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Figure 1: Enabling the visual analysis of COVID-19 ensemble forecast models with COVID-19 EnsembleVis. (a) We visualize the
average error of the ensemble model at the county level. (b) Temporal distribution of the error of individual models, aggregated over
all counties. (c) Distribution of errors over county population. Using the interface, we can notice that, in Week 42, the majority of the
outlier counties are located in Texas (highlighted points in (c) and highlighted counties in (a)).

ABSTRACT

The spread of the SARS-CoV-2 virus and its contagious disease
COVID-19 has impacted countries to an extent not seen since the
1918 flu pandemic. In the absence of an effective vaccine and as
cases surge worldwide, governments were forced to adopt measures
to inhibit the spread of the disease. To reduce its impact and to
guide policy planning and resource allocation, researchers have been
developing models to forecast the infectious disease. Ensemble
models, by aggregating forecasts from multiple individual models,
have been shown to be a useful forecasting method. However, these
models can still provide less-than-adequate forecasts at higher spa-
tial resolutions. In this paper, we built COVID-19 EnsembleVis, a
web-based interactive visual interface that allows the assessment of
the errors of ensembles and individual models by enabling users
to effortlessly navigate through and compare the outputs of models
considering their space and time dimensions. COVID-19 Ensem-
bleVis enables a more detailed understanding of uncertainty and the
range of forecasts generated by individual models.
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1 INTRODUCTION

The COVID-19 pandemic has upended the world over the past year,
in a health crisis not seen since the 1918 flu pandemic. As of July
2021, the disease has caused the death of more than 4 million peo-
ple worldwide, 600,000 in the US alone. While waiting for an
effective vaccine amidst the surging cases worldwide, governments
adopted measures to inhibit the spread of the disease. Despite these
efforts, waves of COVID-19 infection with varying characteristics,
continued to ravage communities [24], highlighting the necessity
to understand the spatio-temporal complexity of the problem [25].
Forecast models are among the tools available to public health ex-
perts and policymakers to predict likely pandemic outcomes (i.e.,
number of cases, deaths) and prepare for different scenarios. In
the past year, several models have been proposed by a myriad of
experts, and using vastly different assumptions, methodologies, pa-
rameters and data sources. As a result, models produce a range of
sometimes radically different forecasts, especially at higher spatial
resolutions, limiting their use by decision makers and the public in
general. In order to address this problem, more recently, ensemble
models have been proposed for COVID-19 forecasts, with promising
results [35, 44].

Ensemble models are usually created by combining different
individual models (i.e., members), either through simple weighted
averages or more sophisticated approaches, such as multiple linear
regression and principal component regression [27]. Rather than
relying on individual models, a set of forecasts in an ensemble
indicates a larger range of possible future scenarios. Because of their
high prediction accuracy, ensemble approaches are widely used in
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Table 1: Overview of the individual models considered by our tool.

Model name Team Data sources

CEID-Walk [11] U. of Georgia JHU case and death counts
CMU-TimeSeries [10] CMU JHU case and death counts

CU-Select [20] Columbia U. JHU case and death counts, hospitalizations and ICU admissions, mobility
FAIR-NRAR [8] Facebook NY Times case counts, weather, mobility

IEM MED-CovidProject [9] IEM MED JHU case counts
IowaStateLW-STEM [3] Iowa State NY Times, Health department, county-level infected and death cases

JHUAPL-Bucky [14] JHU JHU, hospitalizations, mobility
JHU IDD-CovidSP [19] JHU JHU, US Census (population, mobility)

JHU UNC GAS-StatMechPool [13] JHU Demographic parameters, weather, mobility
LANL-GrowthRate [16] Los Alamos HHU, population

LNQ-ens1 [17] SAS JHU
OneQuietNight-ML [4] - JHU, mobility

PandemicCentral-USCounty [18] Pandemic Central JHU case and death cases, US Census, CCVI, mobility
UCLA-SuEIR [21] UCLA JHU case and death cases, hospitalizations

UMass-MechBayes [1] UMass-Amherst JHU
UpstateSU-GRU [6] SUNY JHU, US Census, health surveys, behavioral risk factors
UVA-Ensemble [2] U. of Virginia Mobility

different domains, such as weather and climate [36], economy [47],
and more recently in forecasting infectious diseases [35, 38]. Given
the increasing importance of ensembles for COVID-19 forecasting,
it is important to evaluate and compare ensemble members through
space and time, as well as identifying potential limitations and
guiding the improvement of both ensemble and individual models.

