2021 IEEE Symposium on Visualization for Cyber Security (VizSec)

User-Centered Design of Visualizations for Software Vulnerability Reports

Tobias Mertz*
Fraunhofer IGD

Steven Lamarr Reynolds*
Fraunhofer IGD

C 7 T, -)

LB 5 1 6 0 0 0
4 1 0 0 0 0
0 0 12 0 0 0
0 0 3 0 0 0
0 0 15 0 0 0
0 0 . 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 6 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(a) Report Overview

Jorn Kohlhammer §
Fraunhofer IGD
TU Darmstadt

Steven Arzt *
Fraunhofer SIT

Group by:

Severity -

Low

(b) Report Comparison

Figure 1: The Report Overview and Report Comparison visualizations displaying the vulnerabilities of an application. On the
left, a matrix visualization is showing a single report and the distribution of vulnerabilities across relevant attributes such as
severity and origin. The red saturation marks the matrix cells with the largest amount of vulnerabilities. On the right, a unit bar
chart shows the differences in vulnerabilities present in two versions of an application. The red and blue colors of some units
correspond to the individual application versions while the grey color marks vulnerabilities that match between both versions.
Both of these visualizations help users to assess the security status of their applications as described in use case 1 and 2 (see

Sect. 5).

ABSTRACT

Today’s software systems are created by software development pro-
cesses that naturally include mistakes, some of which can be ex-
ploited by attackers and are therefore called vulnerabilities. Auto-
matic software scanners enable developers to analyze their applica-
tions to detect vulnerabilities and alert them of their presence. But
often these reports are hard to understand, include false positives or
overwhelm users due to the sheer number of alerts, since a report
may contain hundreds to thousands of vulnerabilities. Developers
must undergo a process called vulnerability triage to find the relevant
vulnerabilities to fix. This paper presents two interactive visualiza-
tions for developers and security experts to gain an overview of the
security state of their application. Users can see the distribution of
vulnerabilities, find the most relevant ones, and compare differences
between application versions. Our visualization design is inspired
by an initial preliminary study and has been evaluated by domain
experts to investigate the usability and appropriateness.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Visual analytics; Security and

“e-mail: steven.lamarr.reynolds @igd.fraunhofer.de
fe-mail: tobias.mertz@igd.fraunhofer.de

fe-mail: steven.arzt@sit.fraunhofer.de

Se-mail: joern.kohlhammer@igd.fraunhofer.de

2639-4332/21/$31.00 ©2021 IEEE
DOI 10.1109/VizSec53666.2021.00013

68

privacy—Software and application security; Security and privacy—
Systems security— Vulnerability management—Vulnerability scan-
ners

1 INTRODUCTION

Nowadays, everyone is connected through a variety of devices, appli-
cations, and services, which can involuntarily disclose sensitive user
data to third parties due to exploitable bugs or vulnerabilities. Such
leaks may be possible at any time without the user’s knowledge or
approval. For this reason, developers must make sure that the digital
infrastructure we rely on is properly secured and does not contain
critical vulnerabilities. This is a difficult task, as many development
teams lack the experience to prevent vulnerabilities or the budget
to employ the assistance of external security experts during the
software development life cycle. To assist non-experts, automatic
security scanners have been proposed in the past. These scanners can
automatically analyze an application, detect vulnerabilities within
and alert the user to their presence.

Depending on the analysis method used by a particular scanner,
it can be categorized as one of two variants: static analysis or dy-
namic analysis. Static code scanners parse the application to be
analyzed into data structures such as abstract syntax trees or special-
ized intermediate languages. On the other hand, dynamic analysis
tools inspect an application while it is running. This includes input
and output to the user interface or storage devices. One frequently
criticized issue of static analysis tools is the number of false posi-
tives [18]. A false positive occurs if the scanner result is technically
incorrect, for example the scanner claims a data flow that does not

exist. Such false positives may be reported in code that is contained
in the application, but never used at runtime. Note that statically-
linked applications contain entire libraries, while commonly using
only a small fraction of the methods provided by each library.

Irrespective of the analysis method used, the human security
analyst as the user of the analysis tool must inspect each reported
finding. Even if a finding is not technically a false positive, it might
still be irrelevant. The transmission may even be intended, e.g.,
sending the user’s password to the remote backend of the application
provider for verification and for accessing the user’s profile. Further,
not all findings are equally critical. If, for example, the number of
a customer card is accessible to attackers, this is more severe for
payment cards than for mere bonus cards without a payment function.
In the first case, the attacker can steal the user’s card balance. In
the second case, they may only add more bonus points through their
own purchases. This process of ruling out false positives, estimating
the critically of issues, and prioritizing them for further processing
is called vulnerability triage. Despite research efforts [15], it is still
largely a manual effort that requires domain knowledge (consider
the semantics of the customer card in the example) as well as a
technical understanding of the application’s programming language
and platform.

Depending on the scope of the application, the number of detec-
tion’s may vary greatly, and large numbers of vulnerabilities may
overwhelm a human expert [18]. As the time required for the triage
can add up quickly, development teams may opt against using auto-
mated scanners, despite possibly missing out on important security
warnings. To alleviate this issue and reduce the time required for
the triage, scanner output should be presented in an easily digestible
format. As our example with the customer card shows, technical
improvements to the scanner alone are not sufficient, as scanners
lack the knowledge about the application’s precise domain and envi-
ronment.

While research in automatic vulnerability scanning is quite active,
there is a need for further exploration of the usable presentation of
scanner results [19]. Furthermore, most research in this topic is not
backed by user-centered design. User-centered design methods [25]
put the needs of the target user first, establishing the users’ tasks and
subsequent design requirements before beginning development and
iteratively incorporating user feedback throughout.

Within this paper we present a prototypical design of a vulnerabil-
ity visualization tool for software developers and security analysts
based on the output data of an automatic security scanner. Following
a user-centered design approach, we first characterize the problem
by defining the data and users, and then report on a preliminary study
to determine the most important tasks our users need to perform
with the data. From these tasks we derive design requirements for
our tool. Our main contributions are:

 Characterization of the problem of effectively analyzing soft-
ware vulnerability reports, including the data and users’ needs.

 Definition of user tasks and derived design requirements based
on a preliminary study.

* A prototypical implementation of a vulnerability visualization
tool based on the data of an automatic vulnerability scanner.

