive visualiza-
tion with the luca App1. The luca App is a mobile app for providing
data for contact tracing and risk contact notification during a pan-
demic. In Germany, there is a controversial discussion about the app,
which currently makes it a socially relevant software application.
Many IT security experts criticize the app for its security gaps and
data protection shortcomings [17, 28]. Nevertheless, many German
states have bought it and made it mandatory for checking in at restau-
rants and stores. For this reason, the app and its development process
are interesting objects of investigation.

Most of the development of the luca App is done publicly on
GitLab2 in eight repositories. Development began in February 2021,
with 13 people committing changes to git and 42 people contributing
changes to issues as of early June3 [23].

Similar to our approach for the CWA app [27], we conduct the
following steps (Fig. 2):

Step 1: Query the provenance graph using CYPHER4 for a distinct
list of commits.

Step 2: Clean—and optionally filter—the query result to get a clean
list of commit hashes.

Step 3: Query the SAST database [26] for each of the commit hashes
from Step 2.

Step 4: Analyze the results from Step 3. For example, by summariz-
ing, classifying, or visualizing them.

In practice, we use Python to submit the CYPHER query to Neo4j
and store the result in a Pandas DataFrame, on which we do Step 2.
Then, we submit an SQL query on the SAST database using Pandas’
read sql query method for each of the commit hashes, which
returns—for example—the number of warnings reported for changed
files during the related commits.

4.1 SAST Results
The results of SAST tools are presented very differently. Simple
tools simply output the results on the terminal; advanced tools pro-
vide a graphical user interface or are integrated as plug-ins into IDEs.
The granularity and accuracy of the results also varies widely. For
example, there is a difference to the users of the tools whether an
entire function is marked as “insecure” or only a single line. The
precision often depends on the type of verification method used;
a formal verification is more accurate than coding rules by linters
(Sect. 2).

4.1.1 Number of Warnings
The number of warnings issued by the individual tools is shown
as a line chart (Fig. 3). We see that the trend of the individual
traces either remains at about the same level or increases over the
development time. The cumulative number of warnings increases,
which can either mean that the development team does not or rarely
use static analysis tools or that there are many false positives in the
results [22]. Both of these factors suggest using visualization to

1https://www.luca-app.de
2https://gitlab.com/lucaapp
3https://cauldron.io/project/4448
4https://neo4j.com/developer/cypher/

43

Visualization

Static Code Analysis

Provenance Extraction and StorageGitLab-Projects

GitLab Group

git
Repository

1
git

Repository
2

Provenance
PROV-JSONGitLab2PROV

GitLab-API
Token A

prov2neo
Graph

Database
Neo4j

commit hashes
DataFrame

QUERY

CYPHER

SAST
Database
SQLite

QUERY

Charts,
Dashboards,

Graph
Drawings

Python, Plotly,
Dash, NetworkX,

Snapshot

git merge
<commit hash>

Static Code
Analysis

- PMD
- Xanitizer
- Infer
- Spotbugs
- Detect
- Flowdroid

Security
Findings

JSON
File
path

Parse
results

Store results
with commit hashes

commit hashes

SQL

Figure 2: Workflow for the provenance-driven automated code analysis: provenance is extracted from git repositories on GitLab using our tool
GitLab2PROV [24] to PROV-JSON files (one file for each repository) [23] and stored in a Neo4j database using our tool prov2neo [4]. The SAST
database [26] is created by applying the various static code analysis tools (Table 1) to the code at specific commit. The data for the visual analytics
are generated by matching database queries.

Mar 28
2021

Apr 11 Apr 25 May 9 May 23 Jun 6 Jun 20

0

10

20

30

40

50
 SAST Tool

Infer
PMD
Xanitizer
SpotBugs
OWASP Dependency Check

Time (Date)

N
um

be
r o

f w
ar

ni
ng

s

Figure 3: Security-related warnings in our SAST database queried for
the luca App for Android (https://gitlab.com/lucaapp/android).