In this paper, we propose COVID-19 EnsembleVis, an open-
source1 web-based interface to enable the visual analysis of the
county-level differences between forecast and ground truth data of
ensemble models and their members. We focus on fine geographic
level data since it can reveal staggering disparities among different
locations that were missed at coarser aggregation levels [22, 33],
which signifies the need for even more precise predictions. By en-
abling effortless navigation through ensemble members and allowing
the evaluation and comparison of multiple models, our proposed
approach can be used to obtain a more detailed understanding of
uncertainty and the range of forecasts generated by individual mod-
els, and highlight limitations of the models at the county level. This
last point is a particularly important one, given the impact of the
pandemic on different communities at different levels throughout
the past year. Since COVID-19 ensemble models have only recently
been shown to be effective [44], our work offers the first steps in
eliciting some of the particular challenges related to the visualiza-
tion and analysis of ensemble models of COVID-19 forecasts. We
focus our efforts on the visualization of the outputs of ensembles
and individual models. While our approach addresses some of these
challenges, we believe that our work goes toward creating the neces-
sary connections between ensemble visualization (a popular topic,
especially in the weather domain) and pandemic ensemble models.

2 RELATED WORK

In this section, we briefly survey existing literature related to COVID-
19 forecasting, a topic that has received significant attention recently
due to the different ways the pandemic has impacted the world.
Given how widely used ensemble models are in other domains, we
also survey ensemble visualization techniques and systems.

COVID-19 forecasting. Over the past year, different research
groups from academia and industry have been developing models
to forecast COVID-19 cases and deaths. In the US alone, over 50
teams have made their forecasts publicly available, according to the
COVID-19 Forecast Hub [5]. The majority of these models forecast
both cases and deaths at a state level, while a smaller number fore-
casts cases at the county level, (and one recent model also providing
county-level fatalities [39]).

1https://github.com/uic-evl/covid-19-ensemblevis

The vast majority of the models rely on the Johns Hopkins Coron-
avirus Resource Center confirmed case and death data [15], while a
subset uses mobility [2, 4, 8, 13, 14, 18–20], weather [8, 13], US cen-
sus [6,18,19], or hospitalization data [16,20,21]. Table 1 presents an
overview of individual models. In April 2020, an initiative led by the
Reich Lab at the University of Massachusetts started to collect and
combine forecasts for US spatial units (states and counties), mak-
ing the resulting ensemble data publicly available each week. This
initiative was in close collaboration with the US Center for Disease
Control and Prevention (CDC), who also release weekly ensemble
forecasts as a real-time tool to help guide policy and planning [7].

Several interfaces and dashboards have also been made available
with the goal of visualizing ensemble members [3, 9, 16, 18, 21], but
they are restricted to individual members or lower spatial resolutions.
COVID-19 EnsembleVis is the first visual interface that allows users
to compare and analyze ensembles and individual members at the
county level.

Ensemble visualization. Ensemble data is common in several
domains, such as biomedical images [34], network security [32],
climate simulations [40], machine learning [46], and due to the
complexity of the data, ensemble visualization faces a variety of
research challenges, such as scalability, extraction of trends, dif-
ferences and commonalities [42]. Previous work has focused on
proposing frameworks to support visual analysis of ensemble data
through a combination of statistical visualization techniques and
user interaction [43], visual glyphs, such as radar plots [37], ribbons
and spaghetti plots [45], clustering [30,31] and probabilistic [28,29]
and trend analysis [41]. A complete survey of visualization and
visual analysis of ensemble data can be found at Wang et al. [48];
the survey focuses on more common ensemble data, such as weather
and climate simulations, and lists a series of six common ensemble
visualization tasks: overview, comparison, clustering, temporal trend
analysis, feature extraction, and parameter analysis. In our work, we
use a subset of these tasks to visualize COVID-19 forecast ensemble
models, with the goal of indicating and starting to lay down bridges
between ensemble visualization research and pandemic predictions.

3 COVID-19 FORECASTS AND ENSEMBLES

An initiative led by the University of Massachusetts has created
a central repository, called COVID-19 Forecast Hub, that collects
and organizes submissions with COVID-19 forecasts in the US,
both at the state level and at the county level. These submissions
are developed independently and shared publicly. Submissions can
include week-ahead forecasts of COVID-19 deaths and/or cases
following the CDC’s epidemiological weeks. For example, during
epidemiological week 1 (EW1), a team can submit a forecast for the
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Figure 2: Spatial view: visualizing the spatial distribution of the en-
semble model’s error (aggregated by counties).

subsequent weeks (≥EW2). At the beginning of each week, an en-
semble forecast will be created using the most recent valid forecasts
from each team; the ensemble is composed of the median prediction
across all eligible models at each quantile level. Both individual
forecasts, as well as ensemble forecasts, are made available as CSV
files with a weekly temporal resolution and state and county spatial
resolutions. Ground truth data is also collected by the Forecast Hub,
allowing the straightforward computation of error metrics. To be
more precise, the error of a model can be calculated as the difference
ec,t = y′c,t −yc,t , where y′c,t is the model’s predicted value for county
c at week t, and yc,t is the ground truth for county c at week t. In this
paper, positive differences (i.e., predicted value greater than ground
truth) are represented by shades of blue, and negative differences by
shades of red.