2 RELATED WORK

The publications presented in this section can be split into two
main categories. In Sect. 2.1, we look at approaches that visualize
vulnerabilities of software systems like in this paper. The related
work contains approaches that are trying to make software systems
more secure. Others try to make the development process itself better
by visualizing vulnerable interactions of systems. In Sect. 2.2, we
look at network security visualizations that show where a network
system has certain vulnerabilities. These approaches also focus on

69

vulnerability visualizations but with the focus of larger networks and
multiple software versions where each can contain several different
vulnerabilities.

2.1 Vulnerability Visualization

Recently, there have been a number of approaches that visualize
vulnerabilities of software systems by using static analysis tools
[3, 15]. Most of these approaches have the goal of software security
and are either graph- or treemap-based. They have begun to apply
visualization to the specific issues of bugs, vulnerabilities and code
quality issues of software systems.

Assal et al. [3], for instance, use a treemap to visualize vulner-
abilities from the FindBugs scanner to show the severity, category
and location of the vulnerabilities in the codebase. They intend to
use it as a collaborative code review tool and not necessarily for
vulnerability triaging. Therefore, it can be hard to grasp the kind of
vulnerabilities that are present. Instead it shows an overview over
the source code, similar to Goodall et al. [15]. Their approach uses
aggregated source code files, which are represented as blocks and
sized according to the number of vulnerabilities.

Ying et al. [33] use a similar treemap with a hierarchy that shows
packages and single source files. Lines of code are highlighted as
well as vulnerabilities based on their severity. Developers should get
an impression of both hierarchical structure of software packages as
well as the severity of the source code defects. While their goal is to
allow software developers to better triage the vulnerability results
from multiple detection tools, it can be hard for users to assess the
security state immediately. Instead, users have to map their internal
representation of the source code structure to the visualization which
can create a knowledge gap in users that are not familiar with this
type of visualization. Additionally, there is a potential limitation of
screen space by showing the actual source code structure.

These approaches are all focused on facilitating the understanding
of the source code structure, a large number of vulnerabilities, or a
high percentage of false positives. They either use the output of a
single software scanner or the results of multiple scanner outputs
combined. Access to source code can sometimes be limited for
security experts analyzing external applications. These approaches
did not use a prelimiary study to determine the needs and goals of the
targeted user groups. Additionally, only Cesar [3] has been evaluated
to determine the approach’s usability. We use a preliminary study
and an expert evaluation to assess the usefulness and usability of our
visualizations. In summary, the goal of our approach is focused on
developers understanding of how secure their software is.

2.2 Network Vulnerability Visualization

In the space of network and cybersecurity, some approaches focus
on visualizations that let users analyze threats in computer networks.
These have a strong focus on showing different security issues that
might be distributed over multiple connected devices.

Angelini et al. [1] use a treemap bar chart that combines data
from vulnerability and network scanners to allow security managers
to inspect spread on networks, understand the network status, and
make decisions with a large number of vulnerabilities. However,
their approach only focuses on network vulnerability analysis, and
cannot support a more detailed analysis of a single system. Harrison
et al. [17] use a treemap to display the network structure and a his-
togram for an overview. Users are able to perform subsequent scans
of the network and to classify vulnerabilities as fixed or non-issues.
They use color to distinguish between this classification. In contrast
to these treemap approaches, we decided to use aggregated matrix
visualizations. They are similar to heatmaps with discrete axes [34].
Matrix visualizations are already used for bio-visualizations like
Biomole by Eggermont et al. [11] or Wu et al. [35], but are not
widely used in cybersecurity.

Dang et al. [10] use a node-link diagram with a bar chart overlay
to visualize multiple scanner outputs of a security scan of a website
with its subpages. Web security testers are able to compare perfor-
mances of tools, spot similarities between webpages and view the
overall vulnerability distribution. Using node-link diagrams would
also be an appropriate choice for this paper. However, due to lack of
emphasis on the connections between vulnerabilities, we decided to
use unit bar charts that are based on the visualization grammar by
Park et al. [26]. It uses a single visual element to represent a vulner-
ability and packs the elements according to the currently selected
category. One advantage of unit visualizations is the one-to-one
correspondence of elements between layouts, which we also employ
by using animated transitions.

Finally, Pham et al. [27] use multiple visualizations like parallel-
coordinates, a timeline and a graph to visualize the relationships of
various dimensions in the Common Vulnerabilities and Exposures
(CVE) catalog [29]. However, while it allows to filter topics of
interest it does not use actual data of an application but rather from
a vulnerability database.

These approaches are useful to analyze websites, vulnerability
databases, or the security status of networks. Due to the focus on
the analysis of multiple systems, most of these approaches have
scalability issues, while only Vulnus [1] features an evaluation with
security experts. To the best of our knowledge, there is no approach
equivalent to our paper that focuses on the in-depth visualization of
a single software vulnerability report.

3 TARGET PROBLEM IN THE DOMAIN
3.1 Background

As described in Sect. 1, there are static and dynamic vulnerability
scanners. Static scanners parse the application from the human-
readable source code or the binary executable, where the source
code is not needed. In addition to the created intermediate rep-
resentations or abstract syntax trees, scanners may compute data
structures such as data flow graphs. Data flows are used to either
identify leaks of privacy-sensitive data to untrusted sinks such as the
Internet, or injections of untrusted data into protected resources such
as databases. Vulnerability checks are usually rule-based, i.e., they
apply a predefined set of rules to the intermediate representation,
abstract syntax tree, or data flow graph. Static analyses reason about
all possible states of the application, which allows for completeness
at the cost of precision.

The monitoring of the running application in dynamic analysis
tools can be achieved in parallel, e.g., by inspecting the network
traffic as it happens, or through the output files generated by the
application. Since the analysis matches observed events against
its vulnerability patterns, it needs not approximate the application
behavior. Dynamic analyses therefore usually do not suffer from
false positives. On the other hand, it can only observe events, and
therefore violations of the security policy, in code paths that were
taken during the sample runs. In practice, code coverage is usually
limited [9]. In total, dynamic analyses favor correctness of the results
over completeness and may suffer from more false negatives.

Our implementation visualizes vulnerabilities detected by the
VUSC [13] code scanner, which is in turn based on Soot [21] and
FlowDroid [2]. VUSC processes binary Android apps, translates
them into the Jimple intermediate representation [5, 31], and builds
a semantic model of the app. This model includes the app compo-
nents such as activities and services, the data flows between these
components, and relevant user interface controls such as password
fields. VUSC evaluates its security analyses against this model. For
example, it checks whether the data from a password field is trans-
mitted to a remote server using an unencrypted protocol and reports
a security violation if this is the case. VUSC is a static analyzer,
i.e., it only analyzes the app’s bytecode without running the app. Its
results are therefore not limited by code coverage or individual runs,

70

but may be over-approximated, i.e., individual results may be false
positives.