Luca App Android CWE-374

CWE-327

CWE-798

CWE-325
CWE-259
CWE-1,035

CWE-321

<none>

CWE-545

QrCodeData.java

TraceIdWrapper.java

CryptoManager.java
CoseMessage.java

BaercodeTestResultProvider.java
OpenTestCheckTestResultProvider.java
OpenTestCheckPublicKey.java

CryptoManager.java

RegistrationManager.java

BuildConfig.java

CoseMessage.java
BaercodeTestResultProvider.java
OpenTestCheckTestResultProvider.java
OpenTestCheckPublicKey.java

CryptoManager.java

BuildConfig.java
gradle-wrapper.jar

CryptoManager.java

BaercodeTestResultProvider.java
UserDeletionRequestData.java
UbirchTestResult.java

0

2

4

6

8

10
severity

Figure 4: Visualization of the hierarchy of software projects or a
selected set of snapshots, of the occurred warnings of static code
analysis tools, and the affected files as an Icicle chart.

make the results more accessible and tangible to the developers, or
to make false positives easier to find in the source code.

4.1.2 Hierarchy of Projects, Warnings, and Files

We visualize the hierarchy of selected projects and commits and the
distribution of warnings and files as an Icicle chart [11] (Fig. 4). A
user study has shown that an Icicle chart is preferable to a treemap
because it has better performance for navigation and hierarchy under-
standing [30]. Visually, Icicle charts have a good balance between
readability and compactness [12] and are well suited for identifica-
tion of small values in multivariate data sets [31].

We categorized the SAST results according to the Common Weak-

ness Enumeration5 (CWE) category system for software weaknesses
and vulnerabilities. Unfortunately, not all SAST tools expose the
category or severity of the vulnerabilities, which is why we use the
visualization as an Icicle chart only for a part of the warnings.

In our Icicle chart, we map the CWE classes to the second hierar-
chy level and the affected source code modules to the third hierarchy
level. The size of the individual areas corresponds to the frequency
of the warnings to easily identify warnings that occur often. We map
the severity of the warnings to the color scale to easily see where
serious warnings occur; we use a color scale ranging from light
yellow for minor bugs to dark red for highly critical vulnerabilities6.

Our way of presenting the warnings can be useful for development
teams by either assigning the resolution of the warnings directly to
developers of different experience levels according to the severity
or—what we want to use in the future—assigning it based on the
provenance (i.e., developers who have already worked on the code
module in question).

4.2 Provenance and Events

To visually represent the provenance information we use several
visualizations, such as graph visualizations, metrics visualizations
(e.g., bar charts), time-oriented visualizations (e.g., Sankey charts),
task-oriented and work process-oriented visualizations (e.g., Gantt
charts), or hierarchy-oriented visualizations (e.g., treemap charts).
To provide more interactivity and to be able to provide the visualiza-
tions in the form of a web application, we can compile the individual
visualizations into a dashboard

We visualize the distribution of GitLab events (i.e., PROV Activi-
ties) as a timeline with bars—for example, summed (i.e., re-sampled)
by date ranges such as ’Weekly’ (Fig. 5). Events are further aggre-
gated to events creating new commits, files, and issues (Commit
Resource, File, Issue Resource) and events changing existing com-
mits, files and issues (Commit Resource Version, File Version, Issue
Resource Version). With only few events in February and March of
2021, the most activity takes place in the first three weeks of April.
In the first week, the most amount of issues are generated. By far the
most files are created, as well as changed in the third week of April.
After these three weeks the activity decreases again, with mostly file
version events occurring during the next weeks.

5https://cwe.mitre.org/
6We use the continuous color scale “ylorrd” of Plotly; https://plotly.

com/python/builtin-colorscales

44

Mar 2021 Apr 2021 May 2021 Jun 2021
0

500

1000

1500

2000

2500
 GitLab Event Types

Commit Resource
Commit Resource Version
File
File Version
Issue Resource
Issue Resource Version
Release

Date (weekly bins)

N
um

be
r o

f e
ve

nt
s

Figure 5: Distribution of events over time for all lucaapp repositories.
In the diagram, the events are summarized by week.

4.3 Interactive Dashboard
To increase the usability and interaction possibilities of the de-
scribed visualizations, the visualizations can be integrated into web-
based user interfaces. There are two common approaches for this:
notebook interfaces and dashboards. Notebook interfaces such as
JUPYTER [8, 19] are very well suited for exploratory, flexible data
analysis. Dashboards [6] provide a more rigid but interactive web-
based interface that aims to provide an overview of information
(similar to reports).

We developed a web-based interactive dashboard contains se-
lected visualizations, which are provided with interactive control
elements (Fig. 1).