On top of the individual forecast CSV files, the central repository
also hosts a weight CSV file and an eligibility CSV file. For each
week and geographical unit, the first file lists the models’ weights
used in the computation of the ensemble forecast, and the second
file informs whether or not a given model is eligible for inclusion in
the ensemble forecast. Both files are updated weekly.

It is important to note that UMass’ center interprets forecasts
as unconditional predictions about the future. In other words, pre-
dictions should consider uncertainty across a wide range of future
scenarios (e.g., new social distancing mandates), and it is up to the
team to select and submit one or a combination of predictions across
the most likely scenarios. In this work, we make use of UMass’
COVID-19 Forecast Hub ensemble model, which combines the indi-
vidual models highlighted in Table 1. We focus our attention on the
visualization of 2-week-ahead predictions.

4 REQUIREMENTS

The CDC recently highlighted how important it is to bring forecasts
together to help understand how they compare with each other
and how much uncertainty there is about what may happen in the
future [7]. Considering that, we identified three main tasks that
can be facilitated by a visual interface: 1) provide an overview
summary of the errors of the models to assess uncertainty; 2) identify
spatiotemporal trends, i.e., how a group of members changes over
space and time; and 3) visually identify differences between two or
more ensemble members. In order to accomplish these tasks, we
identified the following requirements for our visual interface:

[R1] Support the identification of spatiotemporal patterns.
Explore the spatial and temporal patterns of one or more ensemble
members to identify regions or periods with above average forecast
error and uncertainty.

[R2] Support the comparison of ensemble members. Com-
pare predictions of different ensemble members to evaluate the
spatiotemporal performance of different models.

Figure 3: Temporal view: visualizing the temporal distribution of in-
dividual ensemble models (aggregated by weeks). Cells show posi-
tive (shades of blue) and negative (shades of red) prediction errors
for each model (row). Cells without prediction information are shown
in grey.

[R3] Support the analysis of the relationship between model
performance and sociodemographic features. Explore the
relationship between sociodemographic variables and model perfor-
mance to identify regions not adequately represented in the model.

5 COVID-19 ENSEMBLEVIS

In order to satisfy the previously detailed requirements, we built
COVID-19 EnsembleVis, a web-based interface to facilitate the vi-
sual exploration of COVID-19 forecast ensembles. The interface is
composed of three main views: spatial view, temporal view, and dis-
tribution view. These three views are all linked, such that a selection
in one view will highlight the appropriate data in other views. In
this work, we consider weekly predictions between April 6, 2020
and July 5, 2021.

Spatial view. This component is composed of a map with US
counties (Figure 2) and enables the identification of spatial pat-
terns (R1). Each county is painted according to the average ensem-
ble’s forecast error over all weeks (i.e., ∑t∈weeks

ec,t
|weeks| , for each

county c). A divergent color scale is used to indicate negative and
positive forecast errors. In order to enable detailed analysis, the user
can select an individual county, and the temporal view will update
accordingly.

Temporal view. This view uses a matrix heatmap to display the
weekly average error for each ensemble member (Figure 3). Each
cell is painted according to the average ensemble member’s forecast
error over all counties (i.e., ∑c∈counties

ec,t
|counties| , for each week t).

The temporal view allows the visualization of forecast errors over
time (R1) and the comparison of individual ensemble members (R2)
that can help in the identification of weeks with bad predictions (e.g.,
predictions with high errors) from ensemble members. The temporal
view is linked with the spatial view. If a single county is selected,
the weekly average error for each model of that particular county
will be shown (Figure 6). Furthermore, the temporal view enables
the user to add temporal constraints by selecting specific weeks of
interest, which will update the other views. The same divergent
color scale from the previous component is also used in the temporal
view. Missing predictions are displayed in light gray.

Distribution view. This view incorporates a 2D scatterplot that
shows, for each week, the distribution of per-county ensemble pre-
diction errors (normalized by population) by the log of the total
county population. Each data point then represents the ensemble
prediction error for a given county at a given week. Users can use
the scroll wheel to view different weeks or select specific weeks
from the temporal view. In this version of the interface, we only
consider the population information, partially meeting R3. The main
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Figure 4: Distribution view: visualizing the distribution of ensemble
prediction errors. Each data point represents the ensemble prediction
error for a given county at a given week.