Our visualization approach is designed to be compatible with
different scanners, if they output similar data structures as VUSC.
In other words, our visualization is agnostic to the analysis method
used to detect the vulnerabilities. For this reason, we decided to only
utilize the part of VUSC’s output data described in Sect. 3.3 that
is common to other vulnerability scanners as well. This makes the
prototype easily adjustable to take input data from a different source,
which should allow our designs to be integrated into a wider variety
of workflows.

3.2 User Specification

The proposed approach has primarily been designed with developers
and security experts in mind. In this context we describe two relevant
user groups for this approach:

* Software Developers, who develop and maintain software tech-
nologies where possible security problems can occur.

* Security Analysts, who test and analyze software technologies.

Both of these two user groups can be seen as a homogeneous as
they share many characteristics. For one, they both have knowledge
of software creation process and software vulnerabilities. Security
analysts typically have additional security and vulnerability knowl-
edge that can be useful in further vulnerability analysis. We assume
that both user groups are familiar with basic visualization and in-
teraction concepts but might be overwhelmed with more complex
visualization systems. Additionally, the needs of these user groups
align with each other as both use software vulnerability scanners.
In turn, they face similar barriers to not use them, like bad warning
messages, miscommunications or poor usability [28].

3.3 Data Specification

VUSC generates its vulnerability output in a JSON format that can
be accessed via its API. This data contains metadata for the report as
well as a list of vulnerabilities that contains the following attributes:

Severity A severity score that can take the values HIGH, MEDIUM,
LOW, or NONE.

Type The name of the vulnerability type, such as ”CryptoCheck-
Analysis_InsecureCryptoAlgorithm”. The type consists of the
name of the VUSC module that detects this type of vulnerabil-
ity and the name of the type itself, separated by an underscore.
In our tool we use the entire string as an identifier.

Category VUSC discriminates between a total of 20 unique vulner-
ability categories, for example, the InsecureCryptoAlgorithm
vulnerability type belongs to the category Cryptography.

Code Location The location of the vulnerability within the Jimple
code. This includes class name, member function, line number,
and the exact statement.

Description A full text description of the vulnerability.

Mitigation Hint A full text explanation of possible ways to avoid
the vulnerability.

External References References to external sources regarding the
vulnerability. These can be links to external vulnerability
catalogues such as the CWE [22] or to guides that detail the
proper techniques on how to prevent certain vulnerabilities.

To preserve the compatibility with other scanners, our visualiza-
tions only display the attributes above. Furthermore, VUSC can
also output additional vulnerability information in the report. For
example the target URL of a network communication, the individual
code locations traversed in a detected dataflow, or a list of included
libraries. Additionally to the data in VUSC’s report, we utilize two
derived attributes in our designs.

Origin This attribute discriminates between vulnerabilities within
first- and third-party code. It is derived by comparing the
application ID with the class name within the vulnerabilities’
code location. The application ID is a unique identifier for
each Android application and is contained within the report
metadata. Within Android applications, all first-party class
paths are prefixed with the application ID.

Delta The delta attribute is derived from the comparison of the vul-
nerability reports resulting from two separate scans of different
application versions. When comparing two reports, all vul-
nerabilities within are compared pairwise. The delta attribute
then discriminates between vulnerabilities occurring in only
the first report, only the second report, or both reports.

3.4 User Tasks

To categorize and define the user’s tasks and the system requirements
we conducted a preliminary study online with 18 users. Preliminary
studies can help to gather initial goals and tasks of the targeted user
group [7]. Participants were asked multiple questions to determine
their experience, goals and tasks with software scanners. The partic-
ipants can be categorized as 7 software developers and 11 security
experts with experience in security and software scanner technology.
The majority of the participants have a university degree and ranked
themselves high in technical skills.

We asked participants about the most important aspects in a
vulnerability analysis system. We focused on four main aspects:
visual, interactive, attributes in a vulnerability report and attributes
of a single vulnerability.

For each aspect we defined ten items we deemed important. For
example the attributes of single vulnerabilities included the title,
description, category and others. Participants were asked to sort
these items from least to most important. We list the three items
rated highest on average for each of these four main aspects.

For the visual aspects, participants indicated seeing the most
relevant, overview, and which app version introduces new vulnera-
bilities as most important. Regarding interactive aspects, the ability
to search and filter, viewing the position of a vulnerability in the
code and exporting the vulnerabilites to other systems were rated
highest. For a vulnerability report, the participants think that high
severity vulnerabilities, medium severity vulnerabilites and metadata
are most important. For a single vulnerability, the category, title and
description are most important.

The free-text responses also show that an overview and the critical
vulnerabilities are most important. In addition, it was often stated
that it is necessary to verify vulnerabilities and then fix the most
critical vulnerabilities first. Some participants also mention various
processes, such as dividing the task of fixing issues within their team,
discussing them with project managers or using an issue tracking
system to better manage the vulnerabilities.

To construct tasks, we used the highest average rated answers
from the four aspects. Based on these, we identified the following
tasks for both user groups:

T1 Assess the security status of the application
T2 Find the most relevant vulnerabilities
T3 Fix the vulnerabilities in a prioritized way

T4 Compare differences of vulnerabilities between application ver-
sions

71

VUSC Dashboard

we e oy

sf G iR 0@ iid 18

H
®

Figure 2: The dashboard page of our application.

3.5 Design Requirements

Based on the four user tasks we derived the following requirements
for our design solution. These requirements correspond to the tasks
in Sect. 3.4 by the referenced tasks in the parenthesis.

R1 Show an overview of all vulnerabilities (T1, T2)
R2 Show details of a single vulnerability on demand (T1, T3)

R3 Visually discriminate between vulnerabilities by their most rele-
vant attributes (T1, T4)

R4 Let the user search and filter vulnerabilities (T2)

RS Visually discriminate between vulnerabilities of two software
versions (T4)

4 VISUALIZATION AND DESIGN RATIONALE

Our prototype is implemented as a front-end web application in
TypeScript [24], using React [12] and D3.js [6]. Additionally, we
adhere to the guidelines of Material Design [23] and utilize its
components to present the user a familiar interface with recognizable
interactive elements. The application consists of three web pages.

The starting page is a dashboard providing a list of all scanned
applications as well as the functionality to queue new scanning
operations. The user can select one scan report from the list to
inspect, which opens the Report Overview page.