Since we mainly want to have a fixed view with selected visual-
izations, we decided to develop a dashboard instead of a notebook
interface. The reason for this is that the information shown is initially
intended as a basis for discussions and decision making between de-
velopers and managers, and should therefore not change constantly
in an exploratory manner. Especially for software systems with high
social relevance (such as the luca App used here as an example), the
dashboard should also be accessible to the interested public. The
visualizations integrated into the dashboard were selected after dis-
cussions with software developers from the field of secure software
development. It came out that first of all the temporal course of the
development activities and the warnings are interesting (Fig. 1; left
column), that it should be possible to select a time range here and
that then the type of warnings for this time range should be explored
further (Fig. 1; right column).

We create dashboards based on the Python framework DASH7.
Visualizations created with the Python library PLOTLY can be in-
tegrated into interactive web-based applications; in particular, it is
possible to add interaction elements such as menus, radio buttons,
or input fields (Fig. 1). The individual charts benefit from Plotly’s
fundamental features, such as zoom, responsiveness, compare data
on hover, selection and crossfiltering, and custom controls.

The “Entities Timeline” section refers to all projects, since it
concerns here the development activities over the time; here one
can select the resampling frequency, to represent for example daily,
weekly, or quarterly activity progressions. The “Static Analysis
Warnings” section shows the time history of the warnings, where
you can select the project of interest (i.e., repository). The time axes
of the entities and the warnings are linked; if you select a time range,
the same range is also displayed in the other chart. The “CWE
Breakdown” section contains the Icicle chart with an additional
selection option for the ’root’ (i.e., the first hierarchical level) of the
displayed data. Currently, predefined CYPHER queries are stored
here, which for example provide all commits of a project or only the
commits to files where multiple developers have contributed—the
possibility to add queries without changing the Python code is part
of our future work.

7https://dash.plotly.com/

Currently, the layout and integrated visualizations are defined in
Python code; likewise, the connected databases are fixed.

4.4 Use Case
The current design of our dashboard has two main distinct audiences:
the software development team, including software engineering man-
agers, and people from the public who have an interest in critically
following and assessing the development. Both audiences have an
understanding of how software development processes fundamen-
tally work and are willing to dig into details of the development
process. Both target groups also have an interest in ensuring that the
software is secure and prohibits any attack vectors for misuse of the
processed data.

An intended use case is to find out which potential security weak-
nesses are in the source code of the software and at which times
and through which steps in the development process the number and
severity of the weaknesses has changed.

The approach is that users of the dashboard first look at the
“Entities Timeline” to see how the steps of software development
have progressed over time by selecting the event types that interest
them (e.g., releases or extensive discussions in the Issues). You can
limit the timeline to specific time periods, and the “Static Analysis
Warnings” will adjust accordingly to show the same time period.
For the selected time period, the “CWE Breakdown” then displays
the security weaknesses, which can still be explored visually down
to the level of individual files. To further narrow down the dis-
played security weaknesses, they can be further narrowed down via
CYPHER queries (Sect. 4.3).

5 RELATED WORK

The tool Cesar [1] improved the usability of the SAST tool FIND-
BUGS. The authors evaluated the provided user interface by con-
ducting an user study and improved the visualization by categorizing
the vulnerabilities. They used an interactive treemap showing the
distribution of selected vulnerability categories. The Nessus Vul-
nerability Visualization dashboard [9] processed data of network
vulnerabilities in particular. Their central element is also a treemap
presenting the distribution of network scans.

The focus of the Analizo visualization toolkit [29] is on extensi-
bility and multi-language support. The tool calculates various code
metrics, dependency graphs and a software evolution matrix. The
authors worked on the transparency of information but did not focus
security-related aspects. Similar to that, Source Meter [5] is another
dashboard for code metrics. The dashboard Seconda [21] divides
global and local code metrics in their analysis and illustrations. The
visual analysis of code security by Goodall et al. [7] presents the
results of different SAST tools in form of a treemap.

6 CONCLUSIONS AND FUTURE WORK

We have described how we are developing a first variant of an inter-
active dashboard based on our work on provenance-driven security
analysis. The dashboard contains visualizations of software develop-
ment provenance and static code analysis results. The dashboard’s
interaction capabilities allow the visualizations to be linked, which
helps with interactive visual analytics.

Future work on the dashboard and visualizations is mainly to
improve the visual design and style by developing a consistent visual
concept and evaluating it through user studies. In addition, we are
planning technical enhancements such as a search function, more
cross-filtering capabilities, and higher configurability.