Figure 5: Spatial distribution of predictions with large error values.
By selecting outlier points in Week 47 (left), we notice that they are
mostly located in the state of Missouri.

purpose of the scatterplot is to assess any possible relationship be-
tween prediction error and demographic variables. The distribution
view also allows the user to brush the scatterplot and select data
points of interest; this will then update the other views, enabling the
assessment of the spatiotemporal distribution of the errors.

Implementation. The COVID-19 EnsembleVis interface was
implemented using Angular, D3 and TopoJSON so that it could be
easily accessed through a web browser. We collected the predictions
from UMass’ COVID-19 Forecast Hub and pre-processed them us-
ing Python and Jupyter Notebook. The EpiWeeks Python library
was used to compute epidemiological weeks (following CDC’s stan-
dard). The pre-processing step is responsible for aggregating the
data over counties and epidemiological weeks. The pre-processed
data is then stored as a single JSON file and accessed by the front
end. The source code and data pre-processing stages are available at
https://github.com/uic-evl/covid-19-ensemblevis.

6 EXPLORING ENSEMBLE PREDICTIONS

In this section, we illustrate an initial case on how our tool can
be used in the visual analysis of ensemble models, with a focus
on understanding how prediction errors are spatially distributed
over different counties. We begin the exploration by visualizing
the distribution of ensemble prediction errors by county population
using the distribution view (Figure 1(right)). We notice a particular
week (Week 42) where certain counties present a larger prediction
error. We select these data points in the scatterplot and notice that
most of them are counties in Texas. While it is not possible to
precisely say why this happened, such visualization can foment
discussions on the shortcomings of current modeling practices, such
as data availability, parametrization for those counties, etc.

We also used COVID-19 EnsembleVis to explore the spatial dis-
tribution of errors in Week 47, which showed another unusual pat-
tern (Figure 5). After selecting a set of points in the scatterplot (left
side of the figure), we noticed that these points are from counties
in Missouri (right side). Unlike the previous example, however, we
were able to pinpoint the source of such an unusual pattern: on
March 8, 2021, the Missouri Department of Health and Senior Ser-
vices updated the number of daily cases to show 81,206 previously
unreported infections.

Figure 6: Temporal distribution of average error of an individual county.
After selecting Cook County (left), we observe that there are large
differences in average error over the weeks (right).

Our ongoing collaboration with public health experts interested
in the impact of COVID-19 on underrepresented communities in
Chicago enabled us to use COVID-19 EnsembleVis to better un-
derstand the prediction errors in Cook County. The data revealed
significant differences in the average error over the weeks (Figure 6).
In the initial weeks, the average error for each ensemble member
was mostly negative, and with time the error increased to positive
values. One possible hypothesis is that models were not able to
capture the significant loss of life in Long-term Care Facilities, an
ongoing problem due to inaccurate public health indicators [26]. Un-
derstanding the poor local accuracy of prediction models can create
opportunities to investigate new sources of data or parametrizations
for specific counties and communities.

7 CONCLUSION AND FUTURE WORK

COVID-19 EnsembleVis is a visual interface built specifically for the
analysis of COVID-19 forecast ensemble models. By using three dif-
ferent visualization components, we enable the investigation of both
the ensemble and individual models, from both spatial and temporal
perspectives. COVID-19 EnsembleVis takes the first steps toward
the visualization of county-level forecast ensemble models. Al-
though only presenting a collage of known visualization metaphors,
this work creates a foundation that will enable researchers to apply
ensemble visualization techniques to efforts related to the recent
pandemic. We hope this can help foment a discussion that builds
bridges between ensemble visualization researchers (mostly focused
on weather and climate data) and modeling and public health experts.
Additionally, we believe there are several interesting challenges that
could certainly benefit from collaboration between these fields. For
instance, while we focus our efforts on the visualization of the
output of the models, certain research teams do make their code
publicly available, opening doors to have a more vivid picture of
their computational mechanisms. Therefore, understanding the im-
pact of different parametrizations through visual analytics tools is a
path that can not only increase performance and accuracy but also
increase public trust in these models.

We also believe that there is an opportunity to use metaphors that
were previously introduced by visual analytics tools to visualize
weather and climate ensemble data. Given the potential impact of
COVID-19 predictions, in future work we will also investigate how
predictions can better inform policymakers and their decisions from
a visual analytics perspective [23]. Furthermore, we will explore
the relationship between models and data sources. As shown in Ta-
ble 1, models use different data sets, and this can heavily impact the
predictive power of both individual members and ensembles. Given
that, we believe it would be interesting to understand the relation-
ship between data sets, model performance, and social demographic
variables. Moreover, given the number of possible data slices, it
would be important to guide the user in the exploratory process and
highlight potentially interesting data features. We will also extend
COVID-19 EnsembleVis to enable the visualization and exploration
of COVID-19 forecasts from other regions of the world, including
Europe [12].
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