The Report Overview shows an overview of all vulnerabilities
within a single report grouped by their attributes. It allows the user
to filter and see details on demand. Within the Report Overview, the
user can select a second report to compare with the currently viewed
report. This opens the Report Comparison page.

The Report Comparison page shows all vulnerabilities within
the compared reports and classifies each vulnerability depending
on which report it occurs in. Additionally, the Report Comparison
allows the user to filter and group vulnerabilities based on their
attributes as well as view details on demand.

4.1 Dashboard

The dashboard page, as shown in Fig. 2, provides two core function-
alities, the ability for the user to queue application scans, and a list
of all past scans to inspect. To queue new scans the user can drop a
compiled Android application into a dropzone at the top of the page
or click the zone to select a file through the file browser.

The list of reports is displayed below the dropzone. Each list
element contains the header information of the corresponding report.
This header information consists of the application icon, its name,
its Java package name, its version, a quick vulnerability overview,

I - I | = - N | N |

23 3 1 8

Figure 3: Initial matrix visualization showing an overview of how
vulnerabilities are distributed across severity and their origin.

[oo | e] v] e]

LB 0 3 0 0 9

Figure 4: Matrix visualization after the medium severity is selected.

and the time passed since it was scanned. The quick vulnerability
overview displays the number of vulnerabilities within the report
for each severity type. The three vulnerability amounts are rendered
against a colored background that is red for high-severity, orange for
medium-severity, and yellow for low-severity vulnerabilities. Addi-
tionally, to the colored background, textual labels for the severity’s
are placed next to the numbers.

The header of the report list allows the user to sort the list based
on application name, weighted vulnerability count, or scan date. The
weighted vulnerability count weighs vulnerabilities proportionally
to their severity. Furthermore the page provides the functionality
to search the list and to filter the report list by different scan date
ranges.

4.2 Report Overview

The Report Overview page displays the report header for the selected
vulnerability report. This header is displayed in the same way as the
entry within the report list on the dashboard. The space below the
report header is split vertically through the center. The left side of
the page contains the visualization that can be seen in Fig. 3, while
the right side of the page shows a list of all vulnerabilities within the
report.

We chose a matrix visualization to support the ability of users
to get an overview of all vulnerabilities and their distributions. To
bridge the knowledge gap, this visualization resembles a simple
matrix, where the elements are categorized by rows and columns.
Users can simultaneously explore the associations between attributes
and the distribution of vulnerabilities as can be seen in Fig. 3. The
columns correspond to the different severities HIGH, MEDIUM,
LOW and NONE. The rows are the origins — whether the vulnera-
bility is located in first- or third-party code. These attributes were
determined as relevant for the user groups in the preliminary study
(see Sect. 3.4). The grid should allow for better orientation and
comparability between elements. To direct the user’s attention to the
most critical cells, the relative amount of vulnerabilities is encoded
with the red color saturation.

This representation should allow users to perceive distribution
of vulnerabilities in the application and used libraries. To allow
users to view an overview of all vulnerabilities (R1), we show all
vulnerabilities across the grid (see Fig. 6a). Additionally, we show

72

Group by:

Severity v

= Origin: App Category: Communication

Figure 5: Unit visualization showing the comparison between two
reports. Vulnerabilities are filtered by the App origin and the Com-
munication category and grouped by severity.

a list of vulnerabilities next to the visualization (R2). Users can
select a grid element which filters the list of vulnerabilities next to it
and additionally users can filter the vulnerabilities by a search field,
which lets users search and filter vulnerabilities (R4). By selecting
a column or row header element users can expand either into more
detailed attributes to further investigate the vulnerability distribution
(R3). Selecting a severity splits the columns into the individual
vulnerability categories as can be seen in Fig. 4, while selecting an
origin splits the rows into the individual package names within that
origin. The left image in Fig. 1a shows the visualization with the
medium severity column and Lib origin row selected.

4.3 Report Comparison

This page shows a comparison of the vulnerabilities between two
versions of an Android application. The top of the page shows
the report headers of both reports side by side as can be seen in
Fig. 6b. These headers contain the same information and styling
as the display within the report list on the dashboard and on the
Report Overview. However, on this page the headers have colored
backgrounds. The left report has a blue background while the right
report has a red background. These colors are used throughout the
entire page to distinguish between vulnerabilities occurring in either
of the two reports. Vulnerabilities that occur in both reports are
displayed in grey. This color mapping has been explicitly chosen to
cause vulnerabilities that have been introduced in a new application
version to be perceived as especially critical. This is achieved with a
simple heuristic for the report ordering. The report with the higher
version number is always chosen as the right report and therefore its
vulnerabilities are marked in red.

The remainder of the page is split vertically into two halves. The
right side of the page shows some general statistics of the reports,
while the left half shows the visualization of the vulnerabilities. The
matched vulnerabilities from both reports are displayed as a unit bar
chart. According to the ATOM grammar for unit visualizations [26],
the units are first grouped by their severity, then sorted by their delta
attribute and positioned in a packed layout within their severity bins.
Each element is represented by a filled circle colored according to
its delta attribute.

The initial display of all vulnerabilities at the same time shows
an overview of all vulnerabilities (R1). The merged display of both
reports and the coloring corresponding to the delta attribute are

2
7
5
1
2
o

B
0
o
)
2
o

(a) Report Overview

(b) Report Comparison

Figure 6: The two visualizations of our approach. (a) Report Overview gives an overview over a single report. (b) Report Comparison lets
users compare differences of vulnerabilities between two application versions.

designed to discriminate between vulnerabilities of two software
versions (RS). Atop the visualization, a dropdown menu allows
the user to select the grouping attribute. In addition to the default
grouping by severity, also category, origin, or delta can be selected
(R3).

Next to each unit bin, a button with the group name is displayed. A
click on this button applies a filter to the vulnerabilities, disregarding
all vulnerabilities outside of this bin. Furthermore, the user can
enter a search string into a search field above the visualization to
filter the displayed vulnerability data. This allows for a combination
of attribute-based filtering as well as a textual search (R4). The
visualization can be seen with two active filters in Fig. 5.

Hovering over a vulnerability shows a tooltip with the discrimi-
nating vulnerability attributes, clicking a vulnerability replaces the
report statistics on the right side of the page with detailed infor-
mation about the vulnerability. With the initial view, the hovering
tooltip, and the explicit detail view, we achieve three levels of granu-
larity for the vulnerability data. User can control the display of each
of these granularity levels (R2).