ACKNOWLEDGMENTS

We thank DLR’s student research assistants Claas de Boer (TU
Dresden) for his tool prov2neo and Christopher-Tobias Knaust
(Friedrich Schiller University Jena) for his work on SAST analysis.

45

REFERENCES

[1] H. Assal, S. Chiasson, and R. Biddle. Cesar: Visual representation of

source code vulnerabilities. In 2016 IEEE Symposium on Visualization
for Cyber Security (VizSec), pp. 1–8, 2016. doi: 10.1109/VIZSEC.2016.
7739576

[2] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix.

Using static analysis to find bugs. IEEE Software, 25(5):22–29, 2008.

doi: 10.1109/MS.2008.130
[3] C. de Boer and A. Schreiber. DLR-SC/gitlab2prov: GitLab2PROV 0.5,

June 2021. doi: 10.5281/zenodo.5009043
[4] C. de Boer and A. Schreiber. DLR-SC/prov2neo: prov2neo 1.0, June

2021. doi: 10.5281/zenodo.5013869
[5] R. Ferenc, L. Langó, I. Siket, T. Gyimóthy, and T. Bakota. Source

meter sonar qube plug-in. In 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, pp. 77–82,

2014. doi: 10.1109/SCAM.2014.31
[6] S. Few. Information Dashboard Design: The Effective Visual Commu-

nication of Data. O’Reilly Media, Inc., 2006.

[7] J. R. Goodall, H. Radwan, and L. Halseth. Visual analysis of code

security. In Proceedings of the Seventh International Symposium on
Visualization for Cyber Security, VizSec ’10, pp. 46—-51. Association

for Computing Machinery, New York, NY, USA, 2010. doi: 10.1145/
1850795.1850800

[8] B. E. Granger and F. Perez. Jupyter: Thinking and storytelling with

code and data. Computing in Science & Engineering, 23(02):7–14, mar

2021. doi: 10.1109/MCSE.2021.3059263
[9] L. Harrison, R. Spahn, M. Iannacone, E. Downing, and J. R. Goodall.

Nv: Nessus vulnerability visualization for the web. In Proceedings of
the Ninth International Symposium on Visualization for Cyber Security,

VizSec ’12, pp. 25––32. Association for Computing Machinery, New

York, NY, USA, 2012. doi: 10.1145/2379690.2379694
[10] B. Johnson, Y. Song, E. R. Murphy-Hill, and R. W. Bowdidge. Why

don’t software developers use static analysis tools to find bugs? In

D. Notkin, B. H. C. Cheng, and K. Pohl, eds., 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013, pp. 672–681. IEEE Computer Society, 2013.

doi: 10.1109/ICSE.2013.6606613
[11] J. B. Kruskal and J. M. Landwehr. Icicle plots: Better displays for

hierarchical clustering. The American Statistician, 37(2):162–168,

1983. doi: 10.1080/00031305.1983.10482733
[12] M. J. McGuffin and J.-M. Robert. Quantifying the space-efficiency

of 2d graphical representations of trees. Information Visualization,

9(2):115–140, 2010. doi: 10.1057/ivs.2009.4
[13] T. McPhillips, S. Bowers, K. Belhajjame, and B. Ludäscher. Retrospec-

tive provenance without a runtime provenance recorder. In Proceedings
of the 7th USENIX Conference on Theory and Practice of Provenance,

TaPP’15. USENIX Association, USA, 2015.

[14] L. Moreau, P. Groth, S. Miles, J. Vazquez-Salceda, J. Ibbotson, S. Jiang,

S. Munroe, O. Rana, A. Schreiber, V. Tan, and L. Varga. The prove-

nance of electronic data. Communications of the ACM, 51(4):52–58,

2008. doi: 10.1145/1330311.1330323
[15] L. Moreau and P. T. Groth. Provenance: An Introduction to

PROV. Synthesis Lectures on the Semantic Web: Theory and

Technology. Morgan & Claypool Publishers, 2013. doi: 10.2200/
S00528ED1V01Y201308WBE007

[16] L. Moreau, P. Missier, K. Belhajjame, R. B’Far, J. Cheney, S. Coppens,

S. Cresswell, Y. Gil, P. Groth, G. Klyne, T. Lebo, J. McCusker, S. Miles,

J. Myers, S. Sahoo, and C. Tilmes. PROV-DM: The PROV data model,

2013.