The visualization as a unit bar chart was chosen for several rea-
sons. Since the matching of vulnerabilities in binary code is still
a topic of active research [16], we cannot guarantee the correct-
ness of all matches and the user may need to verify them manually.
To be able to verify the vulnerability matches, the user must be
able to inspect, interact with, and track vulnerabilities individually.
Additionally, according to Park et al. [26] unit visualizations are
particularly effective at presenting relative percentages, because the
user is easily able to estimate absolute as well as relative amounts
from the visualization at the same time. We use this concept to
our advantage to quickly communicate two pieces of information
about each bin to the user: the total number of vulnerabilities and
the relative number of vulnerabilities for each delta value.

The main downside of unit visualizations is their scalability. How-
ever, due to our extended filtering and search functionality, the user
can always narrow down their exploration space to a sufficiently
small set that is easily displayable on a regular desktop display.

5 UsE CASEs

We demonstrate the utility of our tool with two use cases that en-
compass the different functionalities of our prototype.

5.1

This use case considers Alice, a hobbyist developer who has never
used a security analysis tool before and tries to assess the security
state of her own application. As the application is already published,

First Time User

73

Alice wants to quickly begin with fixing vulnerabilities, starting with
the most severe ones.

Alice starts her analysis by opening the dashboard and loading
her application for analysis. After the scan is complete, the dash-
board already shows the number of high, medium, and low severity
vulnerabilities within the report. To get more details, Alice selects
the report and is routed to the Report Overview. On this page, she
sees the matrix visualization as described in Sect. 4.2. The columns
of the matrix discriminate between the different severity values, the
rows between the two origins, and the individual cells represent
all vulnerabilities corresponding to the respective row and column.
The color scale of the matrix cells immediately gives an impression
of the relative frequency of vulnerabilities of the different sever-
ity types within her own code as well as third-party libraries. The
numbers in the matrix cells also tell her the absolute amount of
vulnerabilities for each cell. This information allows her to quickly
judge the number of vulnerabilities and their distribution (T1). As
she is mostly interested in high severity vulnerabilities, she selects
the corresponding column, to filter out all vulnerabilities of lower
severity’s. The columns of the matrix now display the vulnerability
categories. Alice wants to start fixing vulnerabilities quickly, so she
decides to fix her own code first before she tries to determine how to
treat vulnerabilities within third-party libraries. For this reason, she
selects the APP row of the matrix. All third-party vulnerabilities are
now filtered out and the rows change to display individual classes
(T2).

The fine-grained matrix gives a complete overview of vulnerabili-
ties within each class and each category. Alice selects the crossing
of category and library with the most vulnerabilities. On the right
side of the page, the complete list of these vulnerabilities is now
displayed, and Alice can compare the individual entries. Within each
entry, she can view the type of vulnerability, the description, advice
for a possible fix, the location within the code, as well as external
references. Alice can also display the intermediate representation of
the corresponding code file. This information helps Alice determine
the vulnerability’s threat potential.

5.2 Regular User

This use case considers Bob, a developer working as part of a larger
team that is using automated security scans as part of their devel-
opment cycle. Bob has just committed changes to a new version of
the app and wants to see his progress in fixing the existing security
vulnerabilities but also check if he created new vulnerabilities by
accident.

Bob starts his analysis the same way Alice does in the first use

case. On the Report Overview page, Bob selects the Compare with
another app report option. Within the popup window, all previous
versions of the app are listed. To only include his most recent
changes, Bob selects the previous version of the app to compare to
and is routed to the Report Comparison page.

Within the Report Comparison, Bob can see both selected reports
and identify the corresponding vulnerabilities by their colors (T4).
Since the blue elements correspond to vulnerabilities that only exist
in the report of the older application version and grey elements
to vulnerabilities within both reports, Bob can easily estimate his
progress by comparing the number of blue elements to the total
number of blue and grey elements. The bar chart-like arrangement of
the visual elements enables a rather quick relative estimation of these
numbers. To judge whether new vulnerabilities have been created
through his changes, Bob simply has to look for red elements. If
there are new vulnerabilities, Bob can easily determine if the security
state of his application has improved or worsened by comparing the
number of vulnerabilities displayed in red with the blue ones (T1).

Additionally, all elements are grouped by severity by default.
Since high-severity vulnerabilities are the most important vulnera-
bilities to fix, this grouping allows Bob not only to check his total
progress, but also the progress within the individual severity classes.

Because Bob cooperates with multiple other developers on the
same application, Bob may not need to see and investigate all vulner-
abilities. Let’s say Bob’s area of responsibility is the implementation
of network communication. For this reason he wants to focus on
investigating the vulnerabilities within the corresponding category
first. Bob can group all vulnerabilities by their category instead of
their severity, and select the communication category as a filter. This
hides all other vulnerabilities. Similarly, Bob may want to exclude
vulnerabilities within third-party libraries. To achieve this, he can
change grouping to the origin attribute and select the APP group.
Bob can also use the text search if he is looking for a more specific
set of vulnerabilities. This allows Bob to narrow down the set of
vulnerabilities to the ones he is most interested in (T?2).

However, since the matching of vulnerabilities between two re-
ports is not trivial, some matches may not be recognized as such
by the comparison algorithm. This means that Bob may need to
compare individual blue elements with red elements to refine his
progress estimation. To facilitate this triage process, Bob can change
the vulnerability grouping and apply additional filters. Since most
attributes of a vulnerability should remain the same between appli-
cation versions, applying additional filters helps reduce the amount
of vulnerabilities to investigate to the actually plausible matches. By
hovering over a vulnerability and viewing the tooltips, Bob can see
if two contain the same information. If Bob suspects a match, he can
click on the vulnerabilities to view their full details. Using this infor-
mation as well as the ability to open the intermediate representation
of the code location within a pop-up window, Bob can determine
whether the two vulnerabilities are actually the same.

After verifying which of the red visual elements actually corre-
spond to new vulnerabilities, Bob can include these vulnerabilities in
his task list and continue making the application more secure (T3).

6 EVALUATION

We developed our visualizations with an iterative design process
including feedback from several visualization experts from our team
in each iteration. Some alternative designs were developed and
later discarded in favor of our current design during this process.
Additionally, we performed a qualitative evaluation of our current
design with experts from the security domain. Within this section,
we briefly present alternative designs, present the gathered feedback
and highlight the advantages and disadvantages in comparison with
our current designs.

74

HIGH MEDIUM

APP)
o
HIGH MEDIUM Low
) eccoeoe
o))) 0000000000
06000000008
Lies 5 (XX X) (XX
@ () 0 (X0
0 00 200 oo
(Y Y DX 0
& Do () ()
XX XX)

Figure 7: First iteration of the report overview visualization. Simi-
larly to the matrix visualization, vulnerabilities are grouped horizon-
tally by their severity and vertically by their origin.

6.1

The Report Overview was initially designed as a unit visualization,
as can be seen in Fig. 7. Similarly to the matrix visualization, this
unit visualization is also split into several bins of equal sizes. Vul-
nerabilities are grouped horizontally by their severity and vertically
by their origin and placed into the corresponding bin according to a
packed circular layout. One of the primary reasons why this visual-
ization type was chosen was the ability to interact with individual
vulnerabilities directly and track them through transitions. However,
the main requirement for this visualization is the presentation of
an overview over the application’s security state. The details for
individual vulnerabilities are only required on demand, after the user
has already determined which smaller subset of vulnerabilities they
want to focus on.

Due to the limited amount of space for each grouping, we decided
to scale the vulnerabilities to fit within the available space for each
group. When using the same size for all units, large variances in
group size could cause some groups to appear small. If the absolute
number of vulnerabilities within a group was large, the individual
units were also too small to be properly usable. Since vulnerabilities
with high severity are usually less frequent than those of lower sever-
ity’s, the group of high severity vulnerabilities was often one of the
groups that appeared small. This was a very much unintended side
effect of our scale calculation. As our preliminary survey showed,
very severe vulnerabilities should be the ones most prominently
visible. The unit visualization with equally sized vulnerabilities was
not able to achieve this.

Using different unit sizes for the individual groups is also not
the ideal solution. Sizes can be computed such that vulnerabilities
always fit their bin. This way all groups appear to be filled, but
the different unit sizes imply different levels of importance. This
is an implication that may not necessarily be true. Groups of low
importance may also contain few vulnerabilities, which would cause
their units to be displayed with a greater size.

The Report Comparison page was initially designed with circular
groupings, as can be seen in Fig. 8. The groups are further distin-
guished by a colored border, whose color mapping is displayed in a
legend next to the visualization. The attribute serving as basis for
the grouping can be selected from a drop-down menu. The vulnera-
bilities are represented by individual visual units and displayed as
filled circles, colored according to their delta attribute. However the
identification of the individual groups is unnecessarily difficult, as
the groups have to be manually identified by looking up the border
color in the legend. Additionally, circular layouts are very space
inefficient, which can be problematic if the comparison contains
many vulnerabilities.

For both visualizations, we used circular packed layouts. These

First Iteration

O Security

O Database
Q Network

. General

O Cryptography

O Logging

Figure 8: First iteration of the report comparison visualization. Vul-
nerabilities are grouped by their category and color-coded according
to their delta. The category groups are surrounded by a colored
circular border and can be identified in the accompanying legend.

layouts caused the overall visualizations to be very unstable during
change transitions. This made the tracking of individual elements
nearly impossible, which voided one of the main advantages of the
unit visualization.

Furthermore, we used color to discriminate between vulnerability
categories. Since VUSC outputs vulnerabilities in 20 categories,
these colors were naturally difficult to distinguish. For this reason,
we categorized the vulnerabilities with two hierarchy levels. The
lowest level consisted of the 20 original categories output by VUSC,
while the higher level contained 6 coarser categories that were cre-
ated by grouping those lower level categories that were semantically
similar. Then we applied a hierarchical coloring to the category
tree, such that categories within the same coarse category group
are colored similarly. Users can switch between the display of the
original 20 categories or the reduced set.

However, we still found the colorization to be confusing. Multiple
different elements on the page are colored with different color scales,
as there is a color scale for severity, one for categories, and one
for the delta attribute. Additionally, these scales may overlap in
colors. So different interactive elements on the screen may have the
same color, but that color indicates different information. During
the second design iteration of both pages, the layout changed such
that the categories are already sufficiently distinguishable by their
positions and textual labels. Therefore, we decided that category
colors were no longer necessary.

6.2 Qualitative Evaluation

The current prototype version was evaluated again with domain
experts to help evaluate the current visualization techniques [30].
We interviewed 4 participants which is enough to detect 80% of
usability problems [32]. At first we explained the visualizations
and interactions, and showed possible use cases (see Sect. 5). Then
the experts were able to freely try the visualization themselves with
vulnerabilities from a real application. During this trial period, we
encouraged the experts to voice their thoughts and any questions
that come up. Afterwards, we had an informal discussion about

75

| Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QIO | Total
Pl |10 10 10 75 10 10 10 75 7.5 7.5 | 90
P2 |75 10 10 10 75 10 10 10 10 10 | 95
P3 |0 10 10 10 10 7.5 75 10 10 10 | 85
P4 |75 10 10 10 75 10 10 10 10 10 | 95
Avg | 63 10 10 9.4 88 94 94 94 94 94 | 915

Table 1: Results of System Usability Scale [8] with domain experts.
The tool achieved a score of 90 out of 100. Especially if the system
is unnecessarily complex (Q2) and easy to use (Q3) were rated
best possible by all participants, while interest to use this system
frequently (Q1) was considerably lower.

possible improvements and if our design requirements were achieved.
Finally, we asked them to fill out a system usability scale (SUS)
questionnaire, which is composed of ten questions on a Likert-
scale [8].

We recorded all of the user’s questions and comments, as well
as any noticeable patterns of behavior, such as confusion or diffi-
culty finding certain functionalities. We categorized repeated ideas,
feedback and comments from the transcript of the think-aloud phase
and the discussion based on the questions for Evaluating User Ex-
perience by Lam et al. [20]. The evaluation was conducted online
with video calls and screen sharing. By remotely letting users take
control of the screen we could view the interactions of participants
during the trial.

6.2.1

Four external domain experts from the cybersecurity domain took
part in our evaluation. Three participants were security researchers
while one was a penetration tester. Our transcript of the think-aloud
phase and the following discussions contained 112 entries. We dis-
carded three of our observations because we believe they were due
to the virtual setting of the study. The remaining notes were cate-
gorized into the 6 categories useful feature, missing feature, feature
improvement, limitation, understandability, and potential. The first
five of these categories were derived from the individual questions
for evaluating user experience, proposed by Lam et al. [20]. We
included the potential category in addition to the derived categories
to encompass the domain experts’ judgement whether further de-
velopment of this prototype can yield meaningful improvements to
developers’ workflows.