[17] S. Munzert, M. Papoutsi, and H. Nowak. Nutzung von digitalen tools

zur unterstützung von covid-19-kontaktverfolgung: Wie populär sind

corona-warn-app und luca-app in der dritten pandemiewelle? Technical

report, respondi, 2021. (german).

[18] N. Nagappan and T. Ball. Static analysis tools as early indicators of pre-

release defect density. In Proceedings. 27th International Conference
on Software Engineering (ICSE 2005), pp. 580–586. ACM, 2005.

[19] J. P. Ono, J. Freire, and C. T. Silva. Interactive data visualization in

jupyter notebooks. Computing in Science & Engineering, 23(02):99–

106, mar 2021. doi: 10.1109/MCSE.2021.3052619

[20] T. D. Oyetoyan, B. Milosheska, M. Grini, and D. S. Cruzes. Myths and

facts about static application security testing tools: An action research

at telenor digital. In Proceedings of 19th International Conference
on Agile Processes in Software Engineering and Extreme Program-
ming (XP 2018), vol. 314 of Lecture Notes in Business Information
Processing, pp. 86–103. Springer, Porto, Portugal, 2018. doi: 10.1007/
978-3-319-91602-6 6

[21] J. Pérez, R. Deshayes, M. Goeminne, and T. Mens. Seconda: Software

ecosystem analysis dashboard. In 2012 16th European Conference on
Software Maintenance and Reengineering, pp. 527–530, 2012. doi: 10.
1109/CSMR.2012.69

[22] Z. P. Reynolds, A. B. Jayanth, U. Koc, A. A. Porter, R. R. Raje, and J. H.

Hill. Identifying and documenting false positive patterns generated

by static code analysis tools. In 2017 IEEE/ACM 4th International
Workshop on Software Engineering Research and Industrial Practice
(SER IP), pp. 55–61, 2017. doi: 10.1109/SER-IP.2017..20

[23] A. Schreiber. Provenance of luca app development., June 2021. doi:

10.5281/zenodo.5034813
[24] A. Schreiber, C. de Boer, and L. von Kurnatowski. Git-

Lab2PROV—provenance of software projects hosted on GitLab. In

13th International Workshop on Theory and Practice of Provenance
(TaPP 2021). USENIX Association, July 2021.

[25] A. Schreiber, T. Sonnekalb, T. S. Heinze, L. von Kurnatowski, J. M.

Gonzalez-Barahona, and H. Packer. Provenance-based security audits

and its application to COVID-19 contact tracing apps. In Provenance
and Annotation of Data and Processes, vol. 12839 of Lecture Notes in
Computer Science. Springer International Publishing, 2021. (in press).

doi: 10.1007/978-3-030-80960-7 6
[26] T. Sonnekalb. Sast database of repository luca app android, June 2021.

doi: 10.5281/zenodo.5036046
[27] T. Sonnekalb, T. S. Heinze, L. von Kurnatowski, A. Schreiber, J. M.

Gonzalez-Barahona, and H. Packer. Towards automated, provenance-

driven security audit for git-based repositories: Applied to Germany’s

Corona-Warn-App. In Proceedings of the 3rd ACM SIGSOFT Inter-
national Workshop on Software Security from Design to Deployment
(SEAD ’20). ACM, New York, NY, USA, 2020. doi: 10.1145/3416507.
3423190

[28] T. Stadler, W. Lueks, K. Kohls, and C. Troncoso. Preliminary analysis

of potential harms in the luca tracing system. Mar. 2021.

[29] A. Terceiro, J. Costa, J. Miranda, P. Meirelles, L. R. Rios, L. Almeida,

C. Chavez, and F. Kon. Analizo: an extensible multi-language source

code analysis and visualization toolkit. In Brazilian conference on
software: theory and practice (Tools Session), 2010.

[30] L. Woodburn, Y. Yang, and K. Marriott. Interactive visualisation of

hierarchical quantitative data: An evaluation. Aug. 2019. doi: 10.
1109/VISUAL.2019.8933545

[31] B. Zheng and F. Sadlo. On the visualization of hierarchical multivariate

data. In 2021 IEEE 14th Pacific Visualization Symposium (PacificVis),
pp. 136–145, 2021. doi: 10.1109/PacificVis52677.2021.00026

46