The useful feature category is the largest category with 23 notes
about the Report Overview and 19 notes about the Report Compari-
son. The category contains all user remarks regarding the usefulness
of a certain feature of our tool. Overall, the comments in this cat-
egory were rather positive. The most frequent comment on both
visualizations was that they do provide a good overview of the
distribution of vulnerabilities within the app and effective filtering
functionality. Some comments also reinforced the results of our
preliminary study, saying that high severity vulnerabilities within
the app are most important, which is why the attributes’ severity and
origin are the most important.

Conversely, the missing feature category contains all mentions
of additional features that the domain experts would like to see in
our tool. This category contains 11 notes that are mostly applicable
to both visualizations. Most of these comments were wishes for
additional information to be included in the visualization and the
vulnerability details. Furthermore, some of the domain experts asked
for additional vulnerability management features, such as flagging
or ignoring certain vulnerabilities as well as the ability to correct the
vulnerability matches within the Report Comparison.

Next, we grouped all statements that suggested ways to improve
the already existing functionality as feature improvement. This

Results

category contains 9 statements concerning the Report Overview and
11 possible improvements of the Report Comparison. The most
common criticism within this category is on the use of color in both
visualizations. Some experts also wished the removal of filters in
the Report Overview was more intuitive. Another suggestion is to
allow the Report Comparison to filter by individual class names like
it is possible in the Report Overview.

Only three limitations of the current prototype were observed by
the experts. The limitation category contains wishes for a better
vulnerability matching in the Report Comparison and the display
of source code instead of the Jimple intermediate representation.
However, the latter is a limitation on the data output by VUSC and
independent of our visualization prototype. Additionally, one expert
remarked that the Report Comparison may not work well on small
displays, such as mobile phones.

As stated within the description of our method, we logged all
moments of noticeable confusion of the experts. These moments
as well as comments expressing that an expert had trouble under-
standing something were grouped in the understandability category.
This category contains 9 notes about the Report Overview, 15 notes
about the Report Comparison, as well as 2 notes pertaining to both
visualizations. Mirroring the results of category feature improve-
ment, the domain experts had the most trouble understanding the
visual encoding within both visualizations. They criticize the use of
the red color scale in the Report Overview. We initially designed
the visualization with a red saturation to indicate the element with
the highest amount of vulnerabilities. As their mental model asso-
ciates this color with severity, it failed to convey the meaning. This
conflict can be amended by using a different hue. In the Report
Comparison, the users were required to look at the header of the
page to link the colors to both reports. Since the report headers are
not located right next to the corresponding data points and the grey
color is not explained elsewhere, this mapping took the experts a
couple of seconds to process. Although, they noted that the color
choice makes sense after having figured out its meaning. The experts
also had some trouble removing filters and vulnerability selection
in both visualizations. Finally, none of the users tried to change the
vulnerability grouping within the Report Comparison after already
applying a filter. Subsequently, they also did not find out that it is
possible to apply multiple filters at the same time.

The last category contains all the domain experts’ conclusions
regarding the potential usefulness of the prototype. This category
contains 8 notes. Overall, the potential was envisioned rather pos-
itively. Multiple experts stated that the prototype is useful and
accelerates the process of extracting information from the vulnera-
bility report. The three security researchers saw a lot of potential
in the Report Comparison especially, while the penetration tester
preferred the Report Overview.

The SUS questionnaire resulted in the ratings presented in Ta-
ble 1 with an average rating of 91.5. This implies a very high user
satisfaction.

7 DiscussION

‘We have used a preliminary study to understand the specific needs
and goals of the user groups. This process helped us define the
goals and tasks based on these actual needs. We used this feedback
to prioritize visual and interactive elements, such as severity for
vulnerabilities. In addition, free-text responses from participants
confirmed these aspects. We further iterated on our initial design
that was focused on unit visualization by internal feedback. We
believe that by using a preliminary study in our design process we
were able to create an effective visualization.

During the expert evaluation, we have gained several insights
into the understanding of vulnerabilities by developers and security
experts. The current design iteration and prototype implementation
received a lot of positive feedback. Participants gave consideration

76

on how they liked the design and whether they imagined that other
developers would enjoy using it too. Additionally, they wanted more
information on the matching algorithm for the Report Comparison.
This is due to the data being used by the static scanner, which is
not optimized to deobfuscate compiled applications. The matching
algorithm for the Report Comparison could have further improve-
ments, but this space is also part of ongoing research [16]. Another
part of the design that participants criticized was the lack of options
for further analysis. Participants wanted more options to filter and
search both visualizations. While they expressed this need they did
not use multiple features at the same time in the Report Comparison.
However, this could be due to missing usability for this interaction.

We also realized that the domain experts have different needs due
to their backgrounds. One participant in our expert evaluation had a
background in penetration testing, while the others had their back-
ground in security research. While the participant with expierence
in penetration testing liked the Report Overview visualization the
others preferred the Report Comparison. We think that this is due
to different goals while analyzing a vulnerability report. Security
experts often have an ongoing process of analyzing an application
and therefore are more interested in changes over time and between
versions. This is also reflected in the use cases in Sect. 5.

The quantitative results of the SUS suggests that our prototype
provides Best Imaginable usability [4]. It should be noted that
these results might be biased due to the Moderator Acceptance Bias
and Social Desirability Bias [14] in the evaluation. The individual
scores are shown in Table 1. We noticed that our prototype has best
possible ratings in unnecessarily complex (Q2) and easy to use (Q3).
In contrast, the worst rating is in using the tool again (Q1) due to
one particularly low score. Even if the design requirements did not
directly specify the need for usability, we think that the feedback
confirms that the system is easy to understand and use. Overall, our
system should help users to better understand and in turn increase
the security status of their application.

8 CONCLUSION

In this paper, we have presented a new interactive visualization
system for developers to analyze vulnerability reports. We summa-
rized the related work in vulnerability visualization and network
vulnerability visualization. We characterized the problem domain,
including data and users’ needs by performing a preliminary study.
We derived four specific tasks for users of vulnerability scanners and
described our additional design requirements and infrastructure in
detail. We further introduced two visualizations and demonstrated
the usefulness with two use cases. An evaluation with domain ex-
perts gave additional feedback that we discussed and will use in our
future work.

For the future development of our tool, we will continue the
iterative design process by addressing the feedback gathered from
our qualitative evaluation. Furthermore, we are already working on
extending our solution to incorporate more of the security analysts’
needs as well as those of potential end users. To that end, we also
want to implement the integration of data from additional open-
source scanners.

In spirit of the iterative design process, we also want to perform a
more thorough quantitative evaluation to gain additional feedback
and verify the design decisions that have already been made. Finally,
we are considering the improvement of our vulnerability matching
algorithm. This could yield a more accurate delta estimation, which
would improve the comparison performance of our tool.

ACKNOWLEDGMENTS

This research work has been funded by the German Federal Ministry
of Education and Research and the Hessen State Ministry for Higher
Education, Research and the Arts within their joint support of the
National Research Center for Applied Cybersecurity ATHENE.

REFERENCES

(1]

[10]

[11]

[12]

[13]

[14]

[15]

M. Angelini, G. Blasilli, T. Catarci, S. Lenti, and G. Santucci.
Vulnus: Visual vulnerability analysis for network security.
IEEE transactions on visualization and computer graphics,
25(1):183-192, 2018.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices, 49(6):259—
269, 2014.

H. Assal, S. Chiasson, and R. Biddle. Cesar: Visual represen-
tation of source code vulnerabilities. In 2016 IEEE Symposium
on Visualization for Cyber Security (VizSec), pp. 1-8. IEEE,
2016.

A. Bangor, P. Kortum, and J. Miller. Determining what indi-
vidual sus scores mean: Adding an adjective rating scale. J.
Usability Studies, 4(3):114-123, May 2009.

A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Dexpler:
converting android dalvik bytecode to jimple for static analysis
with soot. In Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program analysis, pp.
27-38, 2012.

M. Bostock, V. Ogievetsky, and J. Heer. D? data-driven doc-
uments. [EEE transactions on visualization and computer
graphics, 17(12):2301-2309, 2011.

M. Brehmer, S. Carpendale, B. Lee, and M. Tory. Pre-design
empiricism for information visualization: Scenarios, meth-
ods, and challenges. In Proceedings of the Fifth Workshop
on Beyond Time and Errors: Novel Evaluation Methods for
Visualization, pp. 147-151, 2014.

J. Brooke. Sus: a “quick and dirty’usability. Usability evalua-
tion in industry, 189, 1996.

S. R. Choudhary, A. Gorla, and A. Orso. Automated test input
generation for android: Are we there yet? (e). In 2015 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 429-440, 2015. doi: 10.1109/ASE.
2015.89

T. T. Dang and T. K. Dang. An extensible framework for web
application vulnerabilities visualization and analysis. In Inter-
national Conference on Future Data and Security Engineering,
pp- 86-96. Springer, 2014.

M. Eggermont, S. Knudsen, R. Pusch, and S. Carpendale.
Biomole: Visualizing functional co-occurrence. In /EEE VIS,
pp. 20-25, 2019.

Facebook Inc. React.js. https://reactjs.org/. Accessed:
2021.

Fraunhofer SIT. VUSC - Der Codescanner. https://www.
sit.fraunhofer.de/vusc/. Accessed: 2021.

A. Furnham. Response bias, social desirability and dissimu-
lation. Personality and individual differences, 7(3):385-400,
1986.

J. R. Goodall, H. Radwan, and L. Halseth. Visual analysis of
code security. In Proceedings of the seventh international sym-
posium on visualization for cyber security, pp. 46-51, 2010.

77

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

I. U. Haq and J. Caballero. A survey of binary code similarity.
ACM Comput. Surv., 54(3), Apr. 2021. doi: 10.1145/3446371

L. Harrison, R. Spahn, M. Iannacone, E. Downing, and J. R.
Goodall. Nv: Nessus vulnerability visualization for the web.
In Proceedings of the ninth international symposium on visual-
ization for cyber security, pp. 25-32, 2012.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why
don’t software developers use static analysis tools to find
bugs? In 2013 35th International Conference on Software
Engineering (ICSE), pp. 672681, 2013. doi: 10.1109/ICSE.
2013.6606613

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why
don’t software developers use static analysis tools to find bugs?
In 2013 35th International Conference on Software Engineer-
ing (ICSE), pp. 672-681. IEEE, 2013.

H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpen-
dale. Empirical studies in information visualization: Seven
scenarios. IEEE transactions on visualization and computer
graphics, 18(9):1520-1536, 2011.

P. Lam, E. Bodden, O. Lhotdak, and L. Hendren. The soot
framework for java program analysis: a retrospective. In Cetus
Users and Compiler Infastructure Workshop (CETUS 2011),
vol. 15, 2011.

R. Martin. Common weakness enumeration (cwe vl1. 8). Na-
tional Cyber Security Division, US Dept. Of Homeland Secu-
rity, 2010.

Material-UI. React components that implement Google’s Mate-
rial Design. https://material-ui.com/. Accessed: 2021.

Microsoft Corporation. TypeScript. https://www.

typescriptlang.org/. Accessed: 2021.

D. A. Norman and S. W. Draper. User Centered System De-
sign; New Perspectives on Human-Computer Interaction. L.
Erlbaum Associates Inc., USA, 1986.

D. Park, S. M. Drucker, R. Fernandez, and N. Elmqvist. Atom:
A grammar for unit visualizations. IEEE Transactions on Visu-
alization and Computer Graphics, 24(12):3032-3043, 2018.
doi: 10.1109/TVCG.2017.2785807

V. Pham and T. Dang. Cvexplorer: Multidimensional visual-
ization for common vulnerabilities and exposures. In 2018
IEEE International Conference on Big Data (Big Data), pp.
1296-1301. IEEE, 2018.

J. Smith. Supporting effective strategies for resolving vul-
nerabilities reported by static analysis tools. In 2018 IEEE
Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC), pp. 267-268. IEEE, 2018.

The MITRE Corporation. Common Vulnerabilities and Expo-
sures. https://cve.mitre.org/. Accessed: 2021.

M. Tory and T. Moller. Evaluating visualizations: do expert
reviews work? [EEE computer graphics and applications,
25(5):8-11, 2005.

R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java
bytecode for analyses and transformations. 1998.

R. A. Virzi. Refining the test phase of usability evaluation:
How many subjects is enough? Human factors, 34(4):457-468,
1992.

[33] Y. Wan, C. Q. Tan, Z. G. Wang, G. Q. Wang, and X. J. Hong.
An effective visual system for static analysis of source code. In
Advanced Materials Research, vol. 433, pp. 5453-5458. Trans
Tech Publ, 2012.

[34] L. Wilkinson and M. Friendly. The history of the cluster heat
map. The American Statistician, 63(2):179-184, 2009.

[35] H.-M. Wu, S. Tzeng, and C.-h. Chen. Matrix visualization. In
Handbook of data visualization, pp. 681-708. Springer, 2008.

78